切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (06) : 361 -366. doi: 10.3877/cma.j.issn.2095-1221.2024.06.006

综述

间充质干细胞通过调控免疫机制促进创面愈合的研究进展
王大伟1, 陆雅斐1, 皇甫少华1, 陈玉婷1, 陈澳1, 江滨1,()   
  1. 1.210006 南京中医药大学附属南京中医院肛肠中心
  • 收稿日期:2024-03-20 出版日期:2024-12-01
  • 通信作者: 江滨

Advances in immune modulating mechanisms of mesenchymal stem cells in promoting wound healing

Dawei Wang1, Yafei Lu1, Shaohua Huangfu1, Yuting Chen1, Ao Chen1, Bin Jiang1,()   

  1. 1.Colorectal Disease Center of Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210006, China
  • Received:2024-03-20 Published:2024-12-01
  • Corresponding author: Bin Jiang
引用本文:

王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.

Dawei Wang, Yafei Lu, Shaohua Huangfu, Yuting Chen, Ao Chen, Bin Jiang. Advances in immune modulating mechanisms of mesenchymal stem cells in promoting wound healing[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(06): 361-366.

创面愈合是复杂精密的生物学过程,感染、异物、坏死和合并症等多种体内外因素均会影响到创面愈合的速度与质量。其中,机体免疫调控机制紊乱是导致创面不愈的主要影响因素。因此,对于创面愈合来说,有效调节机体免疫机制以调控炎症对创面愈合至关重要。间充质干细胞 (MSCs)是一类起源于中胚层的多能干细胞,由于其免疫调节及旁分泌作用被广泛应用于多种临床疾病的治疗。除自身增殖与分化能力外,MSCs也可以通过调节免疫细胞的增殖、分化和凋亡等,包括调控巨噬细胞极化,抑制中性粒细胞增殖等,控制创面的炎性环境,促进创面有序愈合。本文就MSCs通过影响机体免疫细胞,进一步调控机体免疫机制促进创面愈合做一概述。

Wound healing is a complex and sophisticated biological process, the speed and quality of which could be affected by a variety of external and internal factors, such as infection,foreign bodies, necrosis and comorbidities. Among them, disorders in the body′s immune regulatory mechanism are the main factors that lead to wound healing. Therefore, effective regulation of the body′s immune system to control inflammation is essential for wound healing. Mesenchymal stem cells (MSCs) are a class of pluripotent stem cells originating from the mesoderm, which are widely used in the treatment of various clinical diseases due to their immunomodulatory and paracrine effects. In addition to their own proliferation and differentiation abilities, MSCs can also control the inflammatory environment of wounds and promote wound healing by regulating the proliferation,differentiation, and apoptosis of immune cells, including the regulation of macrophage polarisation and inhibition of neutrophil proliferation. In conclusion, this review provides an overview of MSCs′ability to promote wound healing by influencing the body′s immune cells and further regulating the body′s immune mechanisms.

图1 间充质干细胞调控创面炎症阶段的免疫细胞 (本图由Figdraw绘制) 注:TSG-6为肿瘤坏死因子α刺激基因-6;IL-10为白介素-10;PGE-2为前列腺素E2;Exosomes为外泌体
表1 有关MSCs调控巨噬细胞极化的动物实验研究
1
Rodrigues M, Kosaric N, Bonham CA, et al. Wound healing: a cellular perspective[J]. Physiol Rev, 2019, 99(1):665-706.
2
Guo Q, Li W, Xie R et al. Visualization of the relationship between macrophage and wound healing from the perspective of bibliometric analysis[J]. Int Wound J, 2024, 21(4):e14597.
3
Raziyeva K, Kim Y, Zharkinbekov Z, et al. Immunology of acute and chronic wound healing[J]. Biomolecules, 2021, 11(5):700. doi:10.3390/biom11050700.
4
Riedl J, Popp C, Eide C, et al. Mesenchymal stromal cells in wound healing applications: role of the secretome, targeted delivery and impact on recessive dystrophic epidermolysis bullosa treatment[J].Cytotherapy, 2021, 23(11):961-973.
5
谢思雨,路君. 间充质干细胞疗法在肾移植中的应用:一个未完待续的故事 [J]. 器官移植, 2024, 15 (3):398-405.
6
Jiang W, Xu J. Immune modulation by mesenchymal stem cells[J]. Cell Prolif, 2020, 53(1):e12712. doi: 10.1111/cpr.12712.
7
Li J, Liu Y, Zhang R, et al. Insights into the role of mesenchymal stem cells in cutaneous medical aesthetics: from basics to clinics[J]. Stem Cell Res Ther, 2024, 15(1):169. doi:10.1186/s13287-024-03774-5.
8
Jiang L, Lu J, Chen Y, et al. Mesenchymal stem cells: An efficient cell therapy for tendon repair[J]. Int J Mol Med, 2023, 52(2):70. doi:10.3892/ijmm.2023.5273.
9
Shi Y, Su J, Roberts AI, et al. How mesenchymal stem cells interact with tissue immune responses[J]. Trends Immunol, 2012, 33(3):136-143.
10
Huang Y, Wu Q, Tam PKH. Immunomodulatory mechanisms of mesenchymal stem cells and their potential clinical applications[J]. Int J Mol Sci, 2022, 23(17):10023. doi: 10.3390/ijms231710023.
11
Liu C, Lu Y, Du P, et al. Mesenchymal stem cells pretreated with proinflammatory cytokines accelerate skin wound healing by promoting macrophages migration and M2 polarization[J]. Regen Ther, 2022,21:192-200.
12
秦菊,江滨,周春根.脂肪MSCs治疗复杂性肛瘘的机制探讨[J].医学研究杂志,2022,51(6):181-183,167.
13
Zhao H, Huang J, Li Y, et al. ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J]. Biomaterials, 2020,258:120286. doi: 10.1016/j.biomaterials.2020.120286.
14
Wilgus TA, Roy S, McDaniel JC. Neutrophils and wound repair:positive actions and negative reactions[J]. Adv Wound Care (New Rochelle), 2013, 2(7):379-388.
15
Danielsen PL, Holst AV, Maltesen HR, et al. Matrix metalloproteinase-8 overexpression prevents proper tissue repair[J].Surgery, 2011,150(5):897-906.
16
Sim SL, Kumari S, Kaur S, et al. Macrophages in skin wounds:Functions and therapeutic potential[J]. Biomolecules, 2022,12(11):1659.doi:10.3390/biom12111659.
17
Farabi B, Roster K, Hirani R, et al. The efficacy of stem cells in wound healing: asystematic review[J]. Int J Mol Sci, 2024, 25(5):3006.doi:10.3390/ijms25053006.
18
Shi Y, Wang S, Zhang W, et al. Bone marrow mesenchymal stem cells facilitate diabetic wound healing through the restoration of epidermal cell autophagy via the HIF-1α/TGF-β1/SMAD pathway[J]. Stem Cell Res Ther, 2022, 13(1):314. doi: 10.1186/s13287-022-02996-9.
19
Brazil JC, Quiros M, Nusrat A, et al. Innate immune cell-epithelial crosstalk during wound repair[J]. J Clin Invest, 2019, 129(8):2983-2993.
20
Zhu S, Yu Y, Ren Y, et al. The emerging roles of neutrophil extracellular traps in wound healing[J]. Cell Death Dis, 2021, 12(11):984. doi:10.1038/s41419-021-04294-3.
21
Shang Q, Chu Y, Li Y, et al. Adipose-derived mesenchymal stromal cells promote corneal wound healing by accelerating the clearance of neutrophils in cornea[J]. Cell Death Dis, 2020, 11(8):707. doi:10.1038/s41419-020-02914-y.
22
Zhang Z, Tian H, Yang C, et al. Mesenchymal stem cells promote the resolution of cardiac inflammation after ischemia reperfusion via enhancing efferocytosis of neutrophils[J]. J Am Heart Assoc, 2020,9(5):e014397. doi:10.1161/JAHA.119.014397.
23
Viola A, Munari F, Sánchez-Rodríguez R, et al. The metabolic signature of macrophage responses[J]. Front Immunol, 2019, 10:1462.doi: 10.3389/fimmu.2019.01462.
24
Wang J, Li J, Yin L, et al. MSCs promote the efferocytosis of large peritoneal macrophages to eliminate ferroptotic monocytes/macrophages in the injured endometria[J]. Stem Cell Res Ther, 2024,15(1):127. doi:10.1186/s13287-024-03742-z.
25
Liu C, Xu Y, Lu Y, et al. Mesenchymal stromal cells pretreated with proinflammatory cytokines enhance skin wound healing via IL-6-dependent M2 polarization[J]. Stem Cell Res Ther, 2022, 13(1):414.doi: 10.1186/s13287-022-02934-9.
26
Danon D, Kowatch MA, Roth GS. Promotion of wound repair in old mice by local injection of macrophages[J]. Proc Natl Acad Sci USA,1989, 86(6):2018-2020.
27
Lucas T, Waisman A, Ranjan R, et al. Differential roles of macrophages in diverse phases of skin repair[J]. J Immunol, 2010, 184(7):3964-3977.
28
Zhang S, Chen L, Zhang G, et al. Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages[J]. Stem Cell Res Ther, 2020, 11(1):39. doi: 10.1186/s13287-020-1561-x.
29
Sun Y, Song L, Zhang Y, et al. Adipose stem cells from type 2 diabetic mice exhibit therapeutic potential in wound healing[J]. Stem Cell Res Ther, 2020, 11(1):298. doi: 10.1186/s13287-020-01817-1.
30
Takahashi H, Ohnishi S, Yamamoto Y, et al. Topical application of conditioned medium from hypoxically cultured amnion-derived mesenchymal stem cells promotes wound healing in diabetic mice[J].Plast Reconstr Surg, 2021, 147(6):1342-1352.
31
Sharifiaghdam M, Shaabani E, Faridi-Majidi R, et al. Macrophages as a therapeutic target to promote diabetic wound healing[J]. Mol Ther,2022, 30(9):2891-2908.
32
Louiselle AE, Niemiec SM, Zgheib C, et al. Macrophage polarization and diabetic wound healing[J]. Transl Res, 2021, 236:109-116.
33
da Costa Manso GM, Elias-Oliveira J, Guimarães JB, et al. Xenogeneic mesenchymal stem cell biocurative improves skin wounds healing in diabetic mice by increasing mast cells and the regenerative profile[J].Regen Ther, 2023, 22:79-89.
34
Di G, Du X, Qi X, et al. Mesenchymal stem cells promote diabetic corneal epithelial wound healing through TSG-6-dependent stem cell activation and macrophage switch[J]. Invest Ophthalmol Vis Sci, 2017,58(10):4344-4354.
35
Zhang S, Chen L, Zhang G, et al. Umbilical cord-matrix stem cells induce the functional restoration of vascular endothelial cells and enhance skin wound healing in diabetic mice via the polarized macrophages[J]. Stem Cell Res Ther, 2020, 11(1):39. doi: 10.1186/s13287-020-1561-x.
36
Whelan DS, Caplice NM, Clover AJP. Mesenchymal stromal cell derived CCL2 is required for accelerated wound healing[J]. Sci Rep,2020, 10(1):2642. doi: 10.1038/s41598-020-59174-1.
37
Zomer HD, da Silva Jeremias T, Ratner B, et al. Mesenchymal stromal cells from dermal and adipose tissues induce macrophage polarization to a pro-repair phenotype and improve skin wound healing[J].Cytotherapy, 2020, 22(5):247-260.
38
Cho DI, Kim MR, Jeong H, et al. Mesenchymal stem cells reciprocally regulate the M1/M2 balance in mouse bone marrowderived macrophages[J]. Exp Mol Med, 2014, 46(1):e70. doi:10.1038/emm.2013.135.
39
Zhang QZ, Su WR, Shi SH, et al. Human gingiva-derived mesenchymal stem cells elicit polarization of m2 macrophages and enhance cutaneous wound healing[J]. Stem cells, 2010, 28(10):1856-1868.
40
Jiao Y, Niu Y, Chen X, et al. Gelatin microspheres loaded with Wharton's Jelly mesenchymal stem cells promote acute full-thickness skin wound healing and regeneration in mice[J]. Adv Wound Care (New Rochelle), 2023, 12(7):371-386.
41
Ouyang L, Qiu D, Fu X, et al. Overexpressing HPGDS in adiposederived mesenchymal stem cells reduces inflammatory state and improves wound healing in type 2 diabetic mice[J]. Stem Cell Res Ther, 2022, 13(1):395. doi: 10.1186/s13287-022-03082-w.
42
Linard C, Tissedre F, Busson E, et al. Therapeutic potential of gingival fibroblasts for cutaneous radiation syndrome: comparison to bone marrow-mesenchymal stem cell grafts[J]. Stem Cells Dev, 2015,24(10):1182-1193.
43
Jiang D, Qi Y, Walker NG, et al. The effect of adipose tissue derived MSCs delivered by a chemically defined carrier on full-thickness cutaneous wound healing[J]. Biomaterials, 2013, 34(10):2501-2515.
44
Bai H, Kyu-Cheol N, Wang Z, et al. Regulation of inflammatory microenvironment using a self-healing hydrogel loaded with BM-MSCs for advanced wound healing in rat diabetic foot ulcers[J]. J Tissue Eng,2020, 11:2041731420947242. doi: 10.1177/2041731420947242.
45
Gao M, Guo H, Dong X, et al. Regulation of inflammation during wound healing: the function of mesenchymal stem cells and strategies for therapeutic enhancement[J]. Front Pharmacol, 2024, 15:1345779.doi: 10.3389/fphar.2024.1345779.
46
Kim MS, Kong D, Han M, et al. Canine amniotic membranederived mesenchymal stem cells ameliorate atopic dermatitis through regeneration and immunomodulation[J]. Vet Res Commun, 2023,47(4):2055-2070.
47
Xu W, Yang Y, Li N, et al. Interaction between mesenchymal stem cells and immune cells during bone injury repair[J]. Int J Mol Sci, 2023,24(19):14484. doi: 10.3390/ijms241914484.
48
Enciso N, Avedillo L, Fermín ML, et al. Regenerative potential of allogeneic adipose tissue-derived mesenchymal cells in canine cutaneous wounds[J]. Acta Vet Scand, 2020, 62:13. doi: 10.1186/s13028-020-0511-z.
49
Li B, Qian L, Pi L, et al. A therapeutic role of exosomal lncRNA H19 from adipose mesenchymal stem cells in cutaneous wound healing by triggering macrophage M2 polarization[J]. Cytokine, 2023,165:156175. doi: 10.1016/j.cyto.2023.156175.
50
Teng L, Maqsood M, Zhu M, et al. Exosomes derived from human umbilical cord mesenchymal stem cells accelerate diabetic wound healing via promoting M2 macrophage polarization, angiogenesis,and collagen deposition[J]. Int J Mol Sci, 2022, 23(18):10421. doi:10.3390/ijms231810421.
51
Wang Y, Fang J, Liu B, et al. Reciprocal regulation of mesenchymal stem cells and immune responses[J]. Cell stem cell, 2022, 29(11):1515-1530.
52
Chen Z, Jin M, He H, et al. Mesenchymal stem cells and macrophages and their interactions in tendon-bone healing[J]. J Orthop Translat,2023, 39:63-73.
53
Sesia SB, Duhr R, Medeiros da Cunha C, et al. Anti-Inflammatory/tissue repair macrophages enhance the cartilage-forming capacity of human bone marrow-derived mesenchymal stromal cells[J]. J Cell Physiol, 2015, 230(6):1258-1269.
[1] 李煜, 王鹏, 陆翮, 冯蓉琴, 韩军涛. 采用低频脉冲电刺激治疗深Ⅱ度烧伤创面的临床观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 474-478.
[2] 李亚龙, 王星童, 申传安. 异体富血小板血浆在创面修复中的临床应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 541-545.
[3] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[4] 周清洁, 蒋萍萍, 梁云, 李琰. 脂质水胶体技术在创面愈合中的应用进展[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 360-363.
[5] 刘欢, 邢皓, 常正奇, 张记. 机械敏感性离子通道蛋白Piezo1在感染相关疾病中的研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(05): 263-269.
[6] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[7] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[8] 梅杰, 徐瑞, 蔡芸, 朱一超. 纤维化对肿瘤浸润免疫细胞的影响——“硬冷肿瘤”的形成[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 257-263.
[9] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[10] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[11] 张杰, 田广磊, 陈雄. 基于生物信息学分析探讨肝癌BRD4与预后关系及其ceRNA调控网络构建[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 568-576.
[12] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[13] 林玲, 李京儒, 沈瑞华, 林惠, 乔晞. 基于生物信息学分析小鼠急性肾损伤和急性肺损伤的枢纽基因[J/OL]. 中华肾病研究电子杂志, 2024, 13(03): 134-144.
[14] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[15] 孙冠超, 万军, 石卉. IgG相关食物不耐受与肠道免疫微环境相关性的研究进展[J/OL]. 中华胃肠内镜电子杂志, 2024, 11(03): 200-203.
阅读次数
全文


摘要