1 |
Chizhikov VV, Millen KJ. Roof plate-dependent patterning of the vertebrate dorsal central nervous system[J]. Dev Biol, 2005, 277(2):287-295.
|
2 |
Dessaud E, McMahon AP, Briscoe J. Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network[J]. Development, 2008, 135(15):2489-2503.
|
3 |
Le Dréau G, Martí E. Dorsal-ventral patterning of the neural tube: a tale of three signals[J]. Dev Neurobiol, 2012, 72(12):1471-1481.
|
4 |
Wallingford JB, Niswander LA, Shaw GM, et al. The continuing challenge of understanding, preventing, and treating neural tube defects[J]. Science, 2013, 339(6123):1222002.doi: 10.1126/science.1222002.
|
5 |
Jin Y, Choi J, Won J, et al. The relationship between autism spectrum disorder and melatonin during fetal development[J]. Molecules, 2018, 23(1):198. doi: 10.3390/molecules23010198.
|
6 |
Bond J, Roberts E, Mochida GH, et al. ASPM is a major determinant of cerebral cortical size[J]. Nat Genet, 2002, 32(2):316-320.
|
7 |
Grenier K, Kao J, Diamandis P. Three-dimensional modeling of human neurodegeneration: brain organoids coming of age[J]. Mol Psychiatry, 2020, 25(2):254-274.
|
8 |
Rauth S, Karmakar S, Batra SK, et al. Recent advances in organoid development and applications in disease modeling[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2):188527.doi: 10.1016/j.bbcan.2021.188527.
|
9 |
Drakhlis L, Biswanath S, Farr CM, et al. Human heart-forming organoids recapitulate early heart and foregut development[J]. Nature biotechnology, 2021, 39(6):737-746.
|
10 |
Freedman BS, Brooks CR, Lam AQ, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids[J]. Nat Commun, 2015, 6:8715.doi: 10.1038/ncomms9715.
|
11 |
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147.
|
12 |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
|
13 |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
|
14 |
Xu C, Inokuma MS, Denham J, et al. Feeder-free growth of undifferentiated human embryonic stem cells[J]. Nat Biotechnol, 2001, 19(10):971-974.
|
15 |
Prowse AB, Doran MR, Cooper-White JJ, et al. Long term culture of human embryonic stem cells on recombinant vitronectin in ascorbate free media[J]. Biomaterials, 2010, 31(32):8281-8288.
|
16 |
Steventon B, Araya C, Linker C, et al. Differential requirements of BMP and Wnt signalling during gastrulation and neurulation define two steps in neural crest induction[J]. Comparative Study, 2009, 136(5):771-779.
|
17 |
Zeng H, Guo M, Martins-Taylor K, et al. Specification of region-specific neurons including forebrain glutamatergic neurons from human induced pluripotent stem cells[J]. PloS one, 2010, 5(7):e11853.doi: 10.1371/journal.pone.0011853.
|
18 |
Yoo YD, Huang CT, Zhang X, et al. Fibroblast growth factor regulates human neuroectoderm specification through ERK1/2-PARP-1 pathway[J]. Stem cells, 2011, 29(12):1975-1982.
|
19 |
Pankratz MT, Li XJ, Lavaute TM, et al. Directed neural differentiation of human embryonic stem cells via an obligated primitive anterior stage[J]. Stem cells, 2007, 25(6):1511-1520.
|
20 |
Zhang SC, Wernig M, Duncan ID, et al. In vitro differentiation of transplantable neural precursors from human embryonic stem cells[J]. Nat Biotechnol, 2001, 19(12):1129-1133.
|
21 |
Perrier A, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells[J]. 2004, 101(34):12543-12548.
|
22 |
Perrier AL, Tabar V, Barberi T, et al. Derivation of midbrain dopamine neurons from human embryonic stem cells[J]. Proc Natl Acad Sci U S A, 2004, 101(34):12543-12548.
|
23 |
Elkabetz Y, Panagiotakos G, Al Shamy G, et al. Human ES cell-derived neural rosettes reveal a functionally distinct early neural stem cell stage[J]. Genes Dev, 2008, 22(2):152-165.
|
24 |
Knight GT, Lundin BF, Iyer N, et al. Engineering induction of singular neural rosette emergence within hPSC-derived tissues[J]. Elife, 2018, 7:e37549. doi: 10.7554/eLife.37549.
|
25 |
Xue X, Sun Y, Resto-Irizarry AM, et al. Mechanics-guided embryonic patterning of neuroectoderm tissue from human pluripotent stem cells[J]. Nat Mater, 2018, 17(7):633-641.
|
26 |
Muñoz-Sanjuán I, Brivanlou AH. Neural induction, the default model and embryonic stem cells[J]. Nat Rev Neurosci, 2002, 3(4):271-280.
|
27 |
Bier E, De Robertis EM. Embryo development. BMP gradients:A paradigm for morphogen-mediated developmental patterning[J]. Science, 2015, 348(6242):aaa5838.doi: 10.1126/science.aaa5838.
|
28 |
Haremaki T, Metzger JJ, Rito T, et al. Self-organizing neuruloids model developmental aspects of Huntington's disease in the ectodermal compartment[J]. Nat Biotechnol, 2019, 37(10):1198-1208.
|
29 |
Britton G, Heemskerk I, Hodge R, et al. A novel self-organizing embryonic stem cell system reveals signaling logic underlying the patterning of human ectoderm[J]. Development, 2019, 146(20):dev179093. doi: 10.1242/dev.179093.
|
30 |
Watanabe K, Ueno M, Kamiya D, et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells[J]. Nat Biotechnol, 2007, 25(6):681-686.
|
31 |
Eiraku M, Watanabe K, Matsuo-Takasaki M, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5):519-532.
|
32 |
Li H, Wijekoon A, Leipzig ND. 3D differentiation of neural stem cells in macroporous photopolymerizable hydrogel scaffolds[J]. PloS one, 2012, 7(11):e48824.doi: 10.1371/journal.pone.0048824.
|
33 |
Chang CW, Hwang Y, Brafman D, et al. Engineering cell-material interfaces for long-term expansion of human pluripotent stem cells[J]. Biomaterials, 2013, 34(4):912-921.
|
34 |
Xia X, Zhang SC. Differentiation of neuroepithelia from human embryonic stem cells[J]. Methods Mol Biol, 2009, 549:51-58.
|
35 |
Mariani J, Simonini MV, Palejev D, et al. Modeling human cortical development in vitro using induced pluripotent stem cells[J]. Proc Natl Acad Sci U S A, 2012, 109(31):12770-12775.
|
36 |
Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379.
|
37 |
Koroleva A, Deiwick A, El-Tamer A, et al. In Vitro Development of Human iPSC-Derived Functional Neuronal Networks on Laser-Fabricated 3D Scaffolds[J]. ACS Appl Mater Interfaces, 2021, 13(7):7839-7853.
|
38 |
Jo J, Xiao Y, Sun AX, et al. Midbrain-like Organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19(2):248-257.
|
39 |
Meinhardt A, Eberle D, Tazaki A, et al. 3D reconstitution of the patterned neural tube from embryonic stem cells[J]. Stem Cell Reports, 2014, 3(6):987-999.
|
40 |
Ogura T, Sakaguchi H, Miyamoto S, et al. Three-dimensional induction of dorsal, intermediate and ventral spinal cord tissues from human pluripotent stem cells[J]. Development, 2018, 145(16):dev162214. doi: 10.1242/dev.162214.
|
41 |
Abdel Fattah AR, Daza B, Rustandi G, et al. Actuation enhances patterning in human neural tube organoids[J]. Nat Commun, 2021, 12(1):3192.doi: 10.1038/s41467-021-22952-0.
|