切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (06) : 351 -360. doi: 10.3877/cma.j.issn.2095-1221.2024.06.005

综述

间充质干细胞促进胰岛移植效果的研究进展
傅红兴1, 王植楷2, 谢贵林3, 蔡娟娟4, 杨威1, 严盛1,()   
  1. 1.310003 杭州,浙江大学医学院附属第二医院肝胆胰外科
    2.310003 杭州,19104-5160 Pennsylvania, School of Arts and Sciences, University of Pennsylvania, Philadelphia, USA
    3.312099 绍兴,绍兴文理学院附属医院肝胆胰外科
    4.315020 宁波,宁波大学附属第一医院药学部
  • 收稿日期:2024-07-19 出版日期:2024-12-01
  • 通信作者: 严盛
  • 基金资助:
    国家自然科学基金( 82270684)浙江省医药卫生科技计划( 2024KY1738)宁波市自然科学基金(2021J248)

Advances in mesenchymal stem cells promoting the efficacy of islet transplantation

Hongxing Fu1, Zhikai Wang2, Guilin Xie3, Juanjuan Cai4, Wei Yang1, Sheng Yan,1()   

  1. 1.Department of Hepatobiliary Pancreatic Surgery, the Second Affiliated Hospital Zhejiang University School of Medicine, 310003 Hangzhou, China
    2.Pennsylvania, School of Arts and Sciences, University of Pennsylvania, Philadelphia 19104-5160,USA
    3.Department of Hepatobiliary Pancreatic Surgery,the Affiliated Hospital Shaoxing University School of Arts and Sciences, 312099 Shaoxing, China
    4.Department of Pharmacy,the First Affiliated Hospital of Ningbo University,Ningbo University,315020 Ningbo, China
  • Received:2024-07-19 Published:2024-12-01
  • Corresponding author: Sheng Yan
引用本文:

傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.

Hongxing Fu, Zhikai Wang, Guilin Xie, Juanjuan Cai, Wei Yang, Sheng Yan. Advances in mesenchymal stem cells promoting the efficacy of islet transplantation[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(06): 351-360.

胰岛移植是目前恢复内源性胰岛素分泌和控制血糖最有效的方法,但仍存在胰岛移植物存活率低、长期功能下降和免疫排异等问题。间充质干细胞 (MSCs)由于能分泌含多种细胞因子的细胞外基质 (ECM),或直接通过细胞间相互作用,促进细胞损伤的修复、血管再生和抗炎作用而备受关注。将MSCs应用于胰岛移植,具有来源和免疫原性低等优势,还可有效解决胰岛移植物存活率低、功能差和免疫反应等问题,因此已成为胰岛移植领域的研究热点。本文综述了MSCs在胰岛移植中的研究进展,包括MSCs及其分泌的细胞因子在胰岛体外培养、体内移植研究和临床应用中的作用以及应用MSCs过程中存在的问题,旨在进一步促进MSCs在临床胰岛移植中的应用。

Islet transplantation is the most effective method to restore endogenous insulin secretion and control blood glucose, but there are still problems such as low survival rate, decline of long-term function and immune rejection of islet grafts. Mesenchymal stem cells (MSCs) have attracted much attention due to their ability to secrete the extracellular matrix (ECM) with a variety of cytokines, or promoting the restoration of cellular injury, angiogenesis and anti-inflammatory effects through direct cell-cell interaction. MSCs for islet transplantation has the advantages of wide source,low immunogenicity, and can effectively solve the problems of low survival rate, poor function and immune response of islet grafts, so they has become a research hotspot in islet transplantation. This paper reviews progress in MSCs in islet transplantation, including the role of MSCs and their secreted cytokines in islet culture in vitro, transplantation research in vivo and clinical application, as well as the problems in the application of MSCs, aiming to further promote the application of MSCs in clinical islet transplantation.

表1 不同胰岛-MSCs共移植途径的比较
表2 不同来源MSCs之间的特性差异
BM-MSCs UC-MSCs AD-MSCs
来源 骨髓基质 脐带华通氏胶 脂肪组织
获取时间 任何时候 婴儿出生时 任何时候
分离操作 (1)有侵入性、痛苦,老年人体内难以提取;
(2)与潜在的供体部位发病率相关;
(3)产量低
(1)无创、无痛;
(2)酶消化;
(3)产量极低[112-113]
(1)微创、安全、技术完善;
(2)酶消化;含有其他细胞的混合物;
(3)产量高,无需体外扩增[114]
增殖能力和分化潜能 (1)增殖能力相对最低;
(2)成骨分化相关基因表达相对较高;
(3)基因上稳定;
(4)分化潜能上有争议
(1)增殖能力相对最高;
(2)与血管生成相关的基因相对表达更高;
(3)在长期培养中保持表型和遗传稳定性;
(4)扩增时间短,高增殖性,克隆性强
(1)增殖能力高;
(2)与血管生成相关的基因相对高表达;
(3)在基因和形态上保持稳定;
(4)在长期培养中保持分化潜能
免疫表型和免疫调节活性 (1)低免疫原性;
(2)高表达CD106、CD49f、Podxl,不表达CD34;
(3)对Ig产生的抑制程度较小;
(4)对防止血液单核细胞转化为树突状细胞和成熟树突状细胞共刺激分子的表达影响较小[115]
(1)低免疫原性;
(2)不表达CD34;
(3)通过刺激B细胞增殖和B细胞免疫球蛋白产生的旁分泌作用;
(4)通过诱导T细胞凋亡和细胞周期阻滞来抑制效应T细胞[116]
(1)低免疫原性;
(2)表达CD49d、CD54,不表达CD106、CD49f、Podxl;
(3)更抑制Ig的产生;
(4)阻止单核细胞转化为树突状细胞,并从成熟的树突状细胞中表达共刺激分子,即更有效的免疫抑制因子[115]
1
American Diabetes Association Professional Practice Committee.2.Diagnosis and classiffcation of diabetes: standards of care in Diabetes- 2024[J]. Diabetes Care, 2024, 47(Suppl 1):S20-S42.
2
American Diabetes Association Professional Practice Committee.10.Cardiovascular disease and risk management: standards of care in diabetes-2024[J].Diabetes Care, 2024, 47(Suppl 1):S179-S218.
3
McCoy RG, Van Houten HK, Ziegenfuss JY, et al. Increased mortality of patients with diabetes reporting severe hypoglycemia[J]. Diabetes Care, 2012, 35(9):1897-1901.
4
中华医学会器官移植学分会.胰岛移植临床技术操作规范(2019版)[J]. 器官移植, 2019, 10(6): 621-627.
5
Bellin MD, Ramanathan K, Chinnakotla S. Total pancreatectomy with islet auto-transplantation: surgical procedure, outcomes, and quality of life[J]. Adv Surg, 2023, 57(1):15-30.
6
FDA approves first cellular therapy to treat patients with type 1 diabetes. U.S[N]. Food and Drug Administration, June 28, 2023.
7
Food and Drug Administration.FDA approves first cellular therapy to treat patients with type 1 diabetes[N]. U.S.FDA Press Release, 2023-06-28.
8
O′Connell PJ, Holmes-Walker DJ, Goodman D, et al. Multicenter Australian trial of islet transplantation: improving accessibility and outcomes[J]. Am J Transplant, 2013, 13(7):1850-1858.
9
Rita B, Knoll MF, Knoll CA, et al.The future of islet transplantation is now[J]. Front Med (Lausanne), 2018, 5:202.
10
Hering BJ, Clarke WR, Bridges ND, et al. Phase 3 trial of transplantation of human islets in type 1 diabetes complicated by severe hypoglycemia[J]. Diabetes Care, 2016, 39(7):1230-1240.
11
Ricordi C, Strom TB. Clinical islet transplantation: advances and immunological challenges[J]. Nat Rev Immunol, 2004, 4(4):259-268.
12
Chen QD, Liu L, Zhao XH, et al.Challenges and opportunities in the islet transplantation microenvironment: a comprehensive summary of inflammatory cytokine, immune cells, and vascular endothelial cells[J].Front Immunol, 2023, 14:1293762.
13
Khatri R, Petry SF, Linn T. Intrapancreatic MSC transplantation facilitates pancreatic islet regeneration[J]. Stem Cell Res Ther, 2021,12(1):121.
14
Li XY, Wu SY, Leung PS. Human fetal bone marrow-derived mesenchymal stem cells promote the proliferation and differentiation of pancreatic progenitor cells and the engraftment function of islet-like cell clusters[J]. Int J Mol Sci, 2019, 20(17):4083.
15
Chen J, Chen J, Cheng Y, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation[J]. Stem Cell Res Ther, 2020, 11(1):97.
16
Moll G, Drzeniek N, Kamhieh-Milz J, et al. MSC therapies for COVID-19: importance of patient coagulopathy, thromboprophylaxis,cell product quality and mode of delivery for treatment safety and efficacy[J]. Front Immunol, 2020, 11:1091.
17
Liu C, Zhang W, Peradze N, et al. Mesenchymal stem cell (MSC)-mediated survival of insulin producing pancreatic β-cells during cellular stress involves signalling via Akt and ERK1/2[J]. Mol Cell Endocrinol, 2018, 473:235-244.
18
Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The international society for cellular therapy position statement[J]. Cytotherapy, 2006, 8(4):315-317.
19
Ma C, Zhai Y, Li CT, et al. Translating mesenchymal stem cell and their exosome research into GMP compliant advanced therapy products:promises, problems and prospects[J]. Med Res Rev, 2024, 44(3):919-938.
20
Le Blanc K, Rasmusson I, Sundberg B, et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells[J]. Lancet, 2004, 363(9419):1439-1441.
21
Bolanos-Meade J, Vogelsang GB. Novel strategies for steroid- refractory acute graft-versus-host disease[J]. Curr Opin Hematol, 2005, 12(1):40-44.
22
Zappia E, Casazza S, Pedemonte E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy[J]. Blood, 2005, 106(5):1755-1761.
23
Augello A, Tasso R, Negrini SM, et al. Cell therapy using allogeneic bone marrow mesenchymal stem cells prevents tissue damage in collagen-induced arthritis[J]. Arthritis Rheum, 2007, 56(4):1175-1186.
24
Parekkadan B, Tilles AW, Yarmush ML. Bone marrow-derived mesenchymal stem cells ameliorate autoimmune enteropathy independently of regulatory T cells[J]. Stem Cells, 2008, 26(7):1913-1919.
25
Hayashi Y, Tsuji S, Tsujii M, et al. Topical implantation of mesenchymal stem cells has beneficial effects on healing of experimental colitis in rats[J]. J Pharmacol Exp Ther, 2008, 326(2):523-531.
26
Zang L, Li Y, Hao H, et al. Efficacy and safety of umbilical cord- derived mesenchymal stem cells in Chinese adults with type 2 diabetes: a single-center, double-blinded, randomized,placebo- controlled phase II trial[J]. Stem Cell Res Ther, 2022, 13(1):180.
27
Zang L, Li Y, Hao H, et al. Efficacy of umbilical cord-derived mesenchymal stem cells in the treatment of type 2 diabetes assessed by retrospective continuous glucose monitoring[J]. Stem Cells Translational Medicine, 2023, 12(12):775-782.
28
Bartholomew A, Sturgeon C, Siatskas M, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo[J]. Exp Hematol, 2002, 30(1):42-48.
29
Casiraghi F, Azzollini N, Cassis P, et al. Pretransplant infusion of mesenchymal stem cells prolongs the survival of a semiallogeneic heart transplant through the generation of regulatory T cells[J]. J Immunol,2008, 181(6):3933-3946.
30
朱淑芳, 曲泽澎, 陆赢, 等.转基因猪骨髓间充质干细胞的分离及与猪胰岛的共培养研究[J].器官移植, 2024, 15(1): 55-62.
31
Hemattia P, Kima J, Stein AP, et al. Potential role of mesenchymal stromal cells in pancreatic islet transplantation[J]. Transplantation Reviews, 2013, 27(1):21-29.
32
Arzouni AA, Vargas-Seymour A, Nardi N, et al. Using mesenchymal stromal cells in islet transplantation[J].Stem Cells Transl Med, 2018,7(8):559-563.
33
Park KS, Kim YS, Kim JH, et al. Trophic molecules derived from human mesenchymal stem cells enhance survival, function, and angiogenesis of isolated islets after transplantation[J]. Transplantation,2010, 89(5):509-517.
34
Rackham CL, Dhadda PK, LeLay AM, et al. Preculturing islets with adipose-derived mesenchymal stromal cells is an effective strategy for improving transplantation efficiencyat the clinically preferred intraportal site[J]. Cell Med, 2014, 7(1):37-47.
35
Jung EJ, Kim SC, Wee YM, et al. Bone marrow-derived mesenchymal stromal cells support rat pancreatic islet survival and insulinsecretory function in vitro[J]. Cytotherapy, 2011, 13(1):19-29.
36
Rackham CL, Dhadda PK, Chagastelles PC, et al. Pre-culturing islets with mesenchymal stromal cells using a direct contact configuration is beneficial for transplantation outcome in diabetic mice[J]. Cytotherapy,2013, 15(4):449-459.
37
Scuteri A, Donzelli E, Rodriguez-Menendez V, et al. A double mechanism for the mesenchymal stem cells′ positive effect on pancreatic islets[J]. PLoS One, 2014, 9(1): e84309.
38
Karaoz E, Ayhan S, Okçu A, et al. Bone marrow-derived mesenchymal stem cells co-cultured with pancreatic islets display β cell plasticity[J].J Tissue Eng Regen Med, 2011, 5(6):491-500.
39
Hynes RO. The extracellular matrix: not just pretty fibrils[J]. Science,2009, 326(5957): 1216-1219.
40
Fitzpatrick LE, McDevitt TC. Cell-derived matrices for tissue engineering and regenerative medicine applications[J]. Biomater Sci,2015, 3(1): 12-24.
41
Prewitz MC, Seib FP, von Bonin M, et al. Tightly anchored tissue- mimetic matricesas instructive stem cell microenvironments[J].Nat Methods, 2013, 10(8):788-794.
42
De Souza BM, Bouças AP, Oliveira FDS, et al. Effect of co-culture of mesenchymal stem/stromal cells with pancreatic islets on viabilityand function outcomes:a systematic review andmeta-analysis[J]. Islets,2017, 9(2):30-42.
43
Rackham CL, Vargas AE, Hawkes RG, et al. Annexin A1 is a key modulator of mesenchymal stromal cell-mediated improvements in islet function[J]. Diabetes, 2016, 65(1):129-139.
44
Ding Y, Xu D, Feng G, et al. Mesenchymal stem cells prevent the rejection of fully allogenic islet grafts by the immunosuppressive activity of matrix metalloproteinase-2 and -9[J]. Diabetes, 2009,58(8):1797-1806.
45
Arzouni AA, Vargas-Seymour A, Rackham CL, et al. Mesenchymal stromal cells improve human islet function through released products and extracellular matrix[J]. Clin Sci, 2017, 131(23):2835-2845.
46
Lavoie JR, Creskey MM, Muradia G, et al. Brief report: elastin microfibril interface 1 and integrin-linked protein kinase are novel markers of islet regenerative function in human multipotent mesenchymal stromal cells[J]. Stem cells, 2016, 34(8): 2249-2255.
47
Dunér P, Al-Amily IM, Soni A, et al. Adhesion G protein-coupled receptor G1 (ADGRG1/GPR56) and pancreatic β-cell function[J]. J Clin Endocrinol Metab, 2016, 101(12):4637-4645.
48
Chen T, Yuan J, Duncanson S, et al. Alginate encapsulant incorporating CXCL12 supports long-term allo-and xenoislet transplantation without systemic immune suppression[J]. Am J Transplant, 2015, 15(3):618-627.
49
WangL, Liu T, Liang R, et al.Mesenchymal stem cells ameliorate β cell dysfunction of human type 2 diabetic islets by reversing β cell dedifferentiation[J]. EBioMedicine, 2020, 51:102615.
50
Wei L, Zhang L, Yan L, et al. Protective effect of mesenchymal stem cells on isolated islets survival and against hypoxia associated with the HIF-1α/PFKFB3 pathway[J]. Cell Transplant, 2022, 31:9636897211073127.
51
Rackham CL, Hubber EL, Czajka A, et al. Optimizing beta cell function through mesenchymal stromal cell-mediated mitochondria transfer[J]. Stem Cells, 2020, 38(4):574-584.
52
Kuljanin M, Elgamal RM, Bell GI, et al. Quantitative proteomics evaluation of human multipotent stromal cell for β cell regeneration[J].Cell Rep, 2018, 25(9):2524-2536.e4.
53
Kuljanin M, Elgamal RM, Bell GI, et al. Human multipotent stromal cell secreted effectors accelerate islet regeneration[J]. Stem Cells,2019, 37(4):516-528.
54
Ben Nasr M, Vergani A, Avruch J, et al. Co-transplantation of autologous MSCs delays islet allograft rejection and generates a local immunoprivileged site[J]. Acta Diabetol, 2015, 52(5):917-927.
55
Gao X, Song L, Shen K, et al. Bone marrow mesenchymal stem cells promote the repair of islets from diabetic mice through paracrine actions[J]. Mol Cell Endocrinol, 2014, 388(1-2):41-50.
56
Xu T, Lv Z, Chen Q, et al. Vascular endothelial growth factor over- expressed mesenchymal stem cells-conditioned media ameliorate palmitate-induced diabetic endothelial dysfunction through PI-3K/AKT/m-TOR/eNOS and p38/MAPK signaling pathway[J]. Biomed Pharmacother, 2018, 106:491-498.
57
Kuljanin M, Bell GI, Sherman SE, et al. Proteomic characterisation reveals active Wnt-signalling by human multipotent stromal cells as a key regulator of beta cell survival and proliferation[J]. Diabetologia,2017, 60(10):1987-1998.
58
Tan Y, Nie W, Chen C, et al. Mesenchymal stem cells alleviate hypoxia- induced oxidative stress and enhance the pro-survival pathways in porcine islets[J]. Exp Biol Med (Maywood), 2019,244(9):781-788.
59
Hubber EL, Rackham CL, Jones PM. Protecting islet functional viability using mesenchymal stromal cells[J]. Stem Cells Transl Med,2021, 10(5):674-680.
60
Brandhorst D, Brandhorst H, Acreman S, et al. Hypoxia-induced damage in human islets is reduced with the use of mesenchymal stem cell-preconditioned medium[J]. Transplant Proc, 2017, 49(10):2330-2332.
61
孙平, 吴航飞, 程颖. 胰岛与干细胞共移植治疗糖尿病中干细胞来源与作用机制的研究进展[J/CD]. 实用器官移植电子杂志, 2022,10(2):183-188.
62
Borg DJ, Weigelt M, Wilhelm C, et al. Mesenchymal stromal cells improve transplanted islet survival and islet function in a syngeneic mouse model[J]. Diabetologia, 2014, 57(3):522-531.
63
Rackham CL, Chagastelles PC, Nardi NB, et al. Co-transplantation of mesenchymal stem cells maintains islet organisation and morphology in mice[J]. Diabetologia, 2011, 54(5):1127-1135.
64
Berman DM, Willman MA, Han D, et al. Mesenchymal stem cells enhance allogeneic islet engraftment in nonhuman primates[J].Diabetes, 2010, 59(10):2558-2568.
65
Wu H, Wen D, Mahato RI. Third-party mesenchymal stem cells improved human islet transplantation in a humanized diabetic mouse model[J]. Mol Ther, 2013, 21(9):1778-1786.
66
Yoshimatsu G, Sakata N, Tsuchiya H, et al. The co-transplantation of bone marrow derived mesenchymal stem cells reduced inflammation in intramuscular islet transplantation[J]. PLoS One, 2015, 10:e0117561.
67
Hayward JA, Ellis CE, Seeberger K, et al. Co-transplantation of mesenchymal stem cells with neonatal porcine islets improve graft function in diabetic mice[J]. Diabetes, 2017, 66(5):1312-1321.
68
Kerby A, Jones ES, Jones PM, et al. Co-transplantation of islets with mesenchymalstem cells in microcapsules demonstrates graft outcome can be improved in an isolated-graft model of islet transplantation in mice[J]. Cytotherapy, 2013, 15:192-200.
69
Ito T, Itakura S, Todorov I, et al. Mesenchymal stem cell and islet co-transplantation promotes graft revascularization and function[J].Transplantation, 2010, 89(12):1438-1445.
70
Fiorina P, Jurewicz M, Augello A, et al. Immunomodulatory function of bone marrow-derived mesenchymal stem cells in experimental autoimmune type 1 diabetes[J]. J Immunol, 2009, 183(2):993-1004.
71
Xu D, Yu X, Zhang D, et al. Mesenchymal stem cells differentially mediate regulatory T cells and conventional effector T cells to protect fully allogeneic islet grafts in mice[J]. Diabetologia, 2012, 55(4):1091-1102.
72
Zhu F, Sun B, Wen Y, et al. A modified method for implantation of pluripotent stem cells under the rodent kidney capsule[J]. Stem Cells Dev, 2014, 23(17):2119-2125.
73
Forbes S, Bond AR, Thirlwell KL, et al. Human umbilical cord perivascular cells improve human pancreatic islet transplant function by increasing vascularization[J]. Sci Transl Med, 2020, 12(526):eaan5907.
74
Preda MB, Lupan AM, Neculachi CA, et al. Evidence of mesenchymal stromal cell adaptation to local microenvironment following subcutaneous transplantation[J]. J Cell Mol Med, 2020, 24(18):10889-10897.
75
El-Halawani SM, Gabr MM, El-Far M, et al. Subcutaneous transplantation of bone marrow derived stem cells in macroencapsulation device for treating diabetic rats; clinically transplantable site[J]. Heliyon, 2020, 6(5):e03914.
76
Wang H, Strange C, Nietert PJ, et al. Autologous mesenchymal stem cell and islet cotransplantation: safety and efficacy[J]. Stem Cells Transl Med, 2018, 7(1):11-19.
77
Eggenhofer E, Benseler V, Kroemer A, et al. Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion[J]. Front Immunol, 2012, 3:297.
78
Cavallari G, Olivi E, Bianchi F, et al. Mesenchymal stem cells and islet cotransplantation in diabetic rats: improved islet graft revascularization and function by human adipose tissue-derived stem cells preconditioned with natural molecules[J]. Cell Transplant, 2012, 21(12):2771-2781.
79
Kanak MA, Takita M, Kunnathodi F, et al. Inflammatory response in islet transplantation[J]. Int J Endocrinol, 2014, 2014: 451035.
80
Prewitz MC, Seib FP, von Bonin M, et al. Tightly anchored tissuemimetic matrices as instructive stem cell microenvironments[J]. Nat Methods, 2013, 10(8): 788-794.
81
Coppola A, Tomasello L, Pitrone M, et al. Human limbal fibroblastlike stem cells induce immune-tolerance in autoreactive T lymphocytes from female patients with Hashimoto′s thyroiditis[J]. Stem Cell Res Ther, 2017, 8(1): 154.
82
Llacua A, de Haan BJ, de Vos P. Laminin and collagen IV inclusion in immunoisolating microcapsules reduces cytokine-mediated cell death in human pancreatic islets[J]. J Tissue Eng Regen Med, 2018, 12(2):460-467.
83
Llacua A, de Haan BJ, Smink SA, et al. Extracellular matrix components supporting human islet function in alginate-based immunoprotective microcapsules for treatment of diabetes[J]. J Biomed Mater Res A, 2016, 104(7): 1788-1796.
84
Rackham CL, Amisten S, Persaud SJ, et al. Mesenchymal stromal cell secretory factors induce sustained improvements in islet function pre- and post-transplantation[J]. Cytotherapy, 2018, 20(12):1427-1436.
85
Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells[J]. Blood, 2007, 110(10):3499-3506.
86
Oh JY, Kim MK, Shin MS, et al. The anti-inflammatory and anti- angiogenic role of mesenchymal stem cells in corneal wound healing following chemical injury[J]. Stem Cells, 2008, 26(4):1047-1055.
87
Lanzoni G, Ricordi C. Transplantation of stem cell-derived pancreatic islet cells[J]. Nat Rev Endocrinol, 2021, 17(1):7-8.
88
Migliorini A, Nostro MC, Sneddon JB. Human pluripotent stem cell- derived insulin-producing cells: a regenerative medicine perspective[J]. Cell Metab, 2021, 33(4):721-731.
89
Carlsson PO, Schwarcz E, Korsgren O, et al. Preserved β-cell function in type 1 diabetes by mesenchymal stromal cells[J]. Diabetes, 2015,64(2):587-592.
90
Lu J, Shen SM, Ling Q, et al. One repeated transplantation of allogeneic umbilical cord mesenchymal stromal cells in type 1 diabetes:an open parallel controlled clinical study[J]. Stem Cell Res Ther, 2021,12(1):340.
91
Xv J, Ming Q, Wang X, et al. Mesenchymal stem cells moderate immune response of type 1 diabetes[J]. Cell Tissue Res, 2017, 368(2):239-248.
92
朱淑芳,牟丽莎. 间充质干细胞在1型糖尿病胰岛移植中的应用进展[J].器官移植, 2024, 15(2): 214-219.
93
de Klerk E, Hebrok M. Stem cell-based clinical trials for diabetes mellitus[J]. Front Endocrinol (Lausanne), 2021, 12:631463.
94
O′Sullivan ES, Vegas A, Anderson DG, Weir GC. Islets transplanted in immunoisolation devices: a review of the progress and the challenges that remain[J]. Endocr Rev, 2011, 32(6):827-844.
95
杨玉伟, 李万里, 陈继冰, 等. 间充质干细胞包裹人胰岛减轻即刻经血液介导的炎症反应的体外研究[J]. 器官移植, 2023, 14(4):562-569.
96
Jo EH, Hwang YH, Lee DY. Encapsulation of pancreatic islet with HMGB1 fragment for attenuating inflammation[J]. Biomater Res,2015, 19:21.
97
Barkai U, Rotem A, de Vos P. Survival of encapsulated islets: More than a membrane story[J]. World J Transplant, 2016, 6(1):69-90.
98
Montanari E, Meier RPH, Mahou R, et al. Multipotent mesenchymal stromal cells enhance insulin secretion from human islets via N-cadherin interaction and prolong function of transplanted encapsulated islets in mice[J]. Stem Cell Res Ther, 2017, 8(1):199.
99
Vaithilingam V, Evans MDM, Lewy DM, et al. Co-encapsulation and co-transplantation of mesenchymal stem cells reduces pericapsular fibrosis and improves encapsulated islet survival and function when allografted[J]. Sci Rep, 2017, 7(1):10059.
100
Razavi M, Ren T, Zheng F, et al. Facilitating islet transplantation using a three-step approach with mesenchymal stem cells, encapsulation, and pulsed focused ultrasound[J]. Stem Cell Res Ther, 2020, 11(1):405.
101
Kogawa R, Nakamura K, Mochizuki Y. A new islet transplantation method combining mesenchymal stem cells with recombinant peptide pieces, microencapsulated islets, and mesh bags[J]. Biomedicines,2020, 8(9):299.
102
Nakamura K. CellSaic, acell aggregate-like technology using recombinant peptide pieces for MSC transplantation[J]. Curr Stem Cell Res Ther, 2019, 14(1):52-56.
103
Wang X, Wang K, Yu M, et al. Engineered immunomodulatory accessory cells improve experimental allogeneic islet transplantation without immunosuppression[J]. Sci Adv, 2022, 8(29):eabn0071.
104
Abuarqoub D, Adwan S, Zaza R, et al. Effective generation of functional pancreatic β cells from human-derived dental stem cells of apical papilla and bone-marrow-derived stem cells: acomparative study[J]. Pharmaceuticals (Basel), 2023, 16(5):649.
105
邱晓燕, 李碧欣, 黎敬弟, 等. MAFA-PDX1过表达慢病毒感染人脐带间充质干细胞向胰岛素分泌细胞的分化[J].中国组织工程研究, 2024, (7): 1000-1006.
106
郭璇, 解军, 索金荣, 等. 人脐带间充质干细胞诱导的胰岛样细胞不同途径移植治疗1型糖尿病鼠[J]. 中国组织工程研究, 2021,25(1): 78-83.
107
Hemattia P, Kima J, Stein AP, et al. Potential role of mesenchymal stromal cells in pancreatic islet transplantation[J]. Transplantation Reviews, 2013, 27(1):21-29.
108
Yamada S, Shimada M, Utsunomiya T, et al. Trophic effect of adipose tissue-derived stem cells on porcine islet cells[J]. J Surg Res, 2014,187(2):667-672.
109
Bell GI, Meschino MT, Hughes-Large JM, et al. Combinatorial human progenitorcell transplantation optimizes islet regeneration through secretion of paracrine factors[J]. Stem Cells Dev, 2012, 21(11):1863-1876.
110
Anna A, Barbara L, Miroslaw J. Concise review: mesenchymal stem cells: from roots to boost[J]. Stem Cells, 2019, 37(7):855-864.
111
孙旭燕, 张学娟, 赵江宁, 等.性别差异对间充质干细胞生物学特性的影响[J/OL].中华细胞与干细胞杂志(电子版), 2021, 11(5):317-320.
112
Ding DC, Chang YH, Shyu WC, et al. Human umbilical cord mesenchymal stem cells: a new era for stem cell therapy[J]. Cell Transplant, 2015, 24(3):339-347.
113
余诗琴, 尹玉杰, 张建中. 间充质干细胞及诱导分化后胰岛功能转归的相关性分析[J]. 中国实验诊断学, 2022, 26(8):1254-1257.
114
Mushahary D, Spittler A, Kasper C, et al. Isolation, cultivation, and characterization of human mesenchymal stem cells[J]. Cytometry A,2018, 93(1):19-31.
115
Strioga M, Viswanathan S, Darinskas A, et al. Same or not the same?Comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells[J]. Stem Cells Dev, 2012,21(14):2724-2752.
116
Zhou Y, Yamamoto Y, Xiao Z, et al. The immunomodulatory functions of mesenchymal stromal/Stem cells mediated via paracrine activity[J].J Clin Med, 2019, 8(7): 1025.
117
Brandhorst H, Brandhorst D, Abraham A, et al. Proteomic profiling reveals the ambivalent character of the mesenchymal stem cell secretome: assessing the effect of preconditioned media on isolated human islets[J]. Cell Transplant, 2020, 29:963689720952332.
118
Al-Shaibani MBH. Three-dimensional cell culture (3DCC) improves secretion of signaling molecules of mesenchymal stem cells (MSCs)[J].Biotechnol Lett, 2022, 44(1):143-155.
119
Bhansali S, Dutta P, Kumar V, et al. Efficacy of autologous bone marrow-derived mesenchymal stem cell and mononuclear cell transplantation in type 2 diabetes mellitus: arandomized,placebo- controlled comparative Study[J]. Stem Cells Dev, 2017,26(7):471-481.
120
Skyler JS, Fonseca VA, Segal KR, et al. Allogeneic mesenchymal precursor cells in type 2 diabetes: arandomized, placebo-controlled,dose-escalation safety and tolerability pilot study[J]. Diabetes Care,2015, 38(9):1742-1749.
121
Bhansali A, Asokumar P, Walia R, et al. Efficacy and safety of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus: a randomized placebo-controlled study[J]. Cell Transplant, 2014, 23(9):1075-1085.
122
张闻宇, 黄玉香.间充质干细胞体外大规模培养的研究进展[J/OL].中华细胞与干细胞杂志(电子版) , 2023, 13(6): 370-376.
[1] 刘琴, 刘瀚旻, 谢亮. 基质金属蛋白酶在儿童哮喘发生机制中作用的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 564-568.
[2] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[3] 张燕, 杨跃青, 邱峥. IgG 联合血清细胞因子对肺结核并发慢性肺曲霉菌病的诊断意义[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 809-812.
[4] 蒋丽芳, 林冰. 桑菊清解汤联合左氧氟沙星治疗社区获得性肺炎的临床分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(03): 458-461.
[5] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[6] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[7] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[8] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[9] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[10] 徐嘉愉, 张复华, 牛国敏, 梁家宝, 潘焕玉, 麦秀蕖, 杨国雷, 徐嘉良, 黄佑勇. Th1/Th2细胞因子谱在恶性血液肿瘤患者化疗后中性粒细胞缺乏伴感染的应用价值[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 143-150.
[11] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[12] 阿卜杜萨拉木·图尔荪麦麦提, 吐尔洪江·吐逊, 温浩. 肝脏缺血-再灌注损伤与cGAS-STING信号通路[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 394-397.
[13] 杨智钧, 谷佳, 丁聿贤, 张正奎, 于如同. 脑胶质瘤患者血清炎性因子水平与病理分级及预后的相关性[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 238-242.
[14] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[15] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
阅读次数
全文


摘要