1 |
Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1):665-706.
|
2 |
Guo Q, Li W, Xie R et al. Visualization of the relationship between macrophage and wound healing from the perspective of bibliometric analysis[J]. Int Wound J, 2024, 21(4):e14597.
|
3 |
Raziyeva K, Kim Y, Zharkinbekov Z, et al. Immunology of acute and chronic wound healing[J]. Biomolecules, 2021, 11(5):700. doi:10.3390/biom11050700.
|
4 |
Riedl J, Popp C, Eide C, et al. Mesenchymal stromal cells in wound healing applications: role of the secretome, targeted delivery and impact on recessive dystrophic epidermolysis bullosa treatment[J].Cytotherapy, 2021, 23(11):961-973.
|
5 |
谢思雨,路君. 间充质干细胞疗法在肾移植中的应用:一个未完待续的故事 [J]. 器官移植, 2024, 15 (3):398-405.
|
6 |
Jiang W, Xu J. Immune modulation by mesenchymal stem cells[J]. Cell Prolif, 2020, 53(1):e12712. doi: 10.1111/cpr.12712.
|
7 |
Li J, Liu Y, Zhang R, et al. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics[J]. Stem Cell Res Ther, 2024, 15(1):169. doi:10.1186/s13287-024-03774-5.
|
8 |
Jiang L, Lu J, Chen Y, et al. Mesenchymal stem cells: An efficient cell therapy for tendon repair[J]. Int J Mol Med, 2023, 52(2):70. doi:10.3892/ijmm.2023.5273.
|
9 |
Shi Y, Su J, Roberts AI, et al. How mesenchymal stem cells interact with tissue immune responses[J]. Trends Immunol, 2012, 33(3):136-143.
|
10 |
Huang Y, Wu Q, Tam PKH. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications[J]. Int J Mol Sci, 2022, 23(17):10023. doi: 10.3390/ijms231710023.
|
11 |
Liu C, Lu Y, Du P, et al. Mesenchymal stem cells pretreated with proinflammatory cytokines accelerate skin wound healing by promoting macrophages migration and M2 polarization[J]. Regen Ther, 2022,21:192-200.
|
12 |
秦菊,江滨,周春根.脂肪MSCs治疗复杂性肛瘘的机制探讨[J].医学研究杂志,2022,51(6):181-183,167.
|
13 |
Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J]. Biomaterials, 2020,258:120286. doi: 10.1016/j.biomaterials.2020.120286.
|
14 |
Wilgus TA, Roy S, McDaniel JC. Neutrophils and wound repair:positive actions and negative reactions[J]. Adv Wound Care (New Rochelle), 2013, 2(7):379-388.
|
15 |
Danielsen PL, Holst AV, Maltesen HR, et al. Matrix metalloproteinase-8 overexpression prevents proper tissue repair[J].Surgery, 2011,150(5):897-906.
|
16 |
Sim SL, Kumari S, Kaur S, et al. Macrophages in skin wounds:Functions and therapeutic potential[J]. Biomolecules, 2022,12(11):1659.doi:10.3390/biom12111659.
|
17 |
Farabi B, Roster K, Hirani R, et al. The efficacy of stem cells in wound healing: asystematic review[J]. Int J Mol Sci, 2024, 25(5):3006.doi:10.3390/ijms25053006.
|
18 |
Shi Y, Wang S, Zhang W, et al. Bone marrow mesenchymal stem cells facilitate diabetic wound healing through the restoration of epidermal cell autophagy via the HIF-1α/TGF-β1/SMAD pathway[J]. Stem Cell Res Ther, 2022, 13(1):314. doi: 10.1186/s13287-022-02996-9.
|
19 |
Brazil JC, Quiros M, Nusrat A, et al. Innate immune cell-epithelial crosstalk during wound repair[J]. J Clin Invest, 2019, 129(8):2983-2993.
|
20 |
Zhu S, Yu Y, Ren Y, et al. The emerging roles of neutrophil extracellular traps in wound healing[J]. Cell Death Dis, 2021, 12(11):984. doi:10.1038/s41419-021-04294-3.
|
21 |
Shang Q, Chu Y, Li Y, et al. Adipose-derived mesenchymal stromal cells promote corneal wound healing by accelerating the clearance of neutrophils in cornea[J]. Cell Death Dis, 2020, 11(8):707. doi:10.1038/s41419-020-02914-y.
|
22 |
Zhang Z, Tian H, Yang C, et al. Mesenchymal stem cells promote the resolution of cardiac inflammation after ischemia reperfusion via enhancing efferocytosis of neutrophils[J]. J Am Heart Assoc, 2020,9(5):e014397. doi:10.1161/JAHA.119.014397.
|
23 |
Viola A, Munari F, Sánchez-Rodríguez R, et al. The metabolic signature of macrophage responses[J]. Front Immunol, 2019, 10:1462.doi: 10.3389/fimmu.2019.01462.
|
24 |
Wang J, Li J, Yin L, et al. MSCs promote the efferocytosis of large peritoneal macrophages to eliminate ferroptotic monocytes/macrophages in the injured endometria[J]. Stem Cell Res Ther, 2024,15(1):127. doi:10.1186/s13287-024-03742-z.
|
25 |
Liu C, Xu Y, Lu Y, et al. Mesenchymal stromal cells pretreated with proinflammatory cytokines enhance skin wound healing via IL-6-dependent M2 polarization[J]. Stem Cell Res Ther, 2022, 13(1):414.doi: 10.1186/s13287-022-02934-9.
|
26 |
Danon D, Kowatch MA, Roth GS. Promotion of wound repair in old mice by local injection of macrophages[J]. Proc Natl Acad Sci USA,1989, 86(6):2018-2020.
|
27 |
Lucas T, Waisman A, Ranjan R, et al. Differential roles of macrophages in diverse phases of skin repair[J]. J Immunol, 2010, 184(7):3964-3977.
|
28 |
Zhang S, Chen L, Zhang G, et al. Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages[J]. Stem Cell Res Ther, 2020, 11(1):39. doi: 10.1186/s13287-020-1561-x.
|
29 |
Sun Y, Song L, Zhang Y, et al. Adipose stem cells from type 2 diabetic mice exhibit therapeutic potential in wound healing[J]. Stem Cell Res Ther, 2020, 11(1):298. doi: 10.1186/s13287-020-01817-1.
|
30 |
Takahashi H, Ohnishi S, Yamamoto Y, et al. Topical application of conditioned medium from hypoxically cultured amnion-derived mesenchymal stem cells promotes wound healing in diabetic mice[J].Plast Reconstr Surg, 2021, 147(6):1342-1352.
|
31 |
Sharifiaghdam M, Shaabani E, Faridi-Majidi R, et al. Macrophages as a therapeutic target to promote diabetic wound healing[J]. Mol Ther,2022, 30(9):2891-2908.
|
32 |
Louiselle AE, Niemiec SM, Zgheib C, et al. Macrophage polarization and diabetic wound healing[J]. Transl Res, 2021, 236:109-116.
|
33 |
da Costa Manso GM, Elias-Oliveira J, Guimarães JB, et al. Xenogeneic mesenchymal stem cell biocurative improves skin wounds healing in diabetic mice by increasing mast cells and the regenerative profile[J].Regen Ther, 2023, 22:79-89.
|
34 |
Di G, Du X, Qi X, et al. Mesenchymal stem cells promote diabetic corneal epithelial wound healing through TSG-6-dependent stem cell activation and macrophage switch[J]. Invest Ophthalmol Vis Sci, 2017,58(10):4344-4354.
|
35 |
Zhang S, Chen L, Zhang G, et al. Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages[J]. Stem Cell Res Ther, 2020, 11(1):39. doi: 10.1186/s13287-020-1561-x.
|
36 |
Whelan DS, Caplice NM, Clover AJP. Mesenchymal stromal cell derived CCL2 is required for accelerated wound healing[J]. Sci Rep,2020, 10(1):2642. doi: 10.1038/s41598-020-59174-1.
|
37 |
Zomer HD, da Silva Jeremias T, Ratner B, et al. Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing[J].Cytotherapy, 2020, 22(5):247-260.
|
38 |
Cho DI, Kim MR, Jeong H, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrowderived macrophages[J]. Exp Mol Med, 2014, 46(1):e70. doi:10.1038/emm.2013.135.
|
39 |
Zhang QZ, Su WR, Shi SH, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing[J]. Stem cells, 2010, 28(10):1856-1868.
|
40 |
Jiao Y, Niu Y, Chen X, et al. Gelatin microspheres loaded with Wharton's Jelly mesenchymal stem cells promote acute full-thickness skin wound healing and regeneration in mice[J]. Adv Wound Care (New Rochelle), 2023, 12(7):371-386.
|
41 |
Ouyang L, Qiu D, Fu X, et al. Overexpressing HPGDS in adiposederived mesenchymal stem cells reduces inflammatory state and improves wound healing in type 2 diabetic mice[J]. Stem Cell Res Ther, 2022, 13(1):395. doi: 10.1186/s13287-022-03082-w.
|
42 |
Linard C, Tissedre F, Busson E, et al. Therapeutic potential of gingival fibroblasts for cutaneous radiation syndrome: comparison to bone marrow-mesenchymal stem cell grafts[J]. Stem Cells Dev, 2015,24(10):1182-1193.
|
43 |
Jiang D, Qi Y, Walker NG, et al. The effect of adipose tissue derived MSCs delivered by a chemically defined carrier on full-thickness cutaneous wound healing[J]. Biomaterials, 2013, 34(10):2501-2515.
|
44 |
Bai H, Kyu-Cheol N, Wang Z, et al. Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers[J]. J Tissue Eng,2020, 11:2041731420947242. doi: 10.1177/2041731420947242.
|
45 |
Gao M, Guo H, Dong X, et al. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement[J]. Front Pharmacol, 2024, 15:1345779.doi: 10.3389/fphar.2024.1345779.
|
46 |
Kim MS, Kong D, Han M, et al. Canine amniotic membranederived mesenchymal stem cells ameliorate atopic dermatitis through regeneration and immunomodulation[J]. Vet Res Commun, 2023,47(4):2055-2070.
|
47 |
Xu W, Yang Y, Li N, et al. Interaction between mesenchymal stem cells and immune cells during bone injury repair[J]. Int J Mol Sci, 2023,24(19):14484. doi: 10.3390/ijms241914484.
|
48 |
Enciso N, Avedillo L, Fermín ML, et al. Regenerative potential of allogeneic adipose tissue-derived mesenchymal cells in canine cutaneous wounds[J]. Acta Vet Scand, 2020, 62:13. doi: 10.1186/s13028-020-0511-z.
|
49 |
Li B, Qian L, Pi L, et al. A therapeutic role of exosomal lncRNA H19 from adipose mesenchymal stem cells in cutaneous wound healing by triggering macrophage M2 polarization[J]. Cytokine, 2023,165:156175. doi: 10.1016/j.cyto.2023.156175.
|
50 |
Teng L, Maqsood M, Zhu M, et al. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate diabetic wound healing via promoting M2 macrophage polarization, angiogenesis,and collagen deposition[J]. Int J Mol Sci, 2022, 23(18):10421. doi:10.3390/ijms231810421.
|
51 |
Wang Y, Fang J, Liu B, et al. Reciprocal regulation of mesenchymal stem cells and immune responses[J]. Cell stem cell, 2022, 29(11):1515-1530.
|
52 |
Chen Z, Jin M, He H, et al. Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing[J]. J Orthop Translat,2023, 39:63-73.
|
53 |
Sesia SB, Duhr R, Medeiros da Cunha C, et al. Anti-Inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells[J]. J Cell Physiol, 2015, 230(6):1258-1269.
|