切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 37 -44. doi: 10.3877/cma.j.issn.2095-1221.2024.01.006

综述

溶质载体家族7的功能及其与肿瘤相关性的研究进展
王莹1, 赵虎2,(), 盛青松3,()   
  1. 1. 350025 福州,厦门大学附属东方医院妇产科
    2. 350025 福州,福建医科大学福总临床医学院;350025 福建福州,联勤保障部队第九〇〇医院普通外科
    3. 350025 福州,厦门大学附属东方医院妇产科;350025 福州,福建医科大学福总临床医学院
  • 收稿日期:2023-11-29 出版日期:2024-02-01
  • 通信作者: 赵虎, 盛青松
  • 基金资助:
    福建省自然科学基金(2021J011272)

Advances in the function of solute carrier family 7 and its correlation with tumors

Ying Wang1, Hu Zhao2,(), Qingson Sheng3,()   

  1. 1. Department of Obstetrics and Gynecology, Dongfang Affiliated Hospital of Xiamen University, Fuzhou 350025, China
    2. Fuzong Clinical Medical College Affiliated to Fujian Medical University, Fuzhou 350025, China; Department of General Surgery, No.900 Hospital of the Joint Logistics Team, Fuzhou 350001, China
    3. Department of Obstetrics and Gynecology, Dongfang Affiliated Hospital of Xiamen University, Fuzhou 350025, China; Fuzong Clinical Medical College Affiliated to Fujian Medical University, Fuzhou 350025, China
  • Received:2023-11-29 Published:2024-02-01
  • Corresponding author: Hu Zhao, Qingson Sheng
引用本文:

王莹, 赵虎, 盛青松. 溶质载体家族7的功能及其与肿瘤相关性的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 37-44.

Ying Wang, Hu Zhao, Qingson Sheng. Advances in the function of solute carrier family 7 and its correlation with tumors[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(01): 37-44.

溶质载体家族7 (SLC7)包括14个成员,分为2个亚家族:阳离子氨基酸转运蛋白(CAT)和L型氨基酸转运蛋白(LAT),各家族成员广泛表达于细胞和组织中,转运各类氨基酸,具有重要的生理意义。近年来研究发现SLC7家族各成员在疾病的发生发展中具有重要作用,本综述主要就SLC7家族各个成员功能的特点进行介绍和分析,并对其参与肿瘤发生发展及在肿瘤精准治疗中的应用前景进行综述。

Solute carrier family 7 (SLC7) consisted of 14 members, is divided into two subfamilies: cationic amino acid transporters (CAT) and L-type amino acid transporters (LAT) . These transporters are widely expressed in cells and tissues. They play a crucial role in the transportation of various amino acids, thereby exerting significant physiological importance. In recent years, it has been found that the members of SLC7 family play an important role in the occurrence and development of diseases. This review mainly introduces and analyzes the characteristics of each member of SLC7 family, reviews the research progress of their involvement in the occurrence and development of tumors, and introduces their application prospect in tumor precision therapy.

图1 CAT家族各成员结构域注:SLC7A1等代表基因命名;图中数字代表基因长度及结构域所在位置,单位BP
图2 LAT家族各成员结构域注:SLC7A5等代表基因命名;图中数字代表基因长度及结构域所在位置,单位BP
表1 SLC7家族各成员组织表达及相关疾病汇总
基因 编码蛋白 表达 相关疾病
SLC7A1 CAT-1 除肝脏、泪腺外的其他组织 卵巢癌[6]、肝细胞癌[7]、甲状腺激素释放异常[9]、肝母细胞瘤[51]
SLC7A2 CAT-1 (A or B) CAT-2A:肝脏、骨骼肌、胰腺、CAT-2B:在多种细胞类型中可诱导 非小细胞癌[11]、肺炎[12]、乳腺癌[13]、肝细胞癌[52]
SLC7A3 CAT-3 胸腺、卵巢、睾丸、大脑(神经元) 乳腺癌[17]、甲状腺癌[17]、癫痫[18]
SLC7A4 CAT-4 大脑、睾丸、胎盘 卵巢癌[21]、乳腺癌[22]、黑色素瘤[23]、前列腺癌[53]
SLC7A5 LAT1 大脑、卵巢、睾丸、胎盘、脾脏、结肠、血脑屏障 卵巢癌[25]、乳腺癌[27]、肝癌[28]、前列腺癌[30]
SLC7A6 y+LAT 2 大脑、小肠、睾丸、腮腺、心脏、肾脏、肺、胸腺 肝细胞癌[32]、高血氨症[33]、心血管疾病[34]
SLC7A7 y+LAT 1 小肠、肾脏、脾脏、白细胞、胎盘、肺(基底外侧) 肾上腺皮质癌[35]、肾嫌色细胞癌[35]、脑胶质瘤[35]、肝癌[35][35]、胰腺癌[35]、胸腺癌[35]、葡萄膜黑色瘤[35]、皮肤黑色素瘤[35]、胶质母细胞瘤[36]
SLC7A8 LAT 2 小肠、肾脏、肺、心脏、脾脏、肝脏、大脑、胎盘、前列腺、卵巢、胎儿肝脏、睾丸、骨骼肌 基底细胞癌[40][40]、乳腺癌[41]、骨肉瘤[42]
SLC7A9 b0,AT 肾脏、小肠、肝脏、胎盘 食管鳞状细胞癌[43]、胱氨酸尿症[44]
SLC7A10 Asc-1 大脑、中枢神经系统、肺、小肠、心脏、胎盘、骨骼肌、肾脏 成纤维细胞细胞周期调节[46]、胰岛素抵抗[47][48]
SLC7A11 xCT 巨噬细胞、大脑、视网膜色素细胞、肝脏、肾脏 膀胱癌[50]、结直肠癌[54]、胆管癌[55]
SLC7A13 AGT-1 近端小管、远曲小管 /
表2 SLC7亚家族介绍表
图3 SLC7家族各成员信号通路注:HB为肝母细胞瘤;HCC为肝细胞瘤;PCa为前列腺癌;BRCA为乳腺癌;CCA为胆管癌
1
Jin J, Kim C, Xia Q, et al. Activation of mTORC1 at late endosomes misdirects T cell fate decision in older individuals[J]. Sci Immunol. 2021, 6(60):eabg0791.
2
Cormerais Y, Massard PA, Vucetic M, et al. The glutamine transporter ASCT2 (SLC1A5) promotes tumor growth independently of the amino acid transporter LAT1 (SLC7A5)[J]. J Biol Chem, 2018, 293:2877-2887.
3
Polewski MD, Reveron-Thornton RF, Cherryholmes GA, et al. SLC7A11 overexpression in glioblastoma is associated with increased cancer stem cell-like properties[J]. Stem Cells Dev, 2017, 26:1236-1246.
4
Robert SM, Buckingham SC, Campbell SL, et al. SLC7A11 expression is associated with seizures and predicts poor survival in patients with malignant glioma[J]. Sci Transl Med, 2015, 7(289):289ra86.
5
Jungnickel KEJ, Parker JL, Newstead S. Structural basis for amino acid transport by the CAT family of SLC7 transporters[J]. Nat Commun, 2018, 9(1):550.
6
Jäger K, Bönisch U, Risch M,et al.Detection and Regulation of Cationic Amino Acid Transporters in Healthy and Diseased Ocular Surface[J]. Invest Ophthalmol Vis Sci,2009,50(3):1112-1121.
7
You S, Zhu X, Yang Y, et al.SLC7A1 overexpression is involved in energy metabolism reprogramming to induce tumor progression in epithelial ovarian cancer and is associated with immune-infiltrating cells[J]. J Oncol, 2022,2022:5864826.
8
Missiaen R, Anderson NM, Kim LC, et al. GCN2 inhibition sensitizes arginine-deprived hepatocellular carcinoma cells to senolytic treatment[J]. Cell Metab, 2022, 34(8):1151-1167.e7.
9
Toral M, Jimenez R, Montoro-Molina S, et al.Thyroid hormones stimulate L-arginine transport in human endothelial cells[J]. J Endocrinol, 2018, 239(1):49-62.
10
Sala R, Rotoli BM, Colla E, et al. Two-way arginine transport in human endothelial cells: TNF-α stimulation is restricted to system y(+)[J]. Am J Physiol Cell Physiol, 2002, 282(1):C134-C143.
11
He W, Zhang J, Liu B, et al. S119N mutation of the E3 ubiquitin ligase SPOP suppresses SLC7A1 degradation to regulate hepatoblastoma progression[J]. Mol Ther Oncolytics, 2020, 19:149-162.
12
Zhai X, Chen X, Wan Z, et al. Identification of the novel therapeutic targets and biomarkers associated of prostate cancer with cancer-associated fibroblasts (CAFs)[J]. Front Oncol, 2023, 13:1136835.
13
Closs EI, Gräf P, Habermeier A, et al. Human cationic amino acid transporters hCAT-1, hCAT-2A, andhCAT-2B: three related carriers with distinct transport properties[J]. Biochemistry, 1997, 36(21):6462-6468.
14
Jiang S, Zou J, Dong J, et al. Lower SLC7A2 expression is associated with enhanced multidrug resistance, less immune infiltrates and worse prognosis of NSCLC[J]. Cell Commun Signal, 2023, 21(1):9.
15
Rothenberg ME, Doepker MP, Lewkowich IP, et al. Cationic amino acid transporter 2 regulates inflammatory homeostasis in the lung[J]. Proc Natl Acad Sci U S A, 2006, 103(40):14895-900.
16
KesavardhanaS, Kanneganti TD. Targeting apoptosis inhibition to activate antitumor immunity[J]. Trends Immunol, 2019, 40(12):1073-1075.
17
Xia S, Wu J, Zhou W, et al. SLC7A2 deficiency promotes hepatocellular carcinoma progression by enhancing recruitment of myeloid-derived suppressors cells[J]. Cell Death Dis, 2021, 12(6):570.
18
VékonyN, WolS, BoisselJ, et al. Human cationic amino acid transporterh CAT-3 is preferentially expressed in peripheral tissues[J]. Biochemistry, 2001, 40, 12387-12394.
19
Nicholson B, Sawamura T, Masaki T, et al. Increased Cat3-mediated cationic amino acid transport functionally compensates in Cat1 knockout cell lines[J]. J Biol Chem, 1998, 273(24):14663-14666.
20
Nicholson B, Sawamura T, Masaki T, et al.Increased Cat3-mediated cationic amino acid transport functionally compensates in Cat1 knockout cell lines[J]. J Biol Chem, 1998, 273(24):14663-14666.
21
Yan L, He J, Liao X, etal. A comprehensive analysis of the diagnostic and prognostic value associated with the SLC7A family members in breast cancer[J]. Gland Surg, 2022, 11(2):389-411.
22
Sourbron J, Jansen K, Mei D, et al. SLC7A3: in silico prediction of a potential new cause of childhood epilepsy[J]. Neuropediatrics, 2022, 53(1):46-51.
23
He L, Xu Y, Lin J, et al. Increased SLC7A3 expression inhibits tumor cell proliferation and predicts a favorable prognosis in breast cancer[J]. Recent Pat Anticancer Drug Discov, 2024, Jan 8. doi: 10.2174/0115748928279007231130070056. Online ahead of print.
24
Sperandeo MP, Borsani G, Incerti B, et al. The gene encoding a cationic amino acid transporter (SLC7A4) maps to the region deleted in the velocardiofacial syndrome[J]. Genomics, 1998, 49(2):230-236.
25
Wolf S, Janzen A, Vékony N, et al. Expression of solute carrier7A4 (SLC7A4) in the plasma membrane is not sufficient to mediate amino acid transport activity[J]. Biochem J, 2002, 364(Pt3):767-775.
26
Gong W, Chen Y, Zhang Y. Prognostic and clinical significance of Solute Carrier Family 7 Member 1 in ovarian cancer[J]. Transl Cancer Res, 2021, 10(2):602-612.
27
Yan L, He J, Liao Xet al. A comprehensive analysis of the diagnostic and prognostic value associated with the SLC7A family members in breast cancer[J]. Gland Surg, 2022, 11(2):389-411.
28
Yang R, Wang Z, Li J, et al. The identification of the metabolism subtypes of skin cutaneous melanoma associated with the tumor microenvironment and the immunotherapy[J]. Front Cell Dev Biol, 2021, 9:707677.
29
Fan A, Zhang Y, Cheng J, et al. A novel prognostic model for prostate cancer based on androgen biosynthetic and catabolic pathways[J]. Front Oncol, 2022, 12:950094.
30
Nachef M, Ali AK, Almutairi SM, et al. Targeting SLC1A5 and SLC3A2/SLC7A5 as a potential strategy to strengthen anti-tumor immunity in the tumor microenvironment[J]. Front Immunol, 2021, 12:624324.
31
Sato K, Miyamoto M, Takano M, et al. Significant relationship between the LAT1 expression pattern and che- moresistance in ovarian clear cell carcinoma[J]. Virchows Arch, 2019, 474:701-710.
32
Hisada T, Kondo N, Wanifuchi-Endo Y, et al. Co-expression effect of LLGL2 and SLC7A5 to predict prognosis in ERα-positive breast cancer[J]. Sci Rep, 2022, 12(1):16515.
33
Li Y, Wang W, Wu X, et al.SLC7A5 serves as a prognostic factor of breast cancer and promotes cell proliferation through activating AKT/mTORC1 signaling pathway[J]. Ann Transl Med, 2021, 9(10):892.
34
Li J, Qiang J, Chen SF, et al.The impact of L-type amino acid transporter 1 (LAT1) in human hepatocellular carcinoma[J]. Tumor Biol, 2013, 34(5):2977-2981.
35
Quan L, Ohgaki R, Hara S, et al. Amino acid transporter LAT1 in tumor-associated vascular endothelium promotes angiogenesis by regulating cell proliferation and VEGF-A-dependent mTORC1 activation[J]. J Exp Clin Cancer Res, 2020, 39(1):266.
36
Martinez RS, Salji MJ, Rushworth L, et al. SLFN5 regulates LAT1-mediated mTOR activation in castration-resistant prostate cancer[J]. Cancer Res, 2021, 81(13):3664-3678.
37
Rii J, Sakamoto S, Mizokami A, et al. L-type amino acid transporter 1 inhibitor JPH203 prevents the growth of cabazitaxel-resistant prostate cancer by inhibiting cyclin-dependent kinase activity[J]. Cancer Sci, 2024 Jan 7. doi: 10.1111/cas.16062. Online ahead of print.
38
Morio H, Reien Y, Hirayama Y, et al. Protein kinase C activation upregulates human L-type amino acid transporter 2 function[J]. J Physiol Sci, 2021,71(1):11.
39
Chen X, Wang Z, Zhao X, et al. STAT5A modulates CDYL2/SLC7A6 pathway to inhibit the proliferation and invasion of hepatocellular carcinoma by targeting to mTORC1[J]. Oncogene, 2022, 41(17):2492-2504.
40
Milewski K, Bogacińska-Karaś M, Fręśko I, et al. Ammonia reduces intracellular asymmetric dimethylarginine in cultured astrocytes stimulating its y+LAT2 carrier-mediated loss[J]. Int J Mol Sci, 2017, 18(11):2308.
41
Closs EI, Ostad MA, Simon A, et al. Impairment of the extrusion transporter for asymmetric dimethyl-L-arginine: a novel mechanism underlying vasospastic angina[J]. Biochem Biophys Res Commun, 2012, 423(2):218-223.
42
吕泊宁,宋红权,焦晓辉.泛癌中SLC7A7表达的预后意义及其与免疫微环境的关系[J].黑龙江医学, 2021, 45(15):1573-1578.
43
Fan S, Meng D, Xu T, et al. Overexpression of SLC7A7 predicts poor progression-free and overall survival in patients with glioblastoma[J]. Med Oncol, 2013, 30(1):384.
44
Dai W, Feng J, Hu X, et al. SLC7A7 is a prognostic biomarker correlated with immune infiltrates in non-small cell lung cancer[J]. Cancer Cell Int, 2021, 21(1):106.
45
Morio H, Reien Y, Hirayama Y, et al. Protein kinase C activation upregulates human L-type amino acid transporter 2 function[J]. J Physiol Sci, 2021, 71(1):11.
46
Rodriguez CF, Escudero-Bravo P, Díaz L, et al. Structural basis for substrate specificity of heteromeric transporters of neutral amino acids[J]. Proc Natl Acad Sci U S A, 2021, 118(49):e2113573118.
47
Tina E, Prosén S, Lennholm S, et al. Expression profile of the amino acid transporters SLC7A5, SLC7A7, SLC7A8 and the enzyme TDO2 in basal cell carcinoma[J]. Br J Dermatol, 2019, 180(1):130-140.
48
El Ansari R, Alfarsi L, Craze ML, et al. The solute carrier SLC7A8 is a marker of favourable prognosis in ER-positive low proliferative invasive breast cancer[J]. Breast Cancer Res Treat, 2020, 181(1):1-12.
49
Meng F, Wang L, Gao G, et al. Identification and verification of microRNA signature and key genes in the development of osteosarcoma with lung metastasis[J]. Medicine (Baltimore), 2022, 101(49):e32258.
50
Baba H, Kanda M, Sawaki K, et al. SLC7A9 as a potential biomarker for lymph node metastasis of esophageal squamous cell carcinoma[J]. Ann Surg Oncol, 2022, 9(4):2699-2709.
51
Lee B, Lee SY, Han DH, et al. Interpretation of SLC3A1 and SLC7A9 variants in cystinuria patients: The significance of the PM3 criterion and protein stability[J]. Urolithiasis, 2023, 51(1):94.
52
Zhan R, Ge Y, Liu Y, et al. Genetic and clinical analysis of Chinese pediatric patients with cystinuria[J]. Urolithiasis, 2022, 51(1):20.
53
Villar-Quiles RN, Catervi F, Cabet E, et al.ASC-1 is a cell cycle regulator associated with severe and mild forms of myopathy[J]. Ann Neurol, 2020, 87(2):217-232.
54
Ussar S, Lee KY, Dankel SN, et al. ASC-1, PAT2, and P2RX5 are cell surface markers for white, beige, and brown adipocytes[J]. Sci Transl Med, 2014, 6(247):247ra103.
55
Jersin , Tallapragada DSP, Madsen A, et al. Role of the neutral amino acid transporter SLC7A10 in adipocyte lipid storage, obesity, and insulin resistance[J]. Diabetes, 2021, 70(3):680-695.
56
Muir A, Danai LV, Gui DY, et al. Environmental cystine drives glutamine anaplerosis and sensitizes cancer cells to glutaminase inhibition[J]. Elife, 2017, 6:e27713.
57
Shen L, Zhang J, Zheng Z, et al. PHGDH inhibits ferroptosis and promotes malignant progression by upregulating SLC7A11 in bladder cancer[J]. Int J Biol Sci, 2022, 18(14):5459-5474.
58
Zhang L, Liu W, Liu F, et al. IMCA induces ferroptosis mediated by SLC7A11 through the AMPK/mTOR pathway in colorectal cancer[J]. Oxid Med Cell Longev, 2020, 2020:1675613.
59
Zeng C, Lin J, Zhang K, et al. SHARPIN promotes cell proliferation of cholangiocarcinoma and inhibits ferroptosis via p53/SLC7A11/GPX4 signaling[J]. Cancer Sci, 2022, 113(11):3766-3775.
[1] 郑朝辉, 唐逸辉, 许斌斌, 钟情. 吲哚菁绿示踪全腹腔镜全胃切除术[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 131-131.
[2] 李子禹, 张效鹏, 李双喜. 不断提高腹腔镜胃癌全胃切除术的规范化[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 119-122.
[3] 黄昌明, 郑华龙, 郑红红. 腹腔镜胃癌全胃切除术消化道重建术式选择与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 123-126.
[4] 李乐平, 肖琨, 张荣华, 商亮, 靖昌庆. 腹腔镜全胃切除术淋巴结清扫范围与策略[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 127-130.
[5] 蔡敏, 魏少忠, 罗怡静. 不同抗反流消化道重建技术在近端胃切除术后胃癌患者中的应用效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 137-140.
[6] 王刚, 李涛, 刘玉芳. 胃癌根治手术后行抗菌药物治疗对患者肠道细菌移位及肠黏膜屏障功能的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 141-145.
[7] 刘政宏, 王凤力, 吉亚君, 高佳. 胃癌中ELK3蛋白的表达与临床病理特征和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 155-159.
[8] 孙燕, 宋鹏, 刘佩玉, 沈晓菲, 管文贤, 李雪云. 多功能淋巴结分拣操作台在胃癌根治术后淋巴结分拣中的应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 160-163.
[9] 茆阳, 张海涛, 潘寅初. 腹腔镜近端胃切除术中附加H-M幽门成形术与改良幽门肌切开术的近期疗效和生活质量对比研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 167-170.
[10] 张琳, 李婷. CRIP1在胃癌中的表达及与临床病理指标和预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 171-175.
[11] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[12] 李伟, 宋子健, 邓龙昕, 赖衍成, 卢晓乐, 吉进, 陈锐. 三维重建技术在腹膜后肿瘤临床教学中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 162-167.
[13] 王浩年, 孙备, 陈华. 胆管内乳头状肿瘤的诊治策略[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 140-144.
[14] 谭明达, 颜军, 郭诗翔. 保留十二指肠、胆总管、Oddi括约肌的胰头整块全切除术后并发症分析[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 145-150.
[15] 张婵, 吕瑶, 张小燕, 张鸣青. 不同时机局部神经阻滞在开腹肝切除中的镇痛效果比较[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 189-194.
阅读次数
全文


摘要