1 |
Rossen J, Amram A, Milani B, et al. Contact lens-induced limbal stem cell deficiency [J]. Ocul Surf, 2016, 14(4):419-434.
|
2 |
王振宇,周庆军,史伟云. 多能干细胞向角膜上皮分化的研究进展 [J/CD]. 中华细胞与干细胞杂志(电子版), 2015, 5(4):51-56.
|
3 |
Kocaba V, Damour O, Auxenfans C, et al. Limbal stem cell deficiency management. A review[J]. J Fr Ophtalmol, 2016, 39(9):791-803.
|
4 |
Sheth R, Neale MH, Shortt AJ, et al. Culture and characterization of oral mucosal epithelial cells on a fibrin gel for ocular surface Reconstruction[J]. Curr Eye Res, 2015, 40(11):1077-1087.
|
5 |
Rossant J. Stem cells and early lineage development[J]. Cell, 2008, 132(4):527-531.
|
6 |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
|
7 |
Papapetrou EP. Induced pluripotent stem cells, past and future[J]. Science, 2016, 353(633):991-993.
|
8 |
Kitazawa K, Hikichi T, Nakamura T, et al. PAX6 regulates human corneal epithelium cell identity[J]. Exp Eye Res, 2017, 154:30-38.
|
9 |
Ueno H, Kurokawa MS, Kayama M, et al. Experimental transplantation of corneal epithelium-like cells induced by Pax6 gene transfection of mouse embryonic stem cells[J]. Cornea, 2007, 26(10):1220-1227.
|
10 |
Ouyang H, Xue Y, Lin Y, et al. WNT7A and PAX6 define corneal epithelium homeostasis and pathogenesis[J]. Nature, 2014, 511(7509): 358-361.
|
11 |
Davis J, Piatigorsky J. Overexpression of Pax6 in mouse cornea directly alters corneal epithelial cells: changes in immune function, vascularization, and differentiation[J]. Invest Ophthalmol Vis Sci, 2011, 52(7):4158-4168.
|
12 |
Li W, Chen YT, Hayashida Y, et al. Down-regulation of Pax6 is associated with abnormal differentiation of corneal epithelial cells in severe ocular surface diseases[J]. J Pathol, 2008, 214(1):114-122.
|
13 |
Nowell CS, Radtke F. Corneal epithelial stem cells and their niche at a glance[J]. J Cell Sci, 2017, 130(6):1021-1025.
|
14 |
Yu D, Chen M, Sun X, et al. Differentiation of mouse induced pluripotent stem cells into corneal epithelial-like cells[J]. Cell Biol Int, 2013, 37(1):87-94.
|
15 |
Ahmad S, Stewart R, Yung S, et al. Differentiation of human embryonic stem cells into corneal epithelial-like cells by in vitro replication of the corneal epithelial stem cell niche[J]. Stem Cells, 2007, 25(5):1145-1155.
|
16 |
Kawasaki H, Suemori H, Mizuseki K, et al. Generation of dopaminergic neurons and pigmented epithelia from Primate ES cells by stromal cell-derived inducing activity[J]. Proc Natl Acad Sci U S A, 2002, 99(3):1580-1585.
|
17 |
Brzeszczynska J, Samuel K, Greenhough S, et al. Differentiation and molecular profiling of human embryonic stem cell-derived corneal epithelial cells[J]. Int J Mol Med, 2014, 33(6):1597-1606.
|
18 |
Gopakumar V, Chatterjee N, Parameswaran S, et al. In vitro transdifferentiation of human skin keratinocytes to corneal epithelial cells[J]. Cytotherapy, 2016, 18(5):673-685.
|
19 |
李兰玉,朱露露,朱秀生, 等. 小分子化合物促进体细胞重编程为多能干细胞的研究进展[J]. 黑龙江畜牧兽医, 2017(1):61-64.
|
20 |
Arkell RM, Tam PP. Initiating head development in mouse embryos: integrating signalling and transcriptional activity[J]. Open Biol, 2012, 2(3):120030.
|
21 |
Mikhailova A, Ilmarinen T, Uusitalo H, et al. Small-molecule induction promotes corneal epithelial cell differentiation from human induced pluripotent stem cells[J]. Stem Cell Reports, 2014, 2(2):219-231.
|
22 |
Zhang J, Upadhya D, Lu L, et al. Fibroblast growth factor receptor 2 (FGFR2) is required for corneal epithelial cell proliferation and differentiation during embryonic development[J]. PLoS One, 2015, 10(1):e0117089.
|
23 |
Jiang Yanyan, Ju Zhicai, Zhang Junfu, et al. Effects of insulin-like growth factor 2 and its receptor expressions on corneal repair[J]. Int J Clin Exp Pathol, 2015, 8(9):10185-10191.
|
24 |
Huo YN, Chen W, Zheng XX. ROS, MAPK/ERK and PKC play distinct roles in EGF-stimulated human corneal cell proliferation and migration[J]. Cell Mol Biol, 2015, 61(7):6-11.
|