切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (05) : 264 -274. doi: 10.3877/cma.j.issn.2095-1221.2024.05.002

论著

EP300 通过上调FKBP10 促进膀胱肿瘤细胞迁移和侵袭
赵旭鹏1,2, 王集琛2,3, 田硕2,3, 李宏召1,2, 李修彬2, 张旭1,2,()   
  1. 1.300071 天津,南开大学医学院
    2.100039 北京,中国人民解放军总医院第三医学中心泌尿外科医学部
    3.100853 北京,解放军医学院
  • 收稿日期:2024-08-18 出版日期:2024-10-01
  • 通信作者: 张旭
  • 基金资助:
    国家重点研发计划(2023YFC2507006)

EP300 promotes bladder tumor migration and invasion by upregulating FKBP10

Xupeng Zhao1,2, Jichen Wang2,3, Shuo Tian2,3, Hongzhao Li1,2, Xiubin Li2, Xu Zhang,1,2()   

  1. 1.School of Medicine,Nankai University, Tianjin 300071, China
    2.Department of Urology, Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
    3.Medical School of PLA, Beijing 100853, China
  • Received:2024-08-18 Published:2024-10-01
  • Corresponding author: Xu Zhang
引用本文:

赵旭鹏, 王集琛, 田硕, 李宏召, 李修彬, 张旭. EP300 通过上调FKBP10 促进膀胱肿瘤细胞迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 264-274.

Xupeng Zhao, Jichen Wang, Shuo Tian, Hongzhao Li, Xiubin Li, Xu Zhang. EP300 promotes bladder tumor migration and invasion by upregulating FKBP10[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(05): 264-274.

目的

探究E1A 结合蛋白p300 (EP300)在膀胱肿瘤进展中的功能及其潜在的分子调控机制,以期为膀胱肿瘤的治疗策略提供新的视角。

方法

首先在膀胱肿瘤细胞UMUC3中敲低EP300 后,通过CCK-8 实验、划痕实验、Transwell 实验检测细胞的增殖、迁移和侵袭功能变化。进一步通过转录组测序和数据分析,寻找下游功能执行分子,并通过RT-qPCR、Western blot、ChIP-qPCR 等实验验证EP300 对其表达的调控。两组间比较使用t 检验,3 组或以上的两两比较使用单因素ANOVA 分析,组间两两比较采用Dunnett-t 检验。

结果

与对照组相比,敲低EP300 后能够抑制UMUC3 细胞的增殖 (1.49 ± 0.05 比1.16 ± 0.06、1.07 ± 0.04,P < 0.05)、迁移(100.32 ± 5.16 比52.16 ± 2.07 、43.19 ± 7.64,P < 0.05)及侵袭功能 (99.52 ± 3.84 比33.07 ±7.14、64.22 ± 4.15,P < 0.05)。转录组测序结果表明敲低EP300 后FK506 结合蛋白10 (FKBP10)下调 (1.02 ± 0.11 比0.18 ± 0.04,P < 0.05)。加入EP300 的乙酰转移酶功能抑制剂C646 后,FKBP10 的表达水平也下降 (0.99 ± 0.07 比0.44 ± 0.09,P < 0.05)。结合ChIP-qPCR 结果证实,EP300 通过促进FKBP10 启动子区域的H3K27 乙酰化 (1.40 ± 0.05 比0.54 ± 0.01,P < 0.05),进而调控FKBP10 的转录活性。

结论

本研究揭示了EP300 通过上调FKBP10 的表达,促进膀胱肿瘤进展的分子机制。

Objective

This study aims to investigate the role of E1A binding protein p300(EP300) in bladder tumor progression and its underlying molecular mechanisms, with the goal of providing new insights for bladder cancer therapeutic strategies.

Methods

EP300 was knocked down in UMUC3 bladder tumor cells, followed by assessments of cell proliferation, migration, and invasion using CCK-8, wound healing, and Transwell assays. Transcriptome sequencing and data analysis were conducted to identify downstream effector molecules. The regulation of these molecules by EP300 was validated using RT-qPCR, Western blot, and ChIP-qPCR assays. Comparisons between two groups were conducted using the t-test. For comparisons among three or more groups,one-way ANOVA was employed, followed by Dunnett's t-test for post hoc pairwise comparisons.

Results

Compared with the control group, knockdown of EP300 significantly inhibited the proliferation [(1.49 ± 0.05) vs (1.16 ± 0.06) , (1.07 ± 0.04) , P< 0.05], migration [(100.32 ±5.16) vs (52.16 ± 2.07), (43.19 ± 7.64), P< 0.05], and invasion [(99.52 ± 3.84) vs (33.07 ±7.14), (64.22 ± 4.15), P< 0.05] of UMUC3 cells (P< 0.05). Transcriptome sequencing revealed that FK506 binding protein 10 (FKBP10) was significantly downregulated upon EP300 knockdown[(1.02 ± 0.11) vs (0.18 ± 0.04), P< 0.05]. The expression level of FKBP10 also decreased [(0.99 ±0.07) vs (0.44 ± 0.09), P< 0.05] after treatment with C646, an inhibitor of EP300's acetyltransferase activity. ChIP- qPCR results confirmed that EP300 promotes the transcriptional activity of FKBP10 by enhancing H3K27 acetylation in the promoter region of FKBP10 [(1.40 ± 0.05) vs (0.54 ± 0.01),P< 0.05].

Conclusion

This study revealed that EP300 promotes bladder tumor progression by upregulating FKBP10 expression.

表1 引物序列信息
图1 实验检测膀胱肿瘤细胞的敲低效率和增殖能力 注:a 图与Scramble 组相比,aP < 0.05;b 图与Scramble 组相比,aP < 0.05
图2 正置显微镜下观察膀胱肿瘤细胞迁移 (×40)和侵袭 (结晶紫染色,×200)能力的影响 注:上图为细胞划痕实验评估EP300 对膀胱肿瘤细胞迁移能力的影响;下图为Transwell 实验评估EP300 对膀胱肿瘤迁移和侵袭能力的影响
图3 实验检测膀胱肿瘤细胞的迁移和侵袭能力 注:a 图为细胞划痕实验评估EP300 对膀胱肿瘤细胞迁移能力的影响,与Scramble 组相比,aP< 0.05;b ~ c 图为Transwell 实验评估EP300 对膀胱肿瘤迁移和侵袭能力的影响,与Scramble 组相比,aP< 0.05
表2 EP300 敲低效率验证 (± s
表3 敲低EP300 抑制膀胱肿瘤细胞的迁移和侵袭 (± s
图4 UMUC3 细胞敲低EP300 后转录组测序GO 富集分析 注:a 图为UMUC3 细胞敲低EP300 后转录组测序GO 富集分析有统计学差异 (P < 0.05)排名前10 的通路;b 图为利用韦恩图筛选与膀胱肿瘤预后相关的差异基因
图5 FKBP10 介导EP300 促进膀胱肿瘤进展 注:a 图为通过火山图寻找敲低EP300 后变化显著的基因;b ~ c 图为通过RT-qPCR 实验验证EP300 的敲低效率和FKBP10 的过表达效率,与siEP300组相比,aP < 0.05;与siEP300 组相比,bP = 0.79;e 图为通过Western blot 实验验证FKBP10 的过表达效率
图6 正置显微镜下观察过表达FKBP10 能够挽救敲低EP300 对膀胱肿瘤迁移 (× 40)和侵袭 (× 200,结晶紫染色)功能 注:上图为划痕实验表明,过表达FKBP10 能够挽救敲低EP300 对膀胱肿瘤迁移功能的影响;下图为Transwell 实验表明,过表达FKBP10 能够挽救敲低EP300 对膀胱肿瘤迁移和侵袭功能的影响
图7 过表达FKBP10 能够挽救敲低EP300 对膀胱肿瘤迁移和侵袭功能的影响 注:a 图为划痕实验表明,过表达FKBP10 能够挽救敲低EP300 对膀胱肿瘤迁移功能的影响,与siEP300 组相比,aP< 0.05;b ~ c 图为Transwell 实验表明,过表达FKBP10 能够挽救敲低EP300 对膀胱肿瘤迁移和侵袭功能的影响,与siEP300 组相比,aP< 0.05
表4 FKBP10 介导EP300 促进膀胱肿瘤进展 (± s
图8 RT-qPCR 实验检测敲低EP300 后EP300 和FKBP10 的RNA 水平和蛋白水平 注:a ~ b 图为RT-qPCR 实验表明,敲低EP300 后EP300 和FKBP10 的RNA 水平下降,与Scramble 组相比,aP < 0.05;c 图为Western blot 实验表明,敲低EP300 后FKBP10 的蛋白水平下降;d 图为 RT-qPCR 实验表明,加入EP300 抑制剂C646 后EP300 的RNA 水平无明显变化,5637 细胞中与DMSO组相比,aP = 0.215,UMUC3 细胞中与DMSO 组相比,bP = 0.280;e 图为FKBP10 的RNA 水平下调,同种细胞中与DMSO 组相比,aP < 0.05;f 图为Western blot 实验表明,加入EP300 抑制剂C646 后FKBP10 的蛋白水平下降
图9 UCSC 数据库中膀胱肿瘤细胞5637 和J82 ChIP-seq数据分析结果
图10 ChIP-qPCR 实验表明敲低EP300 或加入EP300 抑制剂后的结果 注:ChIP-qPCR 实验表明,敲低EP300 或加入EP300 抑制剂C646 后FKBP10 的启动子区H3K27 乙酰化水平下降,同种细胞中与DMSO 组相比,aP <0.05
表5 EP300 促进FKBP10 转录 (± s
表6 EP300 抑制剂C646 抑制FKBP10 转录(± s
表7 EP300 上调FKBP10 启动子区组蛋白H3K27 乙酰化水平 (± s
1
Lenis AT, Lec PM, Chamie K, et al. Bladder cancer:a review[J]. JAMA,2020,324(19):1980-1991.
2
Lopez-Beltran A, Cookson MS, Guercio BJ, et al. Advances in diagnosis and treatment of bladder cancer[J]. BMJ, 2024, 384:e076743.
3
Netto GJ, Amin MB, Berney DM, et al. The 2022 World Health Organization classification of tumors of the urinary system and male genital organs—Part B: Prostate and urinary tract tumors[J]. Eur Urol,2022, 82(5):469-482.
4
Das C, Lucia MS, Hansen KC, et al. CBP/p300-mediated acetylation of histone H3 on lysine 56 [J]. Nature, 2009, 459(7243):113-117.
5
Black JC, Choi JE, Lombardo SR, et al. A mechanism for coordinating chromatin modification and preinitiation complex assembly[J]. Mol Cell, 2006, 23(6):809-818.
6
Wong CK, Wade-Vallance AK, Luciani DS, et al. The p300 and CBP transcriptional coactivators are required for β-cell and α-cell proliferation[J]. Diabetes, 2018, 67(3): 412-422.
7
Dutto I, Scalera C, Prosperi E. CREBBP and p300 lysine acetyl transferases in the DNA damage response[J]. Cell Mol Life Sci, 2018,75(8): 1325-1338.
8
Huang YH, Cai K, Xu PP, et al. CREBBP/EP300 mutations promoted tumor progression in diffuse large B-cell lymphoma through altering tumor-associated macrophage polarization via FBXW7-NOTCH CCL2/CSF1 axis[J]. Signal Transduct Target Ther, 2021, 6(1):10.
9
Kim KB, Kabra A, Kim DW, et al. KIX domain determines a selective tumor-promoting role for EP300 and its vulnerability in small cell lung cancer [J]. Sci Adv, 2022, 8(7): eabl4618.
10
Luo M, Zhang Y, Xu Z, et al. Experimental analysis of bladder cancerassociated mutations in EP300 identifies EP300-R1627W as a driver mutation[J]. Mol Med, 2023, 29(1):7.
11
Chen Q, Yang B, Liu X, et al. Histone acetyltransferases CBP/p300 in tumorigenesis and CBP/p300 inhibitors as promising novel anticancer agents[J]. Theranostics,2022,12(11):4935-4948.
12
Kontos S, Papatsoris A, Kominea A, et al. Expression of ERbeta and its co-regulators p300 and NCoR in human transitional cell bladder cancer[J]. Urol Int,2011,87(2):151-158.
13
Tsang FH, Law CT, Tang TC, et al. Aberrant super-enhancer landscape in human hepatocellular carcinoma [J]. Hepatology (Baltimore, Md),2019, 69(6):2502-2517.
14
Zucconi BE, Makofske JL, Meyers DJ, et al. Combination targeting of the bromodomain and acetyltransferase active site of p300/CBP[J].Biochemistry, 2019, 58(16):2133-2143.
15
Choo N, Keerthikumar S, Ramm S, et al. Co-targeting BET, CBP, and p300 inhibits neuroendocrine signalling in androgen receptor-null prostate cancer[J]. J pathol, 2024, 263(2): 242-256.
16
Kim E, Zucconi BE, Wu M, et al. MITF expression predicts therapeutic vulnerability to p300 inhibition in human melanoma[J]. Cancer Res,2019,79(10):2649-2661.
17
Peifer M, Fernández-Cuesta L, Sos ML, et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer[J]. Nat Genet, 2012, 44(10):1104-1110.
18
Ramadori G, Ioris RM, Villanyi Z, et al. FKBP10 regulates protein translation to sustain lung cancer growth[J]. Cell Reports, 2020, 30(11):3851-3863.e6.
19
Chen Z, He L, Zhao L, et al. circREEP3 drives colorectal cancer progression via activation of FKBP10 transcription and restriction of antitumor immunity [J]. Adv Sci (Weinh), 2022, 9(13): e2105160.
20
Liu R, Zou Z, Chen L, et al. FKBP10 promotes clear cell renal cell carcinoma progression and regulates sensitivity to the HIF2alpha blockade by facilitating LDHA phosphorylation [J]. Cell Death Dis,2024,15(1):64.
21
He ZX, Wei BF, Zhang X, et al. Current development of CBP/p300 inhibitors in the last decade[J]. Eur J Med Chem, 2021, 209:112861.doi:10.1016/j.ejmech.2020.112861.
22
Stimson L, Rowlands MG, Newbatt YM, et al. Isothiazolones as inhibitors of PCAF and p300 histone acetyltransferase activity[J]. Mol Cancer Ther, 2005, 4(10):1521-1532.
23
Chen Z, Wang M, Wu D, et al. Discovery of CBPD-409 as a Highly Potent, Selective, and Orally Efficacious CBP/p300 PROTAC Degrader for the Treatment of Advanced Prostate Cancer[J]. J Med Chem, 2024,67(7):5351-5372.
24
Oike T, Komachi M, Ogiwara H, et al. C646, a selective small molecule inhibitor of histone acetyltransferase p300, radiosensitizes lung cancer cells by enhancing mitotic catastrophe[J]. Radiother Oncol,2014, 111(2): 222-227.
25
Grivas P, Mortazavi A, Picus J, et al. Mocetinostat for patients with previously treated, locally advanced/metastatic urothelial carcinoma and inactivating alterations of acetyltransferase genes[J]. Cancer, 2019,125(4): 533-540.
[1] 陈金业, 凌潜龙, 朱冰, 骆杰. 补体B因子在结直肠癌中的表达及临床意义[J]. 中华普通外科学文献(电子版), 2024, 18(03): 192-198.
[2] 薛庆, 施赛叶, 徐雅文, 盛夏, 张芹芹. 追踪方法学联合失效模式与效应分析在膀胱灌注化疗患者中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 553-559.
[3] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[4] 钱承博, 殷虎明, 邱峰, 侯建全, 黄玉华, 魏雪栋. 高龄患者行腹腔镜膀胱根治W形回肠新膀胱术的临床价值与风险评估[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 346-352.
[5] 李萍, 陈慧, 庄君龙. 快速康复外科在机器人辅助腹腔镜膀胱切除回肠造口术中的应用[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 249-253.
[6] 谭智勇, 付什, 李宁, 王海峰, 王剑松. 膀胱小细胞癌发病机制及其诊疗研究进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 183-187.
[7] 赵蒙蒙, 黄洁, 余荣环, 王葆青. 过表达小GTP酶Rab32抑制非小细胞肺癌细胞侵袭性生长[J]. 中华肺部疾病杂志(电子版), 2024, 17(04): 512-518.
[8] 曾聿理, 雷发容, 肖慧, 邱德亮, 谢静, 吴寻. 氯普鲁卡因通过调控circRNA-ZKSCAN1表达抑制肝癌Huh-7细胞体外生长和转移的研究[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 220-228.
[9] 李晶, 潘侠, 周芳, 汪晶, 洪佳. 普鲁卡因通过上调lncRNA DGCR5抑制胃癌细胞增殖、迁移和侵袭[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 151-158.
[10] 刘杜先, 张杰东, 付鲁渝, 熊志强, 龚程, 张小雅, 高明悦, 孟俊宏, 刘兰侠. 沉默circXPO1抑制肝癌细胞恶性生物学行为[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 159-166.
[11] 李博, 马秀岩, 孙杰. lncRNA TINCR对滋养层HTR-8/SVneo细胞生物学行为的影响及其机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 167-172.
[12] 曾谣, 谢琴, 陈显育, 王平根, 毛玲秋, 何丹玲, 杜飞, 郑希彦, 何函樨. CDC42EP2基因与肝癌预后、免疫细胞浸润关系及其对细胞迁移侵袭的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 363-369.
[13] 夏辉, 戴斌, 冉君, 王威, 龚昭, 周程. DEP结构域蛋白1B在肝细胞癌中的表达及功能[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 205-213.
[14] 崔精, 鲍一帆, 沈晓明, 杨增辉, 高森, 鲍传庆. 结直肠癌中circMFSD12对肿瘤细胞功能及5-FU敏感性的调控[J]. 中华结直肠疾病电子杂志, 2024, 13(04): 294-302.
[15] 邵文哲, 孙倩男, 王道荣. Galectin-9在结直肠癌中的表达及其临床意义[J]. 中华结直肠疾病电子杂志, 2024, 13(02): 112-120.
阅读次数
全文


摘要