1 |
Lewington AJ, Cerda J, Mehta RL. Raising awareness of acute kidney injury: a global perspective of a silent killer[J]. Kidney Int, 2013, 84(3):457-467.
|
2 |
Xu X, Nie S, Liu Z, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults[J]. Clin J Am Soc Nephrol, 2015, 10(9):1510-1518.
|
3 |
Chawla LS, Eggers PW, Star RA, et al. Acute kidney injury and chronic kidney disease as interconnected syndromes[J]. N Engl J Med, 2014, 371(1):58-66.
|
4 |
Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury[J]. Nephron Exp Nephrol, 2008, 109(4):e102-107.
|
5 |
Jang HR, Rabb H. The innate immzzune response in ischemic acute kidney injury[J]. Clin Immunol, 2009, 130(1):41-50.
|
6 |
Venkatachalam MA, Weinberg JM, Kriz W, et al. Failed tubule recovery, AKI-CKD transition, and kidney disease progression[J]. J Am Soc Nephrol, 2015, 26(8):1765-1776.
|
7 |
Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury[J]. Nat Rev Nephrol, 2011, 7(4):189-200.
|
8 |
Melo Ferreira R, Sabo AR, Winfree S, et al. Integration of spatial and single-cell transcriptomics localizes epithelial cell-immune cross-talk in kidney injury[J]. JCI Insight, 2021, 6(12):e147703. doi: 10.1172/jci.insight.147703.
|
9 |
Rudman-Melnick V, Adam M, Potter A, et al. Single-cell profiling of AKI in a murine model reveals novel transcriptional signatures, profibrotic phenotype, and epithelial-to-stromal crosstalk[J]. J Am Soc Nephrol, 2020, 31(12):2793-2814.
|
10 |
Kirita Y, Wu H, Uchimura K, et al. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury[J]. Proc Natl Acad Sci U S A, 2020, 117(27):15874-15883.
|
11 |
Wu H, Kirita Y, Donnelly EL, et al. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis[J]. J Am Soc Nephrol, 2019, 30(1):23-32.
|
12 |
Devarajan P. Update on mechanisms of ischemic acute kidney injury[J]. J Am Soc Nephrol, 2006, 17(6):1503-1520.
|
13 |
Awad AS, Rouse M, Huang L, et al. Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury[J]. Kidney Int, 2009, 75(7):689-698.
|
14 |
Cho W, Song J, Oh S, et al. Fate of neutrophils during the recovery phase of ischemia/reperfusion induced acute kidney injury[J]. J Korean Med Sci, 2017, 32(10):1616-1625.
|
15 |
Li L, Huang L, Vergis AL, et al. IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury[J]. J Clin Invest, 2010, 120(1):331-342.
|
16 |
Li H, Han SJ, Kim M, et al. Divergent roles for kidney proximal tubule and granulocyte PAD4 in ischemic AKI[J]. Am J Physiol Renal Physiol, 2018, 314(5):F809-F819.
|
17 |
Thomas K, Zondler L, Ludwig N, et al. Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells[J]. JCI Insight, 2022, 7(21):e163161. doi: 10.1172/jci.insight.163161.
|
18 |
Wu X, You D, Pan M, et al. Knockout of the C3a receptor protects against renal ischemia reperfusion injury by reduction of NETs formation[J]. Cell Mol Life Sci, 2023, 80(11):322. doi: 10.1007/s00018-023-04967-6.
|
19 |
Qin L, Li G, Kirkiles-Smith N, et al. Complement C5 inhibition reduces T cell-mediated allograft vasculopathy caused by both alloantibody and ischemia reperfusion injury in humanized mice[J]. Am J Transplant, 2016, 16(10):2865-2876.
|
20 |
Yao W, Chen Y, Li Z, et al. Single cell RNA sequencing identifies a unique inflammatory macrophage subset as a druggable target for alleviating acute kidney injury[J]. Adv Sci (Weinh), 2022, 9(12):e2103675. doi: 10.1002/advs.202103675.
|
21 |
Han HI, Skvarca LB, Espiritu EB, et al. The role of macrophages during acute kidney injury: destruction and repair[J]. Pediatr Nephrol, 2019, 34(4):561-569.
|
22 |
Arai S, Kitada K, Yamazaki T, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice[J]. Nat Med, 2016, 22(2):183-193.
|
23 |
Allison SJ. Acute kidney injury: AIMing to enhance debris clearance and improve outcomes in AKI[J]. Nat Rev Nephrol, 2016, 12(3):123. doi: 10.1038/nrneph.2016.3.
|
24 |
Mori K, Lee HT, Rapoport D, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury[J]. J Clin Invest, 2005, 115(3):610-621.
|
25 |
Jung M, Brune B, Hotter G, et al. Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury[J]. Sci Rep, 2016, 6:21950.doi: 10.1038/srep21950.
|
26 |
Li L, Gan H, Jin H, et al. Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats[J]. Int Immunopharmacol, 2021, 92:107335.doi: 10.1016/j.intimp.2020.107335.
|
27 |
Bohlson SS, O'Conner SD, Hulsebus HJ, et al. Complement, c1q, and c1q-related molecules regulate macrophage polarization[J]. Front Immunol, 2014, 5:402. doi: 10.3389/fimmu.2014.00402.
|
28 |
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9):6425-6440.
|
29 |
Ferenbach DA, Sheldrake TA, Dhaliwal K, et al. Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice[J]. Kidney Int, 2012, 82(8): 928-933.
|
30 |
Day YJ, Huang L, Ye H, et al. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages[J]. Am J Physiol Renal Physiol, 2005, 288(4):F722-731
|
31 |
Lech M, Grobmayr R, Ryu M, et al. Macrophage phenotype controls long-term AKI outcomes--kidney regeneration versus atrophy[J]. J Am Soc Nephrol, 2014, 25(2):292-304.
|
32 |
Linkermann A, Brasen JH, Himmerkus N, et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury[J]. Kidney Int, 2012, 81(8):751-761.
|
33 |
Xu L, Xing Z, Yuan J, et al. Ultrasmall nanoparticles regulate immune microenvironment by activating IL-33/ST2 to alleviate renal ischemia-reperfusion injury[J]. Adv Healthc Mater, 2024:e2303276. doi: 10.1002/adhm.202303276.
|
34 |
Xu L, Guo J, Moledina DG, et al. Immune-mediated tubule atrophy promotes acute kidney injury to chronic kidney disease transition[J]. Nat Commun, 2022, 13(1):4892. doi: 10.1038/s41467-022-32634-0.
|
35 |
Huang W, Wang BO, Hou YF, et al. JAML promotes acute kidney injury mainly through a macrophage-dependent mechanism[J]. JCI Insight, 2022, 7(14):e158571. doi: 10.1172/jci.insight.158571.
|
36 |
Jang HR, Gandolfo MT, Ko GJ, et al. B cells limit repair after ischemic acute kidney injury[J]. J Am Soc Nephrol, 2010, 21(4):654-665.
|
37 |
Linfert D, Chowdhry T, Rabb H. Lymphocytes and ischemia-reperfusion injury[J]. Transplant Rev (Orlando), 2009, 23(1):1-10.
|
38 |
Cao Q, Wang Y, Niu Z, et al. Potentiating tissue-resident type 2 innate lymphoid cells by IL-33 to prevent renal ischemia-reperfusion injury[J]. J Am Soc Nephrol, 2018, 29(3):961-976.
|
39 |
Mockel T, Basta F, Weinmann-Menke J, et al. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in systemic lupus erythematosus (SLE)[J]. Autoimmun Rev, 2021, 20(2):102736. doi: 10.1016/j.autrev.2020.102736.
|
40 |
Tsivilika M, Doumaki E, Stavrou G, et al. The adaptive immune response in cardiac arrest resuscitation induced ischemia reperfusion renal injury[J]. 2020, 27:15. doi: 10.1186/s40709-020-00125-2.
|
41 |
Calabrese DR, Aminian E, Mallavia B, et al. Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury[J]. 2021, 131(3):e137047.doi: 10.1172/JCI137047.
|
42 |
Lee K, Jang HR. Role of T cells in ischemic acute kidney injury and repair[J]. Korean J Intern Med, 2022, 37(3):534-550.
|
43 |
Baudoux T, Husson C, De Prez E, et al. CD4 and CD8 T cells exert regulatory properties during experimental acute aristolochic acid nephropathy[J]. 2018, 8(1):5334.
|
44 |
Ko GJ, Linfert D, Jang HR, et al. Transcriptional analysis of infiltrating T cells in kidney ischemia-reperfusion injury reveals a pathophysiological role for CCR5[J]. Am J Physiol Renal Physiol, 2012, 302(6):F762-773.
|
45 |
Pease JJEoodd. Designing small molecule CXCR3 antagonists[J]. Expert Opin Drug Discov, 2017, 12(2):159-168.
|
46 |
Marques VP, Goncalves GM, Feitoza CQ, et al. Influence of TH1/TH2 switched immune response on renal ischemia-reperfusion injury[J]. Nephron Exp Nephrol, 2006, 104(1):e48-56.
|
47 |
Guo L, Lee HH, Noriega ML, et al. Lymphocyte-specific deletion of IKK2 or NEMO mediates an increase in intrarenal Th17 cells and accelerates renal damage in an ischemia-reperfusion injury mouse model[J]. Am J Physiol Renal Physiol, 2016, 311(5):F1005-1014.
|
48 |
Turner JE, Paust HJ, Steinmetz OM, et al. The Th17 immune response in renal inflammation[J]. Kidney Int, 2010, 77(12):1070-1075.
|
49 |
Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides[J]. J Exp Med, 2006, 203(10):2271-2279.
|
50 |
Noel S, Lee K, Gharaie S, et al. Immune checkpoint molecule TIGIT regulates kidney T cell functions and contributes to AKI[J]. J Am Soc Nephrol, 2023, 34(5):755-771.
|
51 |
Xian W, Wu J, Li Q, et al. CXCR3 alleviates renal ischemiareperfusion injury via increase of Tregs[J]. Mol Med Rep, 2021, 24(1):541. doi: 10.3892/mmr.2021.12180.
|
52 |
Jun C, Ke W, Qingshu L, et al. Protective effect of CD4(+)CD25(high)CD127(low) regulatory T cells in renal ischemia-reperfusion injury[J]. Cell Immunol, 2014, 289(1-2):106-111.
|
53 |
Jun C, Qingshu L, Ke W, et al. Protective effect of CXCR3(+)CD4(+)CD25(+)Foxp3(+) regulatory T cells in renal ischemia-reperfusion injury[J]. Mediators Inflamm, 2015, 2015:360973. doi: 10.1155/2015/360973.
|
54 |
Carbone F, De Rosa V, Carrieri PB, et al. Regulatory T cell proliferative potential is impaired in human autoimmune disease[J]. Nat Med, 2014, 20(1):69-74.
|
55 |
Boothby I, Cohen J, Rosenblum MJSi. Regulatory T cells in skin injury: At the crossroads of tolerance and tissue repair[J]. Sci Immunol, 2020, 5(47):eaaz9631. doi: 10.1126/sciimmunol.aaz9631.
|
56 |
Xu J, Li X, Yuan Q, et al. The semaphorin 4A-neuropilin 1 axis alleviates kidney ischemia reperfusion injury by promoting the stability and function of regulatory T cells[J]. Kidney Int, 2021, 100(6):1268-1281.
|
57 |
Hu C, Zhang C, Yang C. The Role of natural killer T cells in acute kidney injury: angel or evil?[J]. Curr Protein Pept Sci, 2017, 18(12):1200-1204.
|
58 |
Aoyama S, Nakagawa R, Nemoto S, et al. Checkpoint blockade accelerates a novel switch from an NKT-driven TNFα response toward a T cell driven IFN-γ response within the tumor microenvironment[J]. J Immunother Cancer, 2021, 9(6):e002269. doi: 10.1136/jitc-2020-002269.
|
59 |
Yang SH, Lee JP, Jang HR, et al. Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury[J]. J Am Soc Nephrol, 2011, 22(7):1305-1314.
|
60 |
Baban B, Khodadadi H, Vaibhav K, et al. Regulation of innate lymphoid cells in acute kidney injury: crosstalk between cannabidiol and GILZ[J]. J Immunol Res, 2020, 2020:6056373.doi: 10.1155/2020/6056373.
|
61 |
Deng B, Lin Y, Chen Y, et al. Plasmacytoid dendritic cells promote acute kidney injury by producing interferon-alpha[J]. Cell Mol Immunol, 2021, 18(1):219-229.
|
62 |
Salei N, Rambichler S, Salvermoser J, et al. The kidney contains ontogenetically distinct dendritic cell and macrophage subtypes throughout development that differ in their inflammatory properties[J]. J Am Soc Nephrol, 2020, 31(2):257-278.
|
63 |
Li L, Okusa MD. Macrophages, dendritic cells, and kidney ischemia-reperfusion injury[J]. Semin Nephrol, 2010, 30(3):268-277.
|
64 |
Kim MG, Boo CS, Ko YS, et al. Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury[J]. Nephrol Dial Transplant, 2010, 25(9):2908-2921.
|
65 |
Romagnani P, Anders HJ. What can tubular progenitor cultures teach us about kidney regeneration?[J]. Kidney Int, 2013, 83(3):351-353.
|
66 |
Bajwa A, Huang L, Ye H, et al. Dendritic cell sphingosine 1-phosphate receptor-3 regulates Th1-Th2 polarity in kidney ischemia-reperfusion injury[J]. J Immunol, 2012, 189(5):2584-2596.
|
67 |
Qu J, Li D, Jin J, et al. Hypoxia-inducible factor 2α attenuates renal ischemia-reperfusion injury by suppressing CD36-mediated lipid accumulation in dendritic cells in a mouse model[J]. J Am Soc Nephrol, 2023, 34(1):73-87.
|
68 |
Saitoh SI, Abe F, Kanno A, et al. TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells[J]. Nat Commun, 2017, 8(1):1592.
|
69 |
Deng B, Lin Y, Chen Y, et al. Plasmacytoid dendritic cells promote acute kidney injury by producing interferon-α[J]. Cell Mol Immunol, 2021, 18(1):219-229.
|
70 |
McClatchey AI, Yap AS. Contact inhibition (of proliferation) redux[J]. Curr Opin Cell Biol, 2012, 24(5):685-694.
|
71 |
Liu J, Kumar S, Dolzhenko E, et al. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion[J]. JCI Insight, 2017, 2(18):e94716. doi: 10.1172/jci.insight.94716.
|
72 |
Zhang D, Xing Y, Li W, et al. Renal tubules transcriptome reveals metabolic maladaption during the progression of ischemia-induced acute kidney injury[J]. Biochem Biophys Res Commun, 2018, 505(2):432-438.
|
73 |
Battistone MA, Mendelsohn AC, Spallanzani RG, et al. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice[J]. J Clin Invest, 2020, 130(7):3734-3749.
|
74 |
Liang Y, Sun X, Wang M, et al. PP2Acα promotes macrophage accumulation and activation to exacerbate tubular cell death and kidney fibrosis through activating Rap1 and TNFα production[J]. Cell Death Differ, 2021, 28(9):2728-2744.
|
75 |
Baek JH, Zeng R, Weinmann-Menke J, et al. IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease[J]. J Clin Invest, 2015, 125(8):3198-3214.
|