切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (01) : 45 -50. doi: 10.3877/cma.j.issn.2095-1221.2022.01.008

综述

多能干细胞体外分化为类神经管模型的研究进展
张小佐1, 霍海芹1, 谭建新1, 张芳1, 冯浩洋1, 许争峰1,()   
  1. 1. 210000 南京医科大学附属妇产医院产前诊断中心;210000 南京市妇幼保健院产前诊断中心
  • 收稿日期:2021-06-03 出版日期:2022-02-01
  • 通信作者: 许争峰
  • 基金资助:
    国家重点研发计划课题(2018YFC1002402); 国家自然科学基金(82001212)

Development of neural tube-like models derived from pluripotent stem cells in vitro

Xiaozuo Zhang1, Haiqin Huo1, Jianxin Tan1, Fang Zhang1, Haoyang Feng1, Zhengfeng Xu1,()   

  1. 1. Department of Prenatal Diagnosis, the Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing 210000, China; Department of Prenatal Diagnosis, Nanjing Maternity and Child Health Care Hospital, Nanjing 210000, China
  • Received:2021-06-03 Published:2022-02-01
  • Corresponding author: Zhengfeng Xu
引用本文:

张小佐, 霍海芹, 谭建新, 张芳, 冯浩洋, 许争峰. 多能干细胞体外分化为类神经管模型的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 45-50.

Xiaozuo Zhang, Haiqin Huo, Jianxin Tan, Fang Zhang, Haoyang Feng, Zhengfeng Xu. Development of neural tube-like models derived from pluripotent stem cells in vitro[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(01): 45-50.

近年来多能干细胞(PSCs)的体外培养与分化技术发展迅速,并广泛应用于再生医学和发育生物学等领域。PSCs能够在体外神经诱导的条件下分化为类神经管模型,这为探索体内早期神经发育与中枢神经系统发育疾病的形成机制提供了全新的实验平台。本文总结了近年来应用小鼠和人PSCs建立体外类神经管模型的研究进展,其中体外模型主要包括在不同培养体系下诱导获得的二维(2D)与三维(3D)类神经管模型,并针对早期类神经管模型在神经系统发育性疾病机制研究中的前景和挑战作进一步探讨,同时为疾病预防和治疗提供新的思路。

The approaches for culture and differentiation of pluripotent stem cells in vitro have developed rapidly, and have widely applied in the fields of regenerative medicine and developmental biology. Neural tube-like models can be established from pluripotent stem cells in vitro under neural induction, which provide a new experimental platform for exploring early neural development in vivo, and it is also benefit for exploring the mechanisms of central neural system developmental diseases. Herein, we summarized the progress of neural tube-like models derived from mouse and human pluripotent stem cells in vitro, so as to find the prospects and challenges of neural tube-like models in investigating the mechanism of neural system developmental diseases, and also can provide novel insights into for disease prevention and treatment.

图1 二维神经玫瑰花环样结构注:箭头所指为神经玫瑰花环样结构;虚线内为该结构中与体内相似的假复层柱状上皮;图中表示多个神经玫瑰花环样结构
图2 三维神经类器官注:图中表示三维培养条件下获得的神经类器官;箭头所指为三维神经类器官中不同类型的细胞
图3 三维神经管类器官注:图中表示三维培养条件下获得的神经管类器官;虚线所示为神经管类器官的lumen结构
1
Chizhikov VV, Millen KJ. Roof plate-dependent patterning of the vertebrate dorsal central nervous system[J]. Dev Biol, 2005, 277(2):287-295.
2
Dessaud E, McMahon AP, Briscoe J. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network[J]. Development, 2008, 135(15):2489-2503.
3
Le Dréau G, Martí E. Dorsal-ventral patterning of the neural tube: a tale of three signals[J]. Dev Neurobiol, 2012, 72(12):1471-1481.
4
Wallingford JB, Niswander LA, Shaw GM, et al. The continuing challenge of understanding, preventing, and treating neural tube defects[J]. Science, 2013, 339(6123):1222002.doi: 10.1126/science.1222002.
5
Jin Y, Choi J, Won J, et al. The relationship between autism spectrum disorder and melatonin during fetal development[J]. Molecules, 2018, 23(1):198. doi: 10.3390/molecules23010198.
6
Bond J, Roberts E, Mochida GH, et al. ASPM is a major determinant of cerebral cortical size[J]. Nat Genet, 2002, 32(2):316-320.
7
Grenier K, Kao J, Diamandis P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age[J]. Mol Psychiatry, 2020, 25(2):254-274.
8
Rauth S, Karmakar S, Batra SK, et al. Recent advances in organoid development and applications in disease modeling[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2):188527.doi: 10.1016/j.bbcan.2021.188527.
9
Drakhlis L, Biswanath S, Farr CM, et al. Human heart-forming organoids recapitulate early heart and foregut development[J]. Nature biotechnology, 2021, 39(6):737-746.
10
Freedman BS, Brooks CR, Lam AQ, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids[J]. Nat Commun, 2015, 6:8715.doi: 10.1038/ncomms9715.
11
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147.
12
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
13
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
14
Xu C, Inokuma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells[J]. Nat Biotechnol, 2001, 19(10):971-974.
15
Prowse AB, Doran MR, Cooper-White JJ, et al. Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media[J]. Biomaterials, 2010, 31(32):8281-8288.
16
Steventon B, Araya C, Linker C, et al. Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction[J]. Comparative Study, 2009, 136(5):771-779.
17
Zeng H, Guo M, Martins-Taylor K, et al. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells[J]. PloS one, 2010, 5(7):e11853.doi:10.1371/journal.pone.0011853.
18
Yoo YD, Huang CT, Zhang X, et al. Fibroblast growth factor regulates human neuroectoderm specification through ERK1/2-PARP-1 pathway[J]. Stem cells, 2011, 29(12):1975-1982.
19
Pankratz MT, Li XJ, Lavaute TM, et al. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage[J]. Stem cells, 2007, 25(6):1511-1520.
20
Zhang SC, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells[J]. Nat Biotechnol, 2001, 19(12):1129-1133.
21
Perrier A, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells[J]. 2004, 101(34):12543-12548.
22
Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells[J]. Proc Natl Acad Sci U S A, 2004, 101(34):12543-12548.
23
Elkabetz Y, Panagiotakos G, Al Shamy G, et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage[J]. Genes Dev, 2008, 22(2):152-165.
24
Knight GT, Lundin BF, Iyer N, et al. Engineering induction of singular neural rosette emergence within hPSC-derived tissues[J]. Elife, 2018, 7:e37549. doi: 10.7554/eLife.37549.
25
Xue X, Sun Y, Resto-Irizarry AM, et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells[J]. Nat Mater, 2018, 17(7):633-641.
26
Muñoz-Sanjuán I, Brivanlou AH. Neural induction, the default model and embryonic stem cells[J]. Nat Rev Neurosci, 2002, 3(4):271-280.
27
Bier E, De Robertis EM. Embryo development. BMP gradients:A paradigm for morphogen-mediated developmental patterning[J]. Science, 2015, 348(6242):aaa5838.doi: 10.1126/science.aaa5838.
28
Haremaki T, Metzger JJ, Rito T, et al. Self-organizing neuruloids model developmental aspects of Huntington's disease in the ectodermal compartment[J]. Nat Biotechnol, 2019, 37(10):1198-1208.
29
Britton G, Heemskerk I, Hodge R, et al. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm[J]. Development, 2019, 146(20):dev179093. doi: 10.1242/dev.179093.
30
Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells[J]. Nat Biotechnol, 2007, 25(6):681-686.
31
Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5):519-532.
32
Li H, Wijekoon A, Leipzig ND. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds[J]. PloS one, 2012, 7(11):e48824.doi: 10.1371/journal.pone.0048824.
33
Chang CW, Hwang Y, Brafman D, et al. Engineering cell-material interfaces for long-term expansion of human pluripotent stem cells[J]. Biomaterials, 2013, 34(4):912-921.
34
Xia X, Zhang SC. Differentiation of neuroepithelia from human embryonic stem cells[J]. Methods Mol Biol, 2009, 549:51-58.
35
Mariani J, Simonini MV, Palejev D, et al. Modeling human cortical development in vitro using induced pluripotent stem cells[J]. Proc Natl Acad Sci U S A, 2012, 109(31):12770-12775.
36
Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379.
37
Koroleva A, Deiwick A, El-Tamer A, et al. In Vitro Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds[J]. ACS Appl Mater Interfaces, 2021, 13(7):7839-7853.
38
Jo J, Xiao Y, Sun AX, et al. Midbrain-like Organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19(2):248-257.
39
Meinhardt A, Eberle D, Tazaki A, et al. 3D reconstitution of the patterned neural tube from embryonic stem cells[J]. Stem Cell Reports, 2014, 3(6):987-999.
40
Ogura T, Sakaguchi H, Miyamoto S, et al. Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells[J]. Development, 2018, 145(16):dev162214. doi:10.1242/dev.162214.
41
Abdel Fattah AR, Daza B, Rustandi G, et al. Actuation enhances patterning in human neural tube organoids[J]. Nat Commun, 2021, 12(1):3192.doi:10.1038/s41467-021-22952-0.
[1] 尚强强, 王凌峰, 巴特, 曹胜军, 周彪, 李全, 侯智慧, 闫增强, 陈强. 外泌型汗腺参与创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 450-453.
[2] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[3] 符莞孟, 王晓黎, 刘玉, 张潍, 张菊. 干细胞治疗多囊卵巢综合征的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 108-114.
[4] 周逸凡, 金颖. ERK信号通路在人多能干细胞的多能性状态调控中的作用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 27-35.
[5] 武玉康, 康九红. 多能干细胞在心脏发育和疾病研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 378-382.
[6] 高原, 盛伟, 黄国英. 多能干细胞在体外心脏模型构建研究中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 314-318.
[7] 柯敏霞, 杨黄恬. 心肌微组织的构建及其在心肌损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 224-229.
[8] 胡敏洁, 王思贤, 王永煜. 人诱导多能干细胞及其在血管相关疾病模型中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 167-175.
[9] 陈妙纯, 吴高椿, 刘韬. 人诱导性多能干细胞向红系分化的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 115-120.
[10] 阎凯, 付雍, 章正涛, 卢文峰, 王毅州, 巫国谊, 张海斌. 中晚期肝癌疗效预测模型暨肝癌类器官模型研究进展[J]. 中华肝脏外科手术学电子杂志, 2023, 12(03): 348-351.
[11] 王璐, 黄楚月, 李志利, 王一, 孔德松, 刘飞, 樊志敏. 患者来源的结直肠癌类器官模型的构建及其在有毒中药抗癌活性评价中的应用[J]. 中华结直肠疾病电子杂志, 2022, 11(04): 343-348.
[12] 汪东生, 吴理达, 顾雨春. 细胞基因疗法在视网膜退行性疾病中的应用和挑战[J]. 中华眼科医学杂志(电子版), 2022, 12(03): 129-133.
[13] 陈立华, 夏勇, 黄宏志, 魏帆, 孙恺, 陈文锦, 徐如祥. 前床突磨除和视神经管开放对前床突脑膜瘤疗效的影响[J]. 中华神经创伤外科电子杂志, 2023, 09(03): 142-148.
[14] 王航, 蔡亚宁, 衡立君, 葛顺楠, 屈延. 创伤性视神经损伤预后影响因素分析及视神经管骨折手术策略选择[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 23-27.
[15] 陈立华, 夏勇, 魏帆, 孙恺, 黄宏志. 前床突脑膜瘤术后视力的影响因素研究[J]. 中华脑科疾病与康复杂志(电子版), 2022, 12(06): 332-337.
阅读次数
全文


摘要