切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (05) : 257 -263. doi: 10.3877/cma.j.issn.2095-1221.2024.05.001

述评

纤维化对肿瘤浸润免疫细胞的影响——“硬冷肿瘤”的形成
梅杰1, 徐瑞1, 蔡芸2, 朱一超3,()   
  1. 1.211166 南京,江苏南京医科大学第一临床医学院
    2.210036 常州,江苏常州市金坛第一人民医院检验科
    3.211166 南京,江苏南京医科大学生理学系
  • 收稿日期:2024-08-27 出版日期:2024-10-01
  • 通信作者: 朱一超
  • 基金资助:
    国家自然科学基金面上项目 (82073194)

The effects of fibrosis on tumor-infiltrating immune cells——the formation of "armored & cold tumors"

Jie Mei1, Rui Xu1, Yun Cai2, Yichao Zhu2,()   

  1. 1.The First Clinical Medicine College, Nanjing Medical University, Nanjing 211166, China
    2.Department of Central Laboratory, Jintan Affiliated Hospital of Jiangsu University, Changzhou 210036, China; 3Department of Physiology, Nanjing Medical University, Nanjing 211166, China
  • Received:2024-08-27 Published:2024-10-01
  • Corresponding author: Yichao Zhu
引用本文:

梅杰, 徐瑞, 蔡芸, 朱一超. 纤维化对肿瘤浸润免疫细胞的影响——“硬冷肿瘤”的形成[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 257-263.

Jie Mei, Rui Xu, Yun Cai, Yichao Zhu. The effects of fibrosis on tumor-infiltrating immune cells——the formation of "armored & cold tumors"[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(05): 257-263.

实体瘤具有独特的细胞外基质,可以在很大程度上调控包括免疫逃逸在内的肿瘤细胞的恶性行为。大部分实体瘤会形成肿瘤纤维化,而这种特征主要由细胞外基质中的胶原蛋白所赋予。胶原蛋白是人体内含量最多的蛋白质之一,而肿瘤组织中胶原蛋白主要由肿瘤相关成纤维细胞合成,通过抑制多种肿瘤浸润免疫细胞在肿瘤免疫逃逸中发挥显著作用。胶原蛋白既可作为肿瘤患者预测预后的生物标志物,也可作为有效的肿瘤治疗靶点。本文综述肿瘤纤维化在肿瘤中的作用,特别是对浸润免疫细胞的影响,同时关注肿瘤纤维化的研究方法和治疗相关研究进展。此外,本文介绍由本课题组提出的基于胶原蛋白沉积与免疫细胞浸润的“胶原-免疫分型”及“硬冷肿瘤”的概念阐释。

Solid tumors have the unique extracellular matrix that can largely regulate the malignant behavior of tumor cells, including immune escape. The majority of solid tumors can form tumor fibrosis, which is mainly conferred by collagen in the extracellular matrix. Collagen is one of the most abundant proteins in the human body and mainly produced by tumor-associated fibroblasts in tumor tissues, which plays a critical role in tumor immune escape by inhibiting a variety of tumorinfiltrating immune cells. Collagen can be used both as a biomarker for prognosis in cancer patients and as an effective target for cancer therapy. This review summarized the roles of tumor fibrosis in tumors, especially the effect on tumor-infiltrating immune cells, and focused on the research methods of tumor fibrosis and treatment-related research progress. In addition, this review introduces the interpretation of "immuno-collagenic subtypes" based on collagen deposition and immune activity and the concept of "armored & cold tumors" proposed by our research group.

图1 “硬冷肿瘤”及其对应的治疗策略 (biorender 在线软件画制作) 注:“硬冷肿瘤”以低免疫浸润、高胶原蛋白沉积为分子特征,伴随高B7-H3 和AGTR1 表达。基于抗肿瘤治疗、伴随治疗和生理治疗3 个角度提出针对性治疗策略,包括抗B7-H3 治疗,ARB 类药物辅助治疗,运动抗肿瘤
1
Pages F, Mlecnik B, Marliot F, et al. International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study[J]. Lancet, 2018, 391(10135):2128-2139.
2
Bruni D, Angell HK, Galon J. The immune contexture and Immunoscore in cancer prognosis and therapeutic efficacy[J]. Nat Rev Cancer, 2020, 20(11):662-680.
3
Su H, Karin M. Multifaceted collagen-DDR1 signaling in cancer[J].Trends Cell Biol, 2024, 34(5):406-415.
4
Caligiuri G, Tuveson DA. Activated fibroblasts in cancer: Perspectives and challenges[J]. Cancer Cell, 2023, 41(3):434-449.
5
Borst R, Meyaard L, Pascoal Ramos MI. Understanding the matrix: collagen modifications in tumors and their implications for immunotherapy[J]. J Transl Med, 2024, 22(1):382. doi: 10.1186/s12967-024-05199-3.
6
Su H, Karin M. Collagen architecture and signaling orchestrate cancer development[J]. Trends Cancer, 2023, 9(9):764-773.
7
Mei J, Cai Y, Xu R, et al. Conserved immuno-collagenic subtypes predict response to immune checkpoint blockade[J]. Cancer Commun(Lond), 2024, 44(5):554-575.
8
Fujimoto H, Yoshihara M, Rodgers R, et al. Tumor-associated fibrosis:a unique mechanism promoting ovarian cancer metastasis and peritoneal dissemination[J]. Cancer Metastasis Rev, 2024, 43(3):1037-1053.
9
Jensen C, Nissen NI, Von Arenstorff CS, et al. Serological assessment of collagen fragments and tumor fibrosis may guide immune checkpoint inhibitor therapy[J]. J Exp Clin Cancer Res, 2021, 40(1):326. doi:10.1186/s13046-021-02133-z.
10
Valkenburg KC, De Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy[J]. Nat Rev Clin Oncol, 2018, 15(6):366-381.
11
Kalluri R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9):582-598.
12
Herzog BH, Baer JM, Borcherding N, et al. Tumor-associated fibrosis impairs immune surveillance and response to immune checkpoint blockade in non-small cell lung cancer[J]. Sci Transl Med, 2023,15(699):eadh8005. doi: 10.1126/scitranslmed.adh8005.
13
Salmon H, Franciszkiewicz K, Damotte D, et al. Matrix architecture defines the preferential localization and migration of T cells into the stroma of human lung tumors[J]. J Clin Invest, 2012, 122(3):899-910.
14
Liu Y, Yao X, Zhao Y, et al. Mechanotransduction in response to ECM stiffening impairs cGAS immune signaling in tumor cells[J]. Cell Rep,2023, 42(10):113213. doi: 10.1016/j.celrep.2023.113213.
15
Xiong YX, Zhang XC, Zhu JH, et al. Collagen I-DDR1 signaling promotes hepatocellular carcinoma cell stemness via Hippo signaling repression[J]. Cell Death Differ, 2023, 30(7):1648-1665.
16
Chen J, Ge SJ, Feng HJ, et al. KRT17 Promotes the Activation of HSCs via EMT in Liver Fibrosis[J]. J Clin Transl Hepatol, 2022, 10(2):207-218.
17
Wang X, Liu S, Yu T, et al. Inhibition of integrin alphavbeta6 activation of TGF-beta attenuates tendinopathy[J]. Adv Sci (Weinh), 2022,9(11):e2104469. doi: 10.1002/advs.202104469.
18
Shi X, Chen Y, Shi M, et al. The novel molecular mechanism of pulmonary fibrosis: insight into lipid metabolism from reanalysis of single-cell RNA-seq databases[J]. Lipids Health Dis, 2024, 23(1):98.doi: 10.1186/s12944-024-02062-8.
19
Romer AMA, Thorseth ML, Madsen DH. Immune modulatory properties of collagen in cancer[J]. Front Immunol, 2021, 12:791453.doi: 10.3389/fimmu.2021.791453.
20
Kim E, Choi S, Kang B, et al. Creation of bladder assembloids mimicking tissue regeneration and cancer[J]. Nature, 2020, 588(7839):664-669.
21
Peng DH, Rodriguez BL, Diao L, et al. Collagen promotes anti-PD-1/PD-L1 resistance in cancer through LAIR1-dependent CD8(+) T cell exhaustion[J]. Nat Commun, 2020, 11(1):4520. doi: 10.1038/s41467-020-18298-8.
22
Gu L, Zhu Y, Lee M, et al. Angiotensin II receptor inhibition ameliorates liver fibrosis and enhances hepatocellular carcinoma infiltration by effector T cells[J]. Proc Natl Acad Sci U S A, 2023,120(19):e2300706120. doi: 10.1073/pnas.2300706120.
23
Henderson JM, Xiang MSW, Huang JC, et al. Dipeptidyl peptidase inhibition enhances CD8 T cell recruitment and activates intrahepatic inflammasome in a murine model of hepatocellular carcinoma[J].Cancers (Basel), 2021, 13(21):5495. doi: 10.3390/cancers13215495.
24
Tang P, Kirby MA, Le N, et al. Polarization sensitive optical coherence tomography with single input for imaging depth-resolved collagen organizations[J]. Light Sci Appl, 2021, 10(1):237. doi: 10.1038/s41377-021-00679-3.
25
Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48(4):441-446.
26
Li G, Li L, Li Y, et al. An MRI radiomics approach to predict survival and tumour-infiltrating macrophages in gliomas[J]. Brain, 2022,145(3):1151-1161.
27
Huang W, Jiang Y, Xiong W, et al. Noninvasive imaging of the tumor immune microenvironment correlates with response to immunotherapy in gastric cancer[J]. Nat Commun, 2022, 13(1):5095. doi: 10.1038/s41467-022-32816-w.
28
Liu HQ, Lin SY, Song YD, et al. Machine learning on MRI radiomic features: identification of molecular subtype alteration in breast cancer after neoadjuvant therapy[J]. Eur Radiol, 2022, 33(4):2965-2974.
29
Hartmann N, Giese NA, Giese T, et al. Prevailing role of contact guidance in intrastromal T-cell trapping in human pancreatic cancer[J].Clin Cancer Res, 2014, 20(13):3422-3433.
30
Johnson JD, Edman JC, Rutter WJ. A receptor tyrosine kinase found in breast carcinoma cells has an extracellular discoidin I-like domain[J].Proc Natl Acad Sci U S A, 1993, 90(12):5677-5681.
31
Reger De Moura C, Louveau B, Jouenne F, et al. Inactivation of kindlin-3 increases human melanoma aggressiveness through the collagen-activated tyrosine kinase receptor DDR1[J]. Oncogene, 2024,43(21):1620-1630.
32
Xu H, Tan M, Hou GQ, et al. Blockade of DDR1/PYK2/ERK signaling suggesting SH2 superbinder as a novel autophagy inhibitor for pancreatic cancer[J]. Cell Death Dis, 2023, 14(12):811. doi: 10.1038/s41419-023-06344-4.
33
Sun X, Wu B, Chiang HC, et al. Tumour DDR1 promotes collagen fibre alignment to instigate immune exclusion[J]. Nature, 2021,599(7886):673-678.
34
Deng J, Kang Y, Cheng CC, et al. DDR1-induced neutrophil extracellular traps drive pancreatic cancer metastasis[J]. JCI Insight,2021, 6(17):e146133. doi: 10.1172/jci.insight.146133.
35
Vijver SV, Singh A, Mommers-Elshof ETAM, et al. Collagen fragments produced in cancer mediate T cell suppression through leukocyteassociated immunoglobulin-like receptor 1[J]. Front Immunol, 2021,12:733561. doi: 10.3389/fimmu.2021.733561.
36
Huang Y, Guo DM, Bu S, et al. Systematic analysis of the prognostic significance and roles of the integrin alpha family in non-small cell lung cancers[J]. Adv Ther, 2023, 40(5):2186-2204.
37
Nicolas-Boluda A, Vaquero J, Vimeux L, et al. Tumor stiffening reversion through collagen crosslinking inhibition improves T cell migration and anti-PD-1 treatment[J]. Elife, 2021, 10:e58688. doi:10.7554/eLife.58688.
38
Horner M, Raute K, Hummel B, et al. Phytochrome-based extracellular matrix with reversibly tunable mechanical properties[J]. Adv Mater,2019, 31(12):e1806727. doi: 10.1002/adma.201806727.
39
O'connor RS, Hao X, Shen K, et al. Substrate rigidity regulates human T cell activation and proliferation[J]. J Immunol, 2012, 189(3):1330-1339.
40
Bachy S, Wu Z, Gamradt P, et al. betaig-h3-structured collagen alters macrophage phenotype and function in pancreatic cancer[J]. iScience,2022, 25(2):103758. doi: 10.1016/j.isci.2022.103758.
41
Chen M, Zhang Y, Zhou P, et al. Substrate stiffness modulates bone marrow-derived macrophage polarization through NF-kappaB signaling pathway[J]. Bioact Mater, 2020, 5(4):880-890.
42
Erpenbeck L, Gruhn AL, Kudryasheva G, et al. Effect of adhesion and substrate elasticity on neutrophil extracellular trap formation[J]. Front Immunol, 2019, 10:2320. doi: 10.3389/fimmu.2019.02320.
43
Mai Z, Lin Y, Lin P, et al. Modulating extracellular matrix stiffness: a strategic approach to boost cancer immunotherapy[J]. Cell Death Dis,2024, 15(5):307. doi: 10.1038/s41419-024-06697-4.
44
Larue MM, Parker S, Puccini J, et al. Metabolic reprogramming of tumor-associated macrophages by collagen turnover promotes fibrosis in pancreatic cancer[J]. Proc Natl Acad Sci U S A, 2022,119(16):e2119168119. doi: 10.1073/pnas.2119168119.
45
Tharp K M, Kersten K, Maller O, et al. Tumor-associated macrophages restrict CD8(+) T cell function through collagen deposition and metabolic reprogramming of the breast cancer microenvironment[J].Nat Cancer, 2024, 5(7):1045-1062.
46
Tang PC, Chung JY, Xue VW, et al. Smad3 promotes cancer-associated fibroblasts generation via macrophage-myofibroblast transition[J]. Adv Sci (Weinh), 2022, 9(1):e2101235. doi: 10.1002/advs.202101235.
47
Mei J, Cai Y, Zhu H, et al. High B7-H3 expression with low PD-L1 expression identifies armored-cold tumors in triple-negative breast cancer[J]. NPJ Breast Cancer, 2024, 10(1):11. doi: 10.1038/s41523-024-00618-6.
48
Shen B, Mei J, Xu R, et al. B7-H3 is associated with the armored-cold phenotype and predicts poor immune checkpoint blockade response in melanoma[J]. Pathol Res Pract, 2024, 256:155267. doi: 10.1016/j.prp.2024.155267.
49
Brisson BK, Stewart DC, Burgwin C, et al. Cysteine-rich domain of type III collagen N-propeptide inhibits fibroblast activation by attenuating TGFbeta signaling[J]. Matrix Biol, 2022, 109:19-33.
50
Di Martino JS, Nobre AR, Mondal C, et al. A tumor-derived type III collagen-rich ECM niche regulates tumor cell dormancy[J]. Nat Cancer, 2022, 3(1):90-107.
51
Momin N, Mehta NK, Bennett NR, et al. Anchoring of intratumorally administered cytokines to collagen safely potentiates systemic cancer immunotherapy[J]. Sci Transl Med, 2019, 11(498):eaaw2614. doi:10.1126/scitranslmed.aaw2614.
52
Berestjuk I, Lecacheur M, Carminati A, et al. Targeting discoidin domain receptors DDR1 and DDR2 overcomes matrix-mediated tumor cell adaptation and tolerance to BRAF-targeted therapy in melanoma[J]. EMBO Mol Med, 2022, 14(2):e11814. doi: 10.15252/emmm.201911814.
53
Xu S, Xu H, Wang W, et al. The role of collagen in cancer: from bench to bedside[J]. J Transl Med, 2019, 17(1):309. doi: 10.1186/s12967-019-2058-1.
54
Cunningham CC. Talabostat[J]. Expert Opin Investig Drugs, 2007,16(9):1459-1465.
55
Eager M, Cunningham CC, Senzer N, et al. Phase II trial of talabostat and docetaxel in advanced non-small cell lung cancer[J]. Clin Oncol (R Coll Radiol), 2009, 21(6):464-472.
56
Eager RM, Cunningham CC, Senzer NN, et al. Phase II assessment of talabostat and cisplatin in second-line stage IV melanoma[J]. BMC Cancer, 2009, 9:263. doi: 10.1186/1471-2407-9-263.
57
Mammoto T, Jiang A, Jiang E, et al. Role of collagen matrix in tumor angiogenesis and glioblastoma multiforme progression[J]. Am J Pathol,2013, 183(4):1293-1305.
58
Verginadis, Ii, Avgousti H, Monslow J, et al. A stromal Integrated Stress Response activates perivascular cancer-associated fibroblasts to drive angiogenesis and tumour progression[J]. Nat Cell Biol, 2022,24(6):940-953.
59
Mongiat M, Andreuzzi E, Tarticchio G, et al. Extracellular Matrix, a Hard Player in Angiogenesis[J]. Int J Mol Sci, 2016, 17(11):1822. doi:10.3390/ijms17111822.
60
Hegab AE, Ozaki M, Kameyama N, et al. Effect of FGF/FGFR pathway blocking on lung adenocarcinoma and its cancer-associated fibroblasts[J]. J Pathol, 2019, 249(2):193-205.
61
Gamradt P, Thierry K, Masmoudi M, et al. Stiffness-induced cancerassociated fibroblasts are responsible for immunosuppression in a platelet-derived growth factor ligand-dependent manner[J]. PNAS Nexus, 2023, 2(12):pgad405. doi: 10.1093/pnasnexus/pgad405.
62
Mei J, Chu J, Yang K, et al. Angiotensin receptor blocker attacks armored and cold tumors and boosts immune checkpoint blockade[J].J Immunother Cancer, 2024, 12(9):e009327. doi: 10.1136/jitc-2024-009327.
63
Moore SC, Lee IM, Weiderpass E, et al. Association of Leisure-Time Physical Activity With Risk of 26 Types of Cancer in 1.44 Million Adults[J]. JAMA Intern Med, 2016, 176(6):816-825.
64
Luo Z, Mei J, Wang X, et al. Voluntary exercise sensitizes cancer immunotherapy via the collagen inhibition-orchestrated inflammatory tumor immune microenvironment[J]. Cell Rep, 2024, 43(9):114697.doi: 10.1016/j.celrep.2024.114697.
[1] 宋勤琴, 李双汝, 李林, 杜鹃, 刘继松. 间充质干细胞源性外泌体在改善病理性瘢痕中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(06): 550-553.
[2] 苏湘鹏, 王晓, 张基勋, 王超, 董欣欣, 祁永军, 刘振中. YAP蛋白的亚细胞定位在瘢痕疙瘩发生中的作用[J]. 中华损伤与修复杂志(电子版), 2024, 19(02): 180-183.
[3] 李敏, 杨世英, 高晓琴, 周丹, 唐筱, 张立婷. 维生素A与慢性肝病相关性研究进展[J]. 中华实验和临床感染病杂志(电子版), 2024, 18(02): 65-70.
[4] 李卓骋, 陈羽翔, 高亮, 张宇, 朱许源, 马晓杰, 李涛, 赵甜甜, 蒋鸿涛. 巨噬细胞-肌成纤维细胞转化在肾纤维化过程中的作用[J]. 中华移植杂志(电子版), 2024, 18(03): 181-185.
[5] 周璇, 谢莉, 邹娟. 尼达尼布对特发性肺纤维化肺功能、肺纤维化程度及PDGF、PGE2、TGF-β1的影响[J]. 中华肺部疾病杂志(电子版), 2024, 17(03): 368-372.
[6] 吴沛玲, 娄月妍, 张洪艳, 陈东方, 刘雪青, 赵丽芳, 薛姗, 蒋捍东. 线粒体相关基因在特发性肺纤维化中的分析[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 178-184.
[7] 邱凌霄, 王创业, 卿斌, 刘锦程, 张鑫烨, 武文娟, 邢德冰, 郭亮, 徐智, 王斌. 基于转录组学筛选特发性肺纤维化的枢纽基因和信号通路[J]. 中华肺部疾病杂志(电子版), 2024, 17(02): 212-217.
[8] 翟航, 张广权, 吴芳芳, 史宪杰. 非编码RNA调控胰腺纤维化研究进展[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 583-587.
[9] 孙婧婷, 李娜, 罗明辉, 高瑶瑶, 白义行, 朱国贞. 短链脂肪酸对小鼠缺血再灌注肾损伤的炎症及纤维化影响和作用机制研究[J]. 中华肾病研究电子杂志, 2024, 13(04): 181-187.
[10] 周慧杰, 张云龙. 基于数据挖掘技术分析肾纤维化的中医病机与治法[J]. 中华肾病研究电子杂志, 2024, 13(03): 152-160.
[11] 张一绚, 韩冰, 刘超, 李思晨, 孙雪峰. 年轻化内环境改善老年小鼠肾缺血再灌注损伤诱导的肾间质纤维化[J]. 中华肾病研究电子杂志, 2024, 13(03): 129-133.
[12] 王静, 丁红. 益肾化湿颗粒对慢性肾衰竭大鼠肾组织转化生长因子-β1、α-平滑肌肌动蛋白表达的影响[J]. 中华肾病研究电子杂志, 2024, 13(03): 161-165.
[13] 田学, 谢晖, 王瑞兰. 急性呼吸窘迫综合征相关肺纤维化的研究进展[J]. 中华重症医学电子杂志, 2024, 10(03): 258-264.
[14] 谭欣, 王鹏源, 胡良皞. 慢性胰腺炎抗炎和抗纤维化治疗的研究进展[J]. 中华消化病与影像杂志(电子版), 2024, 14(04): 289-296.
[15] 张其德. 内镜下精准肌层剥离术在伴有黏膜下层纤维化/疤痕的早期胃癌治疗的作用初探(视频)[J]. 中华胃肠内镜电子杂志, 2024, 11(02): 144-144.
阅读次数
全文


摘要