切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (05) : 275 -284. doi: 10.3877/cma.j.issn.2095-1221.2024.05.003

论著

OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究
黄程鑫1,2, 陈莉1,3,4,2, 刘伊楚1,3,4,2, 王水良1,3,4,2, 赖晓凤1,3,4,2,()   
  1. 1.350025 福州,福建中医药大学福总教学医院 (第九〇〇医院)检验科
    2.350025 福州,福建省适配体技术重点实验室,福建省适配体精准检验临床医学研究中心
    3.350025 福州,福建医科大学福总临床医学院 (第九〇〇医院)检验科
    4.350025 福州,厦门大学附属东方医院 (第九〇〇医院)检验科
  • 收稿日期:2024-09-03 出版日期:2024-10-01
  • 通信作者: 赖晓凤
  • 基金资助:
    国家自然科学基金 (81902712)福建省自然科学基金 (2021J011269、2023J011345)中国人民解放军联勤保障部队第900 医院基金 (2023SA01、2023SA03、2023QN09)

Expression characterization OPA1 expression in breast cancer tissues and its biological function in ER-positive breast cancer cells

Chengxin Huang1,2, Li Chen1,3,4,2, Yichu Liu1,3,4,2, Shuiliang Wang1,3,4,2, Xiaofeng Lai1,3,4,2,()   

  1. 1.Department of Laboratory Medicine, Fujian University of Traditional Chinese Medicine, Fuzong Teaching Hospital(900th Hospital), Fuzhou 350025, China
    2.Fujian Key Laboratory of Aptamer Technology, Fujian Clinical Research Center for Aptamer-based Precision Diagnostics and Clinical Medicine, Fuzhou 350025, China
    3.Department of Laboratory Medicine, Fujian Medical University, Fuzong Clinical Medical College(900th Hospital), Fuzhou 350025, China
    4.Department of Laboratory Medicine, Dongfang Hospital Affiliated to Xiamen University (900th Hospital), Fuzhou 350025, China
  • Received:2024-09-03 Published:2024-10-01
  • Corresponding author: Xiaofeng Lai
引用本文:

黄程鑫, 陈莉, 刘伊楚, 王水良, 赖晓凤. OPA1 在乳腺癌组织的表达特征及在ER阳性乳腺癌细胞中的生物学功能研究[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 275-284.

Chengxin Huang, Li Chen, Yichu Liu, Shuiliang Wang, Xiaofeng Lai. Expression characterization OPA1 expression in breast cancer tissues and its biological function in ER-positive breast cancer cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(05): 275-284.

目的

分析视神经萎缩蛋白1 (OPA1)在乳腺癌的表达情况及其对雌激素受体(ER)阳性乳腺癌细胞的生物学功能影响,为乳腺癌治疗寻求潜在新靶点。

方法

分别用公开数据信息 (HPA和GSE115144)以及ER阳性乳腺癌患者组织芯片分析OPA1在乳腺癌和正常/ 癌旁组织中的表达差异,通过GEPIA 和TCGA 数据库分析OPA1 表达与乳腺癌患者生存期的相关性。在细胞实验中,分别使用OPA1质粒和小干扰RNA (siRNA)对MCF7和T47D细胞进行转染,通过RT-qPCR 和Western blot 检测OPA1 的mRNA 和蛋白相对表达水平。采用CCK-8 实验与平板克隆形成实验分别检测细胞增殖及克隆形成能力,流式细胞术检测活性氧 (ROS)水平、线粒体膜电位 (JC-1 法)和细胞凋亡。两组间比较采用独立样本t 检验,多组间比较采用单因素方差分析,组间两两比较采用Dunnett-t 检验。

结果

与癌旁组织相比,OPA1 在乳腺癌组织中高表达 (P< 0.01),并且OPA1 高表达与乳腺癌患者临床预后不良相关 (P< 0.05)。细胞实验中,过表达OPA1 促进细胞增殖和克隆形成,降低ROS 水平[(37.37 ± 1.48)%比 (62.51 ± 2.66)%,P< 0.001],同时线粒体膜电位增加[JC-1 单体比例降低 (7.32 ± 1.84)% 比 (17.6 ± 3.35)%,P< 0.01];而抑制OPA1 能够抑制细胞增殖和克隆形成,增加ROS 水平[(77.81 ± 2.37)%比(58.37 ± 1.36)%,P< 0.001]与降低线粒体膜电位[JC-1 单体比例升高 (28.13 ± 3.47)%比(15.96 ± 1.14)%,P< 0.01],并且促进细胞凋亡[(20.10 ± 1.20)%比 (3.85 ± 0.76)%,P< 0.001]。

结论

OPA1 在乳腺癌中高表达且与临床预后不良相关,抑制OPA1 表达可抑制ER 阳性乳腺癌细胞增殖和克隆形成能力,同时降低线粒体膜电位,影响线粒体功能,诱导ROS 生成最终促进细胞凋亡。

Objective

To analyze the expression of Optic Atrophy 1 (OPA1) in breast cancer and its effect on the biological function of estrogen receptor (ER)-positive breast cancer cells, seeking potential new targets for breast cancer therapy.

Methods

Expression differences of OPA1 in breast cancer and normal/paracancerous tissues were analyzed using publicly available database information (HPA and GSE115144) and tissue microarrays from ER-positive breast cancer patients, respectively. The correlation between OPA1 expression and survival in breast cancer patients was analyzed by the GEPIA and TCGA databases. In cellexperiments, MCF7 and T47D cells were transfected with OPA1 plasmid and small interfering RNA (siRNA), respectively, and the relative expression levels of mRNA and protein of OPA1 were detected by RT-qPCR and Western blot. Cell proliferation and clone formation ability were detected by CCK-8 assay and plate clone formation assay, respectively. Reactive oxygen species (ROS) level, mitochondrial membrane potential (JC- 1 method) and apoptosis rate were detected by flow cytometry. Two independent samples t-test was used for comparison between groups. Differences among groups were compared by one-way ANOVE analysis, and Dunnett-t test was used for pair-to-group comparisons.

Results

OPA1 was highly expressed in breast cancer tissues compared with paracancerous tissues (P< 0.01), and high OPA1 expression was associated with poor clinical prognosis in breast cancer patients (P< 0.05). In cell experiments, overexpression of OPA1 promoted cell proliferation and clone formation and decreased the ROS levels [(37.37 ± 1.48)% vs (62.51 ± 2.66)%, P< 0.001], along with an increase in mitochondrial membrane potential [decrease in the proportion of JC-1 monomers, (7.32 ± 1.84)% vs(17.6 ± 3.35)%, P< 0.01]; while inhibition of OPA1 was able to inhibit cell proliferation and clone formation, increase ROS levels [(77.81 ± 2.37)% vs (58.37 ± 1.36)%, P< 0.001], decreasing mitochondrial membrane potential [elevated proportion of JC-1 monomer, (28.13 ± 3.47)% vs(15.96 ± 1.14)%, P< 0.01], and promote apoptosis [(20.10 ± 1.20)% vs (3.85 ± 0.76)%, P<0.001].

Conclusion

OPA1 is highly expressed in breast cancer and is significantly associated with poor clinical prognosis. Inhibition of OPA1 expression inhibits the cell proliferation and clone formation of ER-positive breast cancer, while decreasing mitochondrial membrane potential, affecting mitochondrial function,inducing ROS generation andultimately promote cell apoptosis.

表1 引物序列信息
表2 siRNA 序列
图1 OPA1 在乳腺癌和癌旁组织中及在ER 阳性乳腺癌和正常乳腺组织中的表达差异 注:a 图为与癌旁组织比较,aP < 0.05;b 图为与正常乳腺组织比较,aP <0.05
图2 对乳腺癌和正常乳腺组织及ER 阳性乳腺癌和癌旁组织组化分析 注:a 图为HPA 数据库中乳腺癌和正常乳腺组织的组化分析;b 图为乳腺癌组织芯片中ER 阳性乳腺癌和癌旁组织的组化分析
图3 OPA1 与乳腺癌患者和ER 阳性乳腺癌患者生存期的相关性 注:a 图为使用GEPIA 数据库分析OPA1 与乳腺癌患者生存期的相关性;b 图为使用TCGA 数据库分析OPA1 与ER 阳性乳腺癌患者生存期的相关性
表3 ER 阳性乳腺癌患者信息
图4 OPA1 过表达促进乳腺癌细胞增殖 注:a 图为转染OPA1-OE 后MCF7 和T47D 细胞OPA1 mRNA 表达增加;b 图为转染OPA1-OE 后MCF7 和T47D 细胞OPA1 蛋白表达增加;c 图为CCK8 法检测OPA1 过表达促进MCF7 细胞增殖 (72、96 h);d 图为CCK8 法检测OPA1 过表达促进T47D 细胞增殖,与Vector 相比,aP< 0.01,bP< 0.001
图5 OPA1 干扰抑制乳腺癌细胞增殖 注:a 图为转染siOPA1-1 后MCF7 细胞OPA1 mRNA 表达降低;b 图为转染siOPA1-1 后T47D 细胞OPA1 mRNA 表达降低;c 图为转染siOPA1 后MCF7 和T47D 细胞OPA1 蛋白表达降低;d 图为CCK8 法检测MCF7 细胞增殖,与siNC 相比OPA1 干扰抑制细胞增殖 (48、72、96 h);e 图为CCK8法检测T47D 细胞增殖,与siNC 相比OPA1 干扰抑制细胞增殖(72、96 h);与siNC 比较,aP< 0.05,bP< 0.01,cP< 0.001,ns 为差异无统计学意义
图6 OPA1 过表达促进乳腺癌细胞克隆形成。a 图为OPA1 过表达及其对照乳腺癌细胞克隆形成实验结果。b 图为OPA1过表达促进MCF7 和T47D 细胞克隆形成,与Vector 相比,aP< 0.01,bP< 0.001。图7 OPA1 干扰抑制乳腺癌细胞克隆。a图为OPA1 干扰及其对照乳腺癌细胞克隆形成实验结果;b 图为OPA1 干扰抑制MCF7 和T47D 细胞克隆形成数,与siNC 相比,aP< 0.01
图8 OPA1 影响乳腺癌细胞ROS 水平 注:a 图为OPA1 过表达及其对照MCF7 细胞ROS 检测结果;b 图为OPA1 过表达抑制ROS 生成,与Vector 相比,aP< 0.001;c 图为OPA1 干扰及其对照MCF7 细胞ROS 检测结果;d 图为OPA1 干扰抑制ROS 生成,与siNC 相比,aP< 0.001
图9 OPA1 影响乳腺癌细胞线粒体膜电位 注:a ~ c 图为OPA1 过表达及其对照MCF7 细胞JC-1 检测结果;d 图为过表达OPA1 降低JC1 单体,升高线粒体膜电位,与Vector 相比,aP< 0.01;e ~ g 图为OPA1 干扰及其对照MCF7 细胞JC-1 检测结果;h 图为OPA1 干扰增加JC-1 单体,减低线粒体膜电位,与siNC 相比,aP< 0.01
图10 干扰OPA1 表达细胞凋亡比例增加 注:a ~ d图为OPA1 干扰及其对照乳腺癌MCF7 和T47D 细胞凋亡检测结果;e图为干扰OPA1增加MCF7和T47D 细胞凋亡率,与siNC 比较,aP< 0.001
1
Fitzmaurice C, Akinyemiju TF, Al Lami FH, et al. Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2016: a systematic analysis for the global burden of disease study[J].JAMA Oncol, 2018, 4(11):1553-1568.
2
Siegel RL, Miller KD, Wagle NS, et al. Cancer statistics, 2023[J]. CA Cancer J Clin, 2023, 73(1):17-48.
3
Chen W, Zheng R, Baade P D, et al. Cancer statistics in China, 2015[J].CA Cancer J Clin, 2016, 66(2):115-132.
4
DeSantis CE, Ma J, Gaudet MM, et al. Breast cancer statistics, 2019[J].CA Cancer J Clin, 2019, 69(6):438-451.
5
Alexander C, Votruba M, Pesch UE, et al. OPA1, encoding a dynaminrelated GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28[J]. Nat Genet, 2000, 26(2):211-215.
6
von der Malsburg A, Sapp GM, Zuccaro KE, et al. Structural mechanism of mitochondrial membrane remodelling by human OPA1[J]. Nature, 2023, 620(7976):1101-1108.
7
Pernas L, Scorrano L. Mito-Morphosis:mitochondrial fusion, fission,and cristae remodeling as key mediators of cellular function[J]. Annu Rev Physiol, 2016, 78:505-531.
8
Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics[J]. Nat Rev Mol Cell Biol, 2020,21(4):204-224.
9
Herkenne S, Ek O, Zamberlan M, et al. Developmental and tumor angiogenesis requires the mitochondria-shaping protein Opa1[J]. Cell Metab, 2020, 31(5):987-1003.e8.
10
Noguchi M, Kohno S, Pellattiero A, et al. Inhibition of the mitochondria-shaping protein Opa1 restores sensitivity to Gefitinib in a lung adenocarcinomaresistant cell line[J]. Cell Death Dis, 2023,14(4):241. doi: 10.1038/s41419-023-05768-2.
11
Zhou Y, Wang Y, Wu S, et al. Sulforaphane-cysteine inhibited migration and invasion via enhancing mitophagosome fusion to lysosome in human glioblastoma cells[J]. Cell Death Dis, 2020, 11(9):819. doi:10.1038/s41419-020-03024-5.
12
Nolan E, Lindeman GJ, Visvader JE. Deciphering breast cancer: from biology to the clinic[J]. Cell, 2023, 186(8):1708-1728.
13
Vagia E, Mahalingam D, Cristofanilli M. The landscape of targeted therapies in TNBC[J]. Cancers (Basel), 2020, 12(4):916. doi: 10.3390/cancers12040916.
14
Baek ML, Lee J, Pendleton KE, et al. Mitochondrial structure and function adaptation in residual triple negative breast cancer cells surviving chemotherapy treatment[J]. Oncogene, 2023, 42(14):1117-1131.
15
Zamberlan M, Boeckx A, Muller F, et al. Inhibition of the mitochondrial protein Opa1 curtails breast cancer growth[J]. J Exp Clin Cancer Res, 2022, 41(1):95. doi: 10.1186/s13046-022-02304-6.
16
Rodrigues T, Ferraz LS. Therapeutic potential of targeting mitochondrial dynamics in cancer[J]. Biochem Pharmacol, 2020, 182:114282. doi: 10.1016/j.bcp.2020.114282.
17
Ashraf R, Kumar S. Mfn2-mediated mitochondrial fusion promotes autophagy and suppresses ovarian cancer progression by reducing ROS through AMPK/mTOR/ERK signaling[J]. Cell Mol Life Sci, 2022,79(11):573. doi: 10.1007/s00018-022-04595-6.
18
Wang Z, Tang S, Cai L, et al. DRP1 inhibition-mediated mitochondrial elongation abolishes cancer stemness, enhances glutaminolysis, and drives ferroptosis in oral squamous cell carcinoma[J]. Br J Cancer,2024, 130(11):1744-1757.
19
Wu Z, Zuo M, Zeng L, et al. OMA1 reprograms metabolism under hypoxia to promote colorectal cancer development[J]. EMBO Rep,2021, 22(1):e50827. doi: 10.15252/embr.202050827.
20
Li J, Xia Q, Di C, et al. Tumor cell-intrinsic CD96 mediates chemoresistance and cancer stemness by regulating mitochondrial fatty acid β-oxidation[J]. Adv Sci (Weinh), 2023, 10(7):e2202956. doi:10.1002/advs.202202956.
21
Larrue C, Mouche S, Lin S, et al. Mitochondrial fusion is a therapeutic vulnerability of acute myeloid leukemia[J]. Leukemia, 2023, 37(4):765-775.
22
Wang Z, Jiang H, Cai LY, et al. Repurposing disulfiram to induce OSCC cell death by cristae dysfunction promoted autophagy[J]. Oral diseases, 2021, 27(5):1148-1160.
23
Cogliati S, Frezza C, Soriano ME, et al. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency[J]. Cell, 2013, 155(1):160-171.
24
Sessions DT, Kim KB, Kashatus JA, et al. Opa1 and Drp1 reciprocally regulate cristae morphology, ETC function, and NAD(+)regeneration in KRas-mutant lung adenocarcinoma[J]. Cell Rep, 2022,41(11):111818. doi: 10.1016/j.celrep.2022.111818.
25
Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative stress in cancer[J].Cancer cell, 2020, 38(2):167-197.
26
Florido J, Martinez-Ruiz L, Rodriguez-Santana C, et al. Melatonin drives apoptosis in head and neck cancer by increasing mitochondrial ROS generated via reverse electron transport[J]. J Pineal Res, 2022,73(3):e12824. doi: 10.1111/jpi.12824.
[1] 洪玮, 叶细容, 刘枝红, 杨银凤, 吕志红. 超声影像组学联合临床病理特征预测乳腺癌新辅助化疗完全病理缓解的价值[J]. 中华医学超声杂志(电子版), 2024, 21(06): 571-579.
[2] 赵阳, 肖迎聪, 巨艳, 党晓智, 蔡林利, 薛文欣, 李洋, 肖瑶, 郭妤绮, 宋宏萍. 自动乳腺超声联合免疫组化早期预测乳腺癌新辅助化疗病理完全缓解的临床价值[J]. 中华医学超声杂志(电子版), 2024, 21(04): 361-369.
[3] 杨柳, 宋振川, 王新乐. 乳腺癌改良根治术联合背阔肌复位的临床疗效评估[J]. 中华乳腺病杂志(电子版), 2024, 18(05): 269-273.
[4] 张钊, 骆成玉, 张树琦, 何平, 李旭斌. 不同术式治疗早期乳腺癌的效果及并发症发生率、复发率比较[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 494-497.
[5] 宋佳, 汪波, 孙凯律, 商江峰, 吴旦平, 肇毅. 吲哚菁绿荧光显影联合亚甲蓝染色在乳腺癌前哨淋巴结活检中的应用[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 498-501.
[6] 孙建娜, 孔令军, 任崇禧, 穆坤, 王晓蕊. 266例首诊Ⅳ期乳腺癌手术患者预后分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 502-505.
[7] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[8] 唐丹萍, 王萍, 江孟蝶, 杨晓蓉. 自体脂肪移植在乳腺癌术后乳房重建的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 582-585.
[9] 祝炜安, 林华慧, 吴建杰, 黄炯煅, 吴婷婷, 赖文杰. RDM1通过CDK4促进前列腺癌细胞进展的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(06): 618-625.
[10] 郑俊, 吴杰英, 谭海波, 郑安全, 李腾成. EGFR-MEK-TZ三联合分子的构建及其对去势抵抗性前列腺癌细胞增殖与凋亡的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(05): 503-508.
[11] 杜霞, 马梦青, 曹长春. 造影剂诱导的急性肾损伤的发病机制及干预靶点研究进展[J]. 中华肾病研究电子杂志, 2024, 13(05): 279-282.
[12] 王帅, 张志远, 苏雨晴, 李雯雯, 王守凯, 刘琦, 李文涛. 孟德尔随机化及其在乳腺癌研究中的应用进展[J]. 中华临床医师杂志(电子版), 2024, 18(07): 671-676.
[13] 崔军威, 蔡华丽, 胡艺冰, 胡慧. 亚甲蓝联合金属定位夹及定位钩针标记在乳腺癌辅助化疗后评估腋窝转移淋巴结的临床应用价值探究[J]. 中华临床医师杂志(电子版), 2024, 18(07): 625-632.
[14] 王誉英, 刘世伟, 王睿, 曾娅玲, 涂禧慧, 张蒲蓉. 老年乳腺癌新辅助治疗病理完全缓解的预测因素分析[J]. 中华临床医师杂志(电子版), 2024, 18(07): 641-646.
[15] 张梦婷, 穷拉姆, 色珍, 李逸群, 德庆旺姆. 西藏地区藏族乳腺癌新辅助化疗的真实世界研究[J]. 中华临床医师杂志(电子版), 2024, 18(05): 441-446.
阅读次数
全文


摘要