1 |
Mirabello L, Troisi RJ, Savage SA. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons[J]. Int J Cancer, 2009, 125(1):229-234.
|
2 |
Bian J, Liu Y, Zhao X, et al. Research progress in the mechanism and treatment of osteosarcoma[J]. Chin Med J (Engl), 2023, 136(20):2412-2420.
|
3 |
周鹏程. 基于能量代谢相关基因的骨肉瘤分型及机制研究[D]. 吉林大学, 2023.
|
4 |
王文剑,姚阳,余文熙,等.1593例骨肉瘤流行病及治疗的回顾性分析[J]. 中华骨科杂志, 2018, 38(18):1097-1107.
|
5 |
Lindsey BA, Markel JE, Kleinerman ES. Osteosarcoma overview[J]. Rheumatol Ther, 2017, 4(1):25-43.
|
6 |
廖健宏,秦琼. 骨肉瘤发病相关因素的研究进展[J]. 癌症进展, 2020, 18(14):1413-1416, 1423.
|
7 |
Arora R D, Shaikh H. Osteogenic sarcoma[M]. Treasure Island (FL): StatPearls Publishing, 2024.
|
8 |
陈祉璇,姜亚飞,华莹奇,等.精准医学时代骨肉瘤诊疗的研究进展[J]. 中国肿瘤临床, 2019, 46(17):914-918.
|
9 |
曹莉莉,朱岩,樊根涛,等.骨肉瘤的治疗进展[J]. 中国骨与关节杂志, 2020, 9(10):771-778.
|
10 |
黄少兵. 3D组织工程建立快速原位骨肉瘤动物模型的实验研究[D]. 南华大学, 2020.
|
11 |
Sarker DB, Xue Y, Mahmud F, et al. Interconversion of cancer cells and induced pluripotent stem cells[J]. Cells, 2024, 13(2):125. doi: 10.3390/cells13020125.
|
12 |
邹昌业,苏乔,李武国,等.人源骨肉瘤原代细胞的分离及其CDX模型和PDX模型的构建[J]. 骨科临床与研究杂志, 2019, 4(5):286-290.
|
13 |
符策岗,曾艳,赵红卫,等. 小鼠骨肉瘤模型构建的关键[J]. 中国比较医学杂志, 2016, 26(1):73-75.
|
14 |
符策岗,赵红卫,刘扬,等. 骨肉瘤动物模型新进展[J]. 中国实验动物学报, 2015, 23(2):216-220.
|
15 |
廖宇昕,蔡郑东. 骨肉瘤动物模型的构建及其应用现状[J]. 中国骨与关节杂志, 2012, 1(3):300-303, 321.
|
16 |
范伟,谭毅,安洪.骨肉瘤动物模型研究概述[J]. 中国实验动物学杂志, 2002, 12(3):186-189.
|
17 |
Pu F, Guo H, Shi D, et al. The generation and use of animal models of osteosarcoma in cancer research[J]. Genes Dis, 2024, 11(2):664-674.
|
18 |
Gillet JP, Varma S, Gottesman MM. The clinical relevance of cancer cell lines[J]. J Natl Cancer Inst, 2013, 105(7):452-458.
|
19 |
张铖.研究骨肉瘤耐药性的实验室模型——P糖蛋白阳性的小鼠骨肉瘤细胞系[J]. 国外医学(创伤与外科基本问题分册), 1996, (4): 244-245.
|
20 |
许小涛,刘先洲. 人骨肉瘤多药耐药细胞模型建立及生物学形状分析[J]. 医药导报, 2004, 23(10):716-718.
|
21 |
Zanoni M, Cortesi M, Zamagni A, et al. Modeling neoplastic disease with spheroids and organoids[J]. J Hematol Oncol, 2020, 13(1):97. doi: 10.1186/s13045-020-00931-0.
|
22 |
Tan L, Wang Y, Hu X, et al. Advances of osteosarcoma models for drug discovery and precision medicine[J]. Biomolecules, 2023, 13(9):1362. doi: 10.3390/biom13091362.
|
23 |
Pavlou M, Shah M, Gikas P, et al. Osteomimetic matrix components alter cell migration and drug response in a 3D tumour-engineered osteosarcoma model[J]. Acta Biomater, 2019, 96:247-257.
|
24 |
Roy M, Alix C, Bouakaz A, et al. Tumor spheroids as model to design acoustically mediated drug therapies: a review[J]. Pharmaceutics, 2023, 15(3):806. doi: 10.3390/pharmaceutics15030806.
|
25 |
Ozturk S, Gorgun C, Gokalp S, et al. Development and characterization of cancer stem cell-based tumoroids as an osteosarcoma model[J]. Biotechnol Bioeng, 2020, 117(8):2527-2539.
|
26 |
杨澜波,史占军. 骨肉瘤动物模型研究进展[J]. 临床骨科杂志, 2009, 12(5):568-571.
|
27 |
Chen F, Zhang Z, Shen R, et al. Generation and characterization of patient-derived xenografts from patients with osteosarcoma[J]. Tissue Cell, 2022, 79:101911. doi: 10.1016/j.tice.2022.101911.
|
28 |
Kito F, Oyama R, Sakumoto M, et al. Establishment and characterization of novel patient-derived osteosarcoma xenograft and cell line[J]. In Vitro Cell Dev Biol Anim, 2018, 54(7):528-536.
|
29 |
Walkley CR, Qudsi R, Sankaran VG, et al. Conditional mouse osteosarcoma, dependent on p53 loss and potentiated by loss of Rb, mimics the human disease[J]. Genes Dev, 2008, 22(12):1662-1676.
|
30 |
Huang P, McKee TD, Jain RK, et al. Green fluorescent protein (GFP)-expressing tumor model derived from a spontaneous osteosarcoma in a vascular endothelial growth factor (VEGF)-GFP transgenic mouse[J]. Comp Med, 2005, 55(3):236-243.
|
31 |
Liao N, Koehne T, Tuckermann J, et al. Osteoblast-specific inactivation of p53 results in locally increased bone formation[J]. PLoS One, 2021, 16(11):e249894. doi: 10.1371/journal.pone.0249894.
|
32 |
Ferrena A, Wang J, Zhang R, et al. SKP2 knockout in Rb1/p53-deficient mouse models of osteosarcoma induces immune infiltration and drives a transcriptional program with a favorable prognosis[J]. Mol Cancer Ther, 2024, 23(2):223-234.
|
33 |
Jarvis S, Koumadoraki E, Madouros N, et al. Non-rodent animal models of osteosarcoma: a review[J]. Cancer Treat Res Commun, 2021, 27:100307. doi: 10.1016/j.ctarc.2021.100307.
|
34 |
周光新,赵建宁. 骨肉瘤动物模型研究进展[C]//中国抗癌协会,中华医学会肿瘤学分会.第五届中国肿瘤学术大会暨第七届海峡两岸肿瘤学术会议、国际肿瘤细胞与基因治疗学会会议、第二届中日肿瘤介入治疗学术会议论文集.石家庄, 2008:926-928.
|
35 |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
|
36 |
Liu M, Tu J, Gingold JA, et al. Cancer in a dish: progress using stem cells as a platform for cancer research[J]. Am J Cancer Res, 2018, 8(6):944-954.
|
37 |
Zhu D, Kong CSL, Gingold JA. Induced pluripotent stem cells and induced pluripotent cancer cells in cancer disease modeling[J]. Adv Exp Med Biol, 2018, 1119:169-183.
|
38 |
Gingold J, Zhou R, Lemischka IR, et al. Modeling cancer with pluripotent stem cells[J]. Trends Cancer, 2016, 2(9):485-494.
|
39 |
Kim J, Zaret KS. Reprogramming of human cancer cells to pluripotency for models of cancer progression[J]. EMBO J, 2015, 34(6):739-747.
|
40 |
Crespo M, Vilar E, Tsai SY, et al. Colonic organoids derived from human induced pluripotent stem cells for modeling colorectal cancer and drug testing[J]. Nat Med, 2017, 23(7):878-884.
|
41 |
Raya A, Rodríguez-Pizà I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells[J]. Nature, 2009, 460(7251):53-59.
|
42 |
Wang P, Na J. Mechanism and methods to induce pluripotency[J]. Protein Cell, 2011, 2(10):792-799.
|
43 |
Lee DF, Su J, Kim HS, et al. Modeling familial cancer with induced pluripotent stem cells[J]. Cell, 2015, 161(2):240-254.
|
44 |
Zhou R, Xu A, Tu J, et al. Modeling osteosarcoma using Li-Fraumeni syndrome patient-derived induced pluripotent stem cells[J]. J Vis Exp, 2018, (136):57664. doi: 10.3791/57664.
|
45 |
Kim H, Yoo S, Zhou R, et al. Oncogenic role of SFRP2 in p53-mutant osteosarcoma development via autocrine and paracrine mechanism[J]. Proc Natl Acad Sci U S A, 2018, 115(47):E11128-E11137.
|
46 |
Vincent A, Khetan V, Rishi P, et al. Generation of a human induced pluripotent stem cell line (VRFi001-A) from orbital adipose tissue of a bilateral retinoblastoma patient with heterozygous RB1 gene deletion[J]. Stem Cell Res, 2018, 29:42-45.
|
47 |
Zeng S, Liu L, Ouyang Q, et al. Generation of induced pluripotent stem cells (iPSCs) from a retinoblastoma patient carrying a c.2663G>A mutation in RB1 gene[J]. Stem Cell Res, 2016, 17(2):208-211.
|
48 |
Tu J, Huo Z, Yu Y, et al. Hereditary retinoblastoma iPSC model reveals aberrant spliceosome function driving bone malignancies[J]. Proc Natl Acad Sci U S A, 2022, 119(16):e2117857119.doi: 10.1073/pnas.2117857119.
|
49 |
Jewell BE, Liu M, Lu L, et al. Generation of an induced pluripotent stem cell line from an individual with a heterozygous RECQL4 mutation[J]. Stem Cell Res, 2018, 33:36-40.
|
50 |
Jewell BE, Xu A, Zhu D, et al. Patient-derived iPSCs link elevated mitochondrial respiratory complex I function to osteosarcoma in Rothmund-Thomson syndrome[J]. PLoS Genet, 2021, 17(12):e1009971. doi: 10.1371/journal.pgen.1009971.
|
51 |
Cheung HH, Liu X, Canterel-Thouennon L, et al. Telomerase protects werner syndrome lineage-specific stem cells from premature aging[J]. Stem Cell Reports, 2014, 2(4):534-546.
|
52 |
Jeong J, Lee D, Park BC, et al. Establishment of a TNFRSF11B knock-out human induced pluripotent stem cell line (KSCBi002-B-2) via CRISPR/Cas9 system[J]. Stem Cell Res, 2023, 71:103167. doi: 10.1016/j.scr.2023.103167.
|
53 |
Gatinois V, Desprat R, Becker F, et al. iPSC line derived from a Bloom syndrome patient retains an increased disease-specific sister-chromatid exchange activity[J]. Stem Cell Res, 2020, 43:101696.doi: 10.1016/j.scr.2019.101696.
|
54 |
Garçon L, Ge J, Manjunath SH, et al. Ribosomal and hematopoietic defects in induced pluripotent stem cells derived from Diamond Blackfan anemia patients[J]. Blood, 2013, 122(6):912-921.
|
55 |
Doulatov S, Vo LT, Macari ER, et al. Drug discovery for Diamond-Blackfan anemia using reprogrammed hematopoietic progenitors[J]. Sci Transl Med, 2017, 9(376):eaah5645. doi: 10.1126/scitranslmed.aah5645.
|
56 |
Pang LK, Pena M, Zhao R, et al. Modeling of osteosarcoma with induced pluripotent stem cells[J]. Stem Cell Res, 2020, 49:102006. doi: 10.1016/j.scr.2020.102006.
|
57 |
Lin YH, Jewell BE, Gingold J, et al. Osteosarcoma: molecular pathogenesis and iPSC modeling[J]. Trends Mol Med, 2017, 23(8):737-755.
|
58 |
Birch JM, Hartley AL, Tricker KJ, et al. Prevalence and diversity of constitutional mutations in the p53 gene among 21 Li-Fraumeni families[J]. Cancer Res, 1994, 54(5):1298-1304.
|
59 |
Hisada M, Garber JE, Fung CY, et al. Multiple primary cancers in families with Li-Fraumeni syndrome[J]. J Natl Cancer Inst, 1998, 90(8):606-611.
|
60 |
Zhou R, Xu A, Gingold J, et al. Li-Fraumeni syndrome disease model: a platform to develop precision cancer therapy targeting oncogenic p53[J]. Trends Pharmacol Sci, 2017, 38(10):908-927.
|
61 |
Siitonen HA, Sotkasiira J, Biervliet M, et al. The mutation spectrum in RECQL4 diseases[J]. Eur J Hum Genet, 2009, 17(2):151-158.
|
62 |
Broaddus E, Topham A, Singh AD. Survival with retinoblastoma in the USA: 1975-2004[J]. Br J Ophthalmol, 2009, 93(1):24-27.
|
63 |
Yu CL, Tucker MA, Abramson DH, et al. Cause-specific mortality in long-term survivors of retinoblastoma[J]. J Natl Cancer Inst, 2009, 101(8):581-591.
|
64 |
Wong FL, Boice JD Jr, Abramson DH, et al. Cancer incidence after retinoblastoma. Radiation dose and sarcoma risk[J]. JAMA, 1997, 278(15):1262-1267.
|
65 |
Temming P, Arendt M, Viehmann A, et al. Incidence of second cancers after radiotherapy and systemic chemotherapy in heritable retinoblastoma survivors: a report from the German reference center[J]. Pediatr Blood Cancer, 2017, 64(1):71-80.
|
66 |
Gutierrez GM, Kong E, Sabbagh Y, et al. Impaired bone development and increased mesenchymal progenitor cells in calvaria of RB1−/− mice[J]. Proc Natl Acad Sci U S A, 2008, 105(47):18402-18407.
|
67 |
Ottaviani G, Jaffe N. The etiology of osteosarcoma[J]. Cancer Treat Res, 2009, 152:15-32.
|
68 |
Toguchida J, Ishizaki K, Sasaki MS, et al. Preferential mutation of paternally derived RB gene as the initial event in sporadic osteosarcoma[J]. Nature, 1989, 338(6211):156-158.
|
69 |
Lu L, Jin W, Wang LL. RECQ DNA helicases and osteosarcoma[J]. Adv Exp Med Biol, 2020, 58:37-54.
|
70 |
Larizza L, Roversi G, Volpi L. Rothmund-Thomson syndrome[J]. Orphanet J Rare Dis, 2010, 5:2.doi: 10.1186/1750-1172-5-2.
|
71 |
Lu L, Jin W, Liu H, et al. RECQ DNA helicases and osteosarcoma[J]. Adv Exp Med Biol, 2014, 804:129-145.
|
72 |
Wang LL, Gannavarapu A, Kozinetz CA, et al. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome[J]. J Natl Cancer Inst, 2003, 95(9):669-674.
|
73 |
Mehollin-Ray AR, Kozinetz CA, Schlesinger AE, et al. Radiographic abnormalities in Rothmund-Thomson syndrome and genotype-phenotype correlation with RECQL4 mutation status[J]. AJR Am J Roentgenol, 2008, 191(2):W62-W66.
|
74 |
Ng AJ, Walia MK, Smeets MF, et al. The DNA helicase recql4 is required for normal osteoblast expansion and osteosarcoma formation[J]. PLoS Genet, 2015, 11(4):e1005160. doi: 10.1371/journal.pgen.1005160.
|
75 |
Goto M, Miller RW, Ishikawa Y, et al. Excess of rare cancers in Werner syndrome (adult progeria)[J]. Cancer Epidemiol Biomarkers Prev, 1996, 5(4):239-246.
|
76 |
Goto M. Werne's syndrome: from clinics to genetics[J]. Clin Exp Rheumatol, 2000, 18(6):760-766.
|
77 |
Cheung H, Rennert OM. Chapter 13-Werner syndrome induced pluripotent stem cells, a study of pathologic aging[M]//Birbrair A. Recent Advances in iPSC Disease Modeling, Volume 1. Academic Press, 2020:275-291.
|
78 |
Shimamoto A, Kagawa H, Zensho K, et al. Reprogramming suppresses premature senescence phenotypes of werner syndrome cells and maintains chromosomal stability over long-term culture: e112900[J]. PloS one, 2014, 9(11):e112900. doi: 10.1371/journal.pone.0112900.
|
79 |
German J, Sanz MM, Ciocci S, et al. Syndrome-causing mutations of theBLMgene in persons in the Bloom's syndrome registry[J]. Hum Mutat, 2007, 28(8):743-753.
|
80 |
Cunniff C, Bassetti JA, Ellis NA. Bloom's syndrome: clinical spectrum, molecular pathogenesis, and cancer predisposition[J]. Mol Syndromol, 2017, 8(1):4-23.
|
81 |
Vlachos A, Ball S, Dahl N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference[J]. Br J Haematol, 2008, 142(6):859-876.
|
82 |
Lipton JM, Federman N, Khabbaze Y, et al. Osteogenic sarcoma associated with Diamond-Blackfan anemia: a report from the Diamond-Blackfan Anemia Registry[J]. J Pediatr Hematol Oncol, 2001, 23(1):39-44.
|
83 |
Batanian JR, Cavalli LR, Aldosari NM, et al. Evaluation of paediatric osteosarcomas by classic cytogenetic and CGH analyses[J]. Mol Pathol, 2002, 55(6):389-393.
|
84 |
Bridge JA. Cytogenetic and molecular cytogenetic techniques in orthopaedic surgery[J]. J Bone Joint Surg Am, 1993, 75(4):606-614.
|