切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (01) : 45 -50. doi: 10.3877/cma.j.issn.2095-1221.2024.01.007

综述

免疫细胞在肾脏缺血再灌注损伤修复中的作用研究进展
曹守青1, 来东2, 焦启龙3, 安哲昆4, 李修彬2,()   
  1. 1. 075000 张家口,河北北方学院研究生院;100039 北京,解放军总医院第三医学中心泌尿外科医学部
    2. 100039 北京,解放军总医院第三医学中心泌尿外科医学部
    3. 100039 北京,解放军总医院第三医学中心泌尿外科医学部;300071 天津,南开大学医学院
    4. 030001 太原,山西医科大学基础医学院
  • 收稿日期:2023-10-24 出版日期:2024-02-01
  • 通信作者: 李修彬
  • 基金资助:
    国家自然科学基金青年科学基金(81802804); 军队医学科技青年培育计划孵化项目(19QNP060); 解放军总医院"优青"培育专项(2020-YQPY-006); 解放军总医院青年自主创新科学基金成长项目(22QNCZ029)

The role of immune cells in renal ischemia-reperfusion injury and repair

Shouqing Cao1, Dong Lai2, Qilong Jiao3, Zhekun An4, Xiubin Li2,()   

  1. 1. College of Graduate, Hebei North University, Zhangjiakou 075000, China; Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
    2. Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
    3. Department of Urology, the Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China; Medical School of Nankai University, Tianjin 300071, China
    4. School of Basic Medicine, Shanxi Medical University, Taiyuan 030001, China
  • Received:2023-10-24 Published:2024-02-01
  • Corresponding author: Xiubin Li
引用本文:

曹守青, 来东, 焦启龙, 安哲昆, 李修彬. 免疫细胞在肾脏缺血再灌注损伤修复中的作用研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 45-50.

Shouqing Cao, Dong Lai, Qilong Jiao, Zhekun An, Xiubin Li. The role of immune cells in renal ischemia-reperfusion injury and repair[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(01): 45-50.

急性肾损伤(AKI)是一种常见的临床综合征,我国住院人群AKI的发病率高达11.6%,AKI发生后容易进展为慢性肾病(CKD)甚至终末期肾病(ESRD)。缺血再灌注损伤(IRI)是AKI的主要病因之一。肾小管上皮细胞是IRI致AKI发生过程中受损的主要细胞类型,也是肾脏修复过程中细胞再生的主要细胞来源。在AKI发生发展以及损伤修复的过程中,免疫细胞能够调节肾小管上皮细胞的损伤、增殖以及再上皮化等多种生物过程,最终导致AKI的不同结局。本文就IRI导致的AKI发生过程中免疫细胞发挥的作用以及领域内的挑战和发展作一综述。

Acute kidney injury (AKI) is a common clinical syndrome. The total incidence of AKI in hospitalized population in China is as high as 11.6%, and the occurrence of AKI is easy to progress to chronic kidney disease (CKD) and even end-stage renal disease (ESRD) . Ischemia-reperfusion injury (IRI) is one of the major causes of AKI. Renal tubular epithelial cells are the main cell types damaged in the process of IRI induced AKI, and also the main cell source of cell regeneration in the process of kidney repair. During the development and repair of AKI, immune cells regulate the damage, proliferation and re-epithelialization of renal tubular epithelial cells and other biological processes, which eventually lead to different outcomes of AKI. In this paper, the role of immune cells in the process of AKI induced by IRI and the challenges and developments in the field are reviewed.

1
Lewington AJ, Cerda J, Mehta RL. Raising awareness of acute kidney injury: a global perspective of a silent killer[J]. Kidney Int, 2013, 84(3):457-467.
2
Xu X, Nie S, Liu Z, et al. Epidemiology and clinical correlates of AKI in Chinese hospitalized adults[J]. Clin J Am Soc Nephrol, 2015, 10(9):1510-1518.
3
Chawla LS, Eggers PW, Star RA, et al. Acute kidney injury and chronic kidney disease as interconnected syndromes[J]. N Engl J Med, 2014, 371(1):58-66.
4
Kinsey GR, Li L, Okusa MD. Inflammation in acute kidney injury[J]. Nephron Exp Nephrol, 2008, 109(4):e102-107.
5
Jang HR, Rabb H. The innate immzzune response in ischemic acute kidney injury[J]. Clin Immunol, 2009, 130(1):41-50.
6
Venkatachalam MA, Weinberg JM, Kriz W, et al. Failed tubule recovery, AKI-CKD transition, and kidney disease progression[J]. J Am Soc Nephrol, 2015, 26(8):1765-1776.
7
Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury[J]. Nat Rev Nephrol, 2011, 7(4):189-200.
8
Melo Ferreira R, Sabo AR, Winfree S, et al. Integration of spatial and single-cell transcriptomics localizes epithelial cell-immune cross-talk in kidney injury[J]. JCI Insight, 2021, 6(12):e147703. doi: 10.1172/jci.insight.147703.
9
Rudman-Melnick V, Adam M, Potter A, et al. Single-cell profiling of AKI in a murine model reveals novel transcriptional signatures, profibrotic phenotype, and epithelial-to-stromal crosstalk[J]. J Am Soc Nephrol, 2020, 31(12):2793-2814.
10
Kirita Y, Wu H, Uchimura K, et al. Cell profiling of mouse acute kidney injury reveals conserved cellular responses to injury[J]. Proc Natl Acad Sci U S A, 2020, 117(27):15874-15883.
11
Wu H, Kirita Y, Donnelly EL, et al. Advantages of single-nucleus over single-cell RNA sequencing of adult kidney: rare cell types and novel cell states revealed in fibrosis[J]. J Am Soc Nephrol, 2019, 30(1):23-32.
12
Devarajan P. Update on mechanisms of ischemic acute kidney injury[J]. J Am Soc Nephrol, 2006, 17(6):1503-1520.
13
Awad AS, Rouse M, Huang L, et al. Compartmentalization of neutrophils in the kidney and lung following acute ischemic kidney injury[J]. Kidney Int, 2009, 75(7):689-698.
14
Cho W, Song J, Oh S, et al. Fate of neutrophils during the recovery phase of ischemia/reperfusion induced acute kidney injury[J]. J Korean Med Sci, 2017, 32(10):1616-1625.
15
Li L, Huang L, Vergis AL, et al. IL-17 produced by neutrophils regulates IFN-gamma-mediated neutrophil migration in mouse kidney ischemia-reperfusion injury[J]. J Clin Invest, 2010, 120(1):331-342.
16
Li H, Han SJ, Kim M, et al. Divergent roles for kidney proximal tubule and granulocyte PAD4 in ischemic AKI[J]. Am J Physiol Renal Physiol, 2018, 314(5):F809-F819.
17
Thomas K, Zondler L, Ludwig N, et al. Glutamine prevents acute kidney injury by modulating oxidative stress and apoptosis in tubular epithelial cells[J]. JCI Insight, 2022, 7(21):e163161. doi: 10.1172/jci.insight.163161.
18
Wu X, You D, Pan M, et al. Knockout of the C3a receptor protects against renal ischemia reperfusion injury by reduction of NETs formation[J]. Cell Mol Life Sci, 2023, 80(11):322. doi: 10.1007/s00018-023-04967-6.
19
Qin L, Li G, Kirkiles-Smith N, et al. Complement C5 inhibition reduces T cell-mediated allograft vasculopathy caused by both alloantibody and ischemia reperfusion injury in humanized mice[J]. Am J Transplant, 2016, 16(10):2865-2876.
20
Yao W, Chen Y, Li Z, et al. Single cell RNA sequencing identifies a unique inflammatory macrophage subset as a druggable target for alleviating acute kidney injury[J]. Adv Sci (Weinh), 2022, 9(12):e2103675. doi: 10.1002/advs.202103675.
21
Han HI, Skvarca LB, Espiritu EB, et al. The role of macrophages during acute kidney injury: destruction and repair[J]. Pediatr Nephrol, 2019, 34(4):561-569.
22
Arai S, Kitada K, Yamazaki T, et al. Apoptosis inhibitor of macrophage protein enhances intraluminal debris clearance and ameliorates acute kidney injury in mice[J]. Nat Med, 2016, 22(2):183-193.
23
Allison SJ. Acute kidney injury: AIMing to enhance debris clearance and improve outcomes in AKI[J]. Nat Rev Nephrol, 2016, 12(3):123. doi: 10.1038/nrneph.2016.3.
24
Mori K, Lee HT, Rapoport D, et al. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury[J]. J Clin Invest, 2005, 115(3):610-621.
25
Jung M, Brune B, Hotter G, et al. Macrophage-derived Lipocalin-2 contributes to ischemic resistance mechanisms by protecting from renal injury[J]. Sci Rep, 2016, 6:21950.doi: 10.1038/srep21950.
26
Li L, Gan H, Jin H, et al. Astragaloside IV promotes microglia/macrophages M2 polarization and enhances neurogenesis and angiogenesis through PPARγ pathway after cerebral ischemia/reperfusion injury in rats[J]. Int Immunopharmacol, 2021, 92:107335.doi: 10.1016/j.intimp.2020.107335.
27
Bohlson SS, O'Conner SD, Hulsebus HJ, et al. Complement, c1q, and c1q-related molecules regulate macrophage polarization[J]. Front Immunol, 2014, 5:402. doi: 10.3389/fimmu.2014.00402.
28
Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease[J]. J Cell Physiol, 2018, 233(9):6425-6440.
29
Ferenbach DA, Sheldrake TA, Dhaliwal K, et al. Macrophage/monocyte depletion by clodronate, but not diphtheria toxin, improves renal ischemia/reperfusion injury in mice[J]. Kidney Int, 2012, 82(8): 928-933.
30
Day YJ, Huang L, Ye H, et al. Renal ischemia-reperfusion injury and adenosine 2A receptor-mediated tissue protection: role of macrophages[J]. Am J Physiol Renal Physiol, 2005, 288(4):F722-731
31
Lech M, Grobmayr R, Ryu M, et al. Macrophage phenotype controls long-term AKI outcomes--kidney regeneration versus atrophy[J]. J Am Soc Nephrol, 2014, 25(2):292-304.
32
Linkermann A, Brasen JH, Himmerkus N, et al. Rip1 (receptor-interacting protein kinase 1) mediates necroptosis and contributes to renal ischemia/reperfusion injury[J]. Kidney Int, 2012, 81(8):751-761.
33
Xu L, Xing Z, Yuan J, et al. Ultrasmall nanoparticles regulate immune microenvironment by activating IL-33/ST2 to alleviate renal ischemia-reperfusion injury[J]. Adv Healthc Mater, 2024:e2303276. doi: 10.1002/adhm.202303276.
34
Xu L, Guo J, Moledina DG, et al. Immune-mediated tubule atrophy promotes acute kidney injury to chronic kidney disease transition[J]. Nat Commun, 2022, 13(1):4892. doi: 10.1038/s41467-022-32634-0.
35
Huang W, Wang BO, Hou YF, et al. JAML promotes acute kidney injury mainly through a macrophage-dependent mechanism[J]. JCI Insight, 2022, 7(14):e158571. doi: 10.1172/jci.insight.158571.
36
Jang HR, Gandolfo MT, Ko GJ, et al. B cells limit repair after ischemic acute kidney injury[J]. J Am Soc Nephrol, 2010, 21(4):654-665.
37
Linfert D, Chowdhry T, Rabb H. Lymphocytes and ischemia-reperfusion injury[J]. Transplant Rev (Orlando), 2009, 23(1):1-10.
38
Cao Q, Wang Y, Niu Z, et al. Potentiating tissue-resident type 2 innate lymphoid cells by IL-33 to prevent renal ischemia-reperfusion injury[J]. J Am Soc Nephrol, 2018, 29(3):961-976.
39
Mockel T, Basta F, Weinmann-Menke J, et al. B cell activating factor (BAFF): Structure, functions, autoimmunity and clinical implications in systemic lupus erythematosus (SLE)[J]. Autoimmun Rev, 2021, 20(2):102736. doi: 10.1016/j.autrev.2020.102736.
40
Tsivilika M, Doumaki E, Stavrou G, et al. The adaptive immune response in cardiac arrest resuscitation induced ischemia reperfusion renal injury[J]. 2020, 27:15. doi: 10.1186/s40709-020-00125-2.
41
Calabrese DR, Aminian E, Mallavia B, et al. Natural killer cells activated through NKG2D mediate lung ischemia-reperfusion injury[J]. 2021, 131(3):e137047.doi: 10.1172/JCI137047.
42
Lee K, Jang HR. Role of T cells in ischemic acute kidney injury and repair[J]. Korean J Intern Med, 2022, 37(3):534-550.
43
Baudoux T, Husson C, De Prez E, et al. CD4 and CD8 T cells exert regulatory properties during experimental acute aristolochic acid nephropathy[J]. 2018, 8(1):5334.
44
Ko GJ, Linfert D, Jang HR, et al. Transcriptional analysis of infiltrating T cells in kidney ischemia-reperfusion injury reveals a pathophysiological role for CCR5[J]. Am J Physiol Renal Physiol, 2012, 302(6):F762-773.
45
Pease JJEoodd. Designing small molecule CXCR3 antagonists[J]. Expert Opin Drug Discov, 2017, 12(2):159-168.
46
Marques VP, Goncalves GM, Feitoza CQ, et al. Influence of TH1/TH2 switched immune response on renal ischemia-reperfusion injury[J]. Nephron Exp Nephrol, 2006, 104(1):e48-56.
47
Guo L, Lee HH, Noriega ML, et al. Lymphocyte-specific deletion of IKK2 or NEMO mediates an increase in intrarenal Th17 cells and accelerates renal damage in an ischemia-reperfusion injury mouse model[J]. Am J Physiol Renal Physiol, 2016, 311(5):F1005-1014.
48
Turner JE, Paust HJ, Steinmetz OM, et al. The Th17 immune response in renal inflammation[J]. Kidney Int, 2010, 77(12):1070-1075.
49
Liang SC, Tan XY, Luxenberg DP, et al. Interleukin (IL)-22 and IL-17 are coexpressed by Th17 cells and cooperatively enhance expression of antimicrobial peptides[J]. J Exp Med, 2006, 203(10):2271-2279.
50
Noel S, Lee K, Gharaie S, et al. Immune checkpoint molecule TIGIT regulates kidney T cell functions and contributes to AKI[J]. J Am Soc Nephrol, 2023, 34(5):755-771.
51
Xian W, Wu J, Li Q, et al. CXCR3 alleviates renal ischemiareperfusion injury via increase of Tregs[J]. Mol Med Rep, 2021, 24(1):541. doi: 10.3892/mmr.2021.12180.
52
Jun C, Ke W, Qingshu L, et al. Protective effect of CD4(+)CD25(high)CD127(low) regulatory T cells in renal ischemia-reperfusion injury[J]. Cell Immunol, 2014, 289(1-2):106-111.
53
Jun C, Qingshu L, Ke W, et al. Protective effect of CXCR3(+)CD4(+)CD25(+)Foxp3(+) regulatory T cells in renal ischemia-reperfusion injury[J]. Mediators Inflamm, 2015, 2015:360973. doi: 10.1155/2015/360973.
54
Carbone F, De Rosa V, Carrieri PB, et al. Regulatory T cell proliferative potential is impaired in human autoimmune disease[J]. Nat Med, 2014, 20(1):69-74.
55
Boothby I, Cohen J, Rosenblum MJSi. Regulatory T cells in skin injury: At the crossroads of tolerance and tissue repair[J]. Sci Immunol, 2020, 5(47):eaaz9631. doi: 10.1126/sciimmunol.aaz9631.
56
Xu J, Li X, Yuan Q, et al. The semaphorin 4A-neuropilin 1 axis alleviates kidney ischemia reperfusion injury by promoting the stability and function of regulatory T cells[J]. Kidney Int, 2021, 100(6):1268-1281.
57
Hu C, Zhang C, Yang C. The Role of natural killer T cells in acute kidney injury: angel or evil?[J]. Curr Protein Pept Sci, 2017, 18(12):1200-1204.
58
Aoyama S, Nakagawa R, Nemoto S, et al. Checkpoint blockade accelerates a novel switch from an NKT-driven TNFα response toward a T cell driven IFN-γ response within the tumor microenvironment[J]. J Immunother Cancer, 2021, 9(6):e002269. doi: 10.1136/jitc-2020-002269.
59
Yang SH, Lee JP, Jang HR, et al. Sulfatide-reactive natural killer T cells abrogate ischemia-reperfusion injury[J]. J Am Soc Nephrol, 2011, 22(7):1305-1314.
60
Baban B, Khodadadi H, Vaibhav K, et al. Regulation of innate lymphoid cells in acute kidney injury: crosstalk between cannabidiol and GILZ[J]. J Immunol Res, 2020, 2020:6056373.doi: 10.1155/2020/6056373.
61
Deng B, Lin Y, Chen Y, et al. Plasmacytoid dendritic cells promote acute kidney injury by producing interferon-alpha[J]. Cell Mol Immunol, 2021, 18(1):219-229.
62
Salei N, Rambichler S, Salvermoser J, et al. The kidney contains ontogenetically distinct dendritic cell and macrophage subtypes throughout development that differ in their inflammatory properties[J]. J Am Soc Nephrol, 2020, 31(2):257-278.
63
Li L, Okusa MD. Macrophages, dendritic cells, and kidney ischemia-reperfusion injury[J]. Semin Nephrol, 2010, 30(3):268-277.
64
Kim MG, Boo CS, Ko YS, et al. Depletion of kidney CD11c+ F4/80+ cells impairs the recovery process in ischaemia/reperfusion-induced acute kidney injury[J]. Nephrol Dial Transplant, 2010, 25(9):2908-2921.
65
Romagnani P, Anders HJ. What can tubular progenitor cultures teach us about kidney regeneration?[J]. Kidney Int, 2013, 83(3):351-353.
66
Bajwa A, Huang L, Ye H, et al. Dendritic cell sphingosine 1-phosphate receptor-3 regulates Th1-Th2 polarity in kidney ischemia-reperfusion injury[J]. J Immunol, 2012, 189(5):2584-2596.
67
Qu J, Li D, Jin J, et al. Hypoxia-inducible factor 2α attenuates renal ischemia-reperfusion injury by suppressing CD36-mediated lipid accumulation in dendritic cells in a mouse model[J]. J Am Soc Nephrol, 2023, 34(1):73-87.
68
Saitoh SI, Abe F, Kanno A, et al. TLR7 mediated viral recognition results in focal type I interferon secretion by dendritic cells[J]. Nat Commun, 2017, 8(1):1592.
69
Deng B, Lin Y, Chen Y, et al. Plasmacytoid dendritic cells promote acute kidney injury by producing interferon-α[J]. Cell Mol Immunol, 2021, 18(1):219-229.
70
McClatchey AI, Yap AS. Contact inhibition (of proliferation) redux[J]. Curr Opin Cell Biol, 2012, 24(5):685-694.
71
Liu J, Kumar S, Dolzhenko E, et al. Molecular characterization of the transition from acute to chronic kidney injury following ischemia/reperfusion[J]. JCI Insight, 2017, 2(18):e94716. doi:10.1172/jci.insight.94716.
72
Zhang D, Xing Y, Li W, et al. Renal tubules transcriptome reveals metabolic maladaption during the progression of ischemia-induced acute kidney injury[J]. Biochem Biophys Res Commun, 2018, 505(2):432-438.
73
Battistone MA, Mendelsohn AC, Spallanzani RG, et al. Proinflammatory P2Y14 receptor inhibition protects against ischemic acute kidney injury in mice[J]. J Clin Invest, 2020, 130(7):3734-3749.
74
Liang Y, Sun X, Wang M, et al. PP2Acα promotes macrophage accumulation and activation to exacerbate tubular cell death and kidney fibrosis through activating Rap1 and TNFα production[J]. Cell Death Differ, 2021, 28(9):2728-2744.
75
Baek JH, Zeng R, Weinmann-Menke J, et al. IL-34 mediates acute kidney injury and worsens subsequent chronic kidney disease[J]. J Clin Invest, 2015, 125(8):3198-3214.
[1] 谷文巧, 王聪. 乳腺癌转移相关肿瘤免疫细胞的研究进展[J]. 中华乳腺病杂志(电子版), 2022, 16(05): 303-306.
[2] 钟炎平, 赵琴, 杨军杰, 毛静, 刘鑫华, 李姗, 刘园园, 雷旭, 雷飞飞, 饶荣, 谭华炳. 嗜酸性粒细胞在传染病诊断中的价值[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(04): 234-238.
[3] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[4] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[5] 史亮, 尹申慧, 任浩, 高荣, 马壮, 孙文武, 曹建平. 靶向核壳蛋白基因的siRNA对流感病毒的预防和治疗作用[J]. 中华肺部疾病杂志(电子版), 2020, 13(04): 461-465.
[6] 朱兴墅, 郑师尧, 王庆惠, 陈力, 刘旺武, 纪辉涛, 王瑜, 赵虎, 方永超. 蛋白磷酸酶-1催化亚基β在结直肠癌诊断、预后及免疫浸润中的生物信息学分析[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 321-330.
[7] 刘鲁宁, 陈雪梅, 马恩奇, 田清艳, 刘倩倩, 刘韬. 人CD137抗体促进NK细胞对乳腺癌细胞特异性杀伤作用的体外研究[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(06): 346-353.
[8] 马麟麟, 谢林, 黄霞, 徐炳洋, 陈刚. 国产西罗莫司与原研品在体内外对细胞影响的比较实验[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(02): 103-109.
[9] 刘兵, 周美龄, 刘韬. CAR-NK治疗肿瘤的研究与临床进展[J]. 中华细胞与干细胞杂志(电子版), 2018, 08(05): 303-309.
[10] 吴琼, 朱国贞. 膜性肾病中M2巨噬细胞相关基因的生物信息学分析[J]. 中华肾病研究电子杂志, 2023, 12(03): 156-162.
[11] 贾丽芳, 张玉萍, 白文英, 周培一, 王甲正. 长链非编码核糖核酸LINC00261通过miR-148b-3p/PTEN途径对高糖环境中HK-2细胞的保护作用[J]. 中华肾病研究电子杂志, 2022, 11(01): 22-28.
[12] 陈钰澜, 陈健文, 朱飞, 王田田, 张妍, 刘娇娜, 黄梦杰, 吴玲玲, 陈香美. 紫草素抑制缺血再灌注肾损伤后肾小管细胞的增殖和迁移[J]. 中华肾病研究电子杂志, 2022, 11(01): 15-21.
[13] 王田田, 吴玲玲, 赵颖华, 吴杰, 陈香美. YWHAZ对肾小管上皮细胞增殖的影响[J]. 中华肾病研究电子杂志, 2020, 09(03): 107-111.
[14] 赵焕焕, 闫景瑶, 韩秋霞, 李琦, 丁潇楠, 朱晗玉. 线粒体通透性转换孔在肾脏缺血再灌注损伤中的作用[J]. 中华肾病研究电子杂志, 2019, 08(06): 277-280.
[15] 任香凝, 郑晓明. 缺血性脑卒中与外周免疫应答的研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 175-179.
阅读次数
全文


摘要