1 |
Levy M, Kolodziejczyk AA, Thaiss CA, et al. Dysbiosis and the immune system[J]. Nat Rev Immunol, 2017, 17(4):219-232.
|
2 |
Cryan JF, O'Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4):1877-2013.
|
3 |
Bharti R, Grimm DG. Current challenges and best-practice protocols for microbiome analysis[J]. Brief Bioinform, 2021, 22(1):178-193.
|
4 |
Fang P, Kazmi SA, Jameson KG, et al. The microbiome as a modifier of neurodegenerative disease risk[J]. Cell Host Microbe, 2020,28(2):201-222.
|
5 |
Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gutbrain axis[J]. Science, 2021, 374(6571):1087-1092.
|
6 |
Yokokawa K, Iwahara N, Hisahara S, et al. Transplantation of mesenchymal stem cells improves amyloid-β pathology by modifying microglial function and suppressing oxidative stress[J]. J Alzheimers Dis, 2019, 72(3):867-884.
|
7 |
Wang SS, Jia J, Wang Z. Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer's disease mice[J]. J Alzheimers Dis, 2018,61(3):1005-1013.
|
8 |
王娟, 刘晔, 熊威, 等. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(2):93-106.
|
9 |
Hoegenauer C, Hammer HF, Mahnert A, et al. Methanogenic archaea in the human gastrointestinal tract[J]. Nat Rev Gastroenterol Hepatol,2022, 19(12):805-813.
|
10 |
Needham BD, Kaddurah-Daouk R, Mazmanian S K. Gut microbial molecules in behavioural and neurodegenerative conditions[J]. Nat Rev Neurosci, 2020, 21(12):717-731.
|
11 |
Zou P, Yang F, Ding Y, et al. Lipopolysaccharide downregulates the expression of ZO-1 protein through the Akt pathway[J]. BMC Infect Dis, 2022, 22(1):774. doi: 10.1186/s12879-022-07752-1.
|
12 |
Jiang M, Zhang X, Yan X, et al. GSK3β is involved in promoting Alzheimer's disease pathologies following chronic systemic exposure to Porphyromonas gingivalis lipopolysaccharide in amyloid precursor proteinNL-F/NL-F knock-in mice[J]. Brain Behav Immun, 2021, 98:1-12.
|
13 |
Wang Q, Yang Q, Liu X. The microbiota-gut-brain axis and neurodevelopmental disorders[J]. Protein Cell, 2023, 14(10):762-775.
|
14 |
Mayer EA, Nance K, Chen S. The gut-brain axis[J]. Annu Rev Med,2022, 73:439-453.
|
15 |
Gong W, Guo P, Li Y, et al. Role of the gut-brain axis in the shared genetic etiology between gastrointestinal tract diseases and psychiatric disorders: a genome-wide pleiotropic analysis[J]. JAMA psychiatry,2023, 80(4):360-370.
|
16 |
Loh J S, Mak W Q, Tan LKS, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases[J]. Signal Transduct Target Ther, 2024, 9(1):37.doi: 10.1038/s41392-024-01743-1.
|
17 |
Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders[J]. Nat Rev Microbiol, 2021,19(4):241-255.
|
18 |
Yamashiro K, Tanaka R, Urabe T, et al. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke[J]. PloS One, 2017, 12(2):e0171521. doi: 10.1371/journal.pone.0171521.
|
19 |
Honarpisheh P, Bryan RM, McCullough LD. Aging microbiota-gutbrain axis in stroke risk and outcome[J]. Circ Res, 2022, 130(8):1112-1144.
|
20 |
Parr E, Ferdinand P, Roffe C. Management of acute stroke in the older person[J]. Geriatrics (Basel), 2017, 2(3):27. doi: 10.3390/geriatrics 2030027.
|
21 |
Chidambaram SB, Rathipriya AG, Mahalakshmi AM, et al. The influence of gut dysbiosis in the pathogenesis and management of ischemic stroke[J]. Cells, 2022, 11(7):1239. doi:10.3390/cells1107 1239.
|
22 |
Tan C, Wu Q, Wang H, et al. Dysbiosis of gut microbiota and shortchain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes[J]. JPEN J Parenter Enteral Nutr, 2021,45(3):518-529.
|
23 |
Yu X, Zhou G, Shao B, et al. Gut microbiota dysbiosis induced by intracerebral hemorrhage aggravates neuroinflammation in mice[J].Front Microbiol, 2021, 12:647304. doi: 10.3389/fmicb.2021.647304.
|
24 |
Chen R, Xu Y, Wu P, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota[J]. Pharmacol Res, 2019, 148:104403.doi: 10.1016/j.phrs.2019.104403.
|
25 |
Li S, Zhao X, Lin F, et al. Gut flora mediates the rapid tolerance of electroacupuncture on ischemic stroke by activating melatonin receptor through regulating indole-3-propionic acid[J]. Am J Chin Med, 2022,50(4):979-1006.
|
26 |
Xu K, Gao X, Xia G, et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn[J]. Gut, 2021, 8:gutjnl-2020-323263. doi: 10.1136/gutjnl-2020-323263.
|
27 |
de Oliveira Araújo R, Villoria GEM, Luiz RR, et al. Association between periodontitis and Alzheimer's disease and its impact on the self-perceived oral health status: a case-control study[J]. Clin Oral Investig, 2021, 25(2):555-562.
|
28 |
Seo DO, Holtzman DM. Current understanding of the Alzheimer's disease-associated microbiome and therapeutic strategies[J]. Exp Mol Med, 2024, 56(1):86-94.
|
29 |
Friedland RP, Chapman MR. The role of microbial amyloid in neurodegeneration[J]. PLoS Pathog, 2017, 13(12):e1006654. doi:10.1371/journal.ppat.1006654.
|
30 |
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer's disease[J]. Sci Rep, 2017, 7(1):13537. doi:10.1038/s41598-017-13601-y.
|
31 |
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly[J]. Neurobiol Aging, 2017, 49:60-68.
|
32 |
Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer's mouse model[J]. J Alzheimers Dis, 2017, 56(2):775-788.
|
33 |
Kim MS, Kim Y, Choi H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model[J]. Gut, 2020, 69(2):283-294.
|
34 |
Wang ZH, Gong K, Liu X, et al. C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer's disease[J]. Nat Commun, 2018, 9(1):1784. doi: 10.1038/s41467-018-04120-z.
|
35 |
Chen C, Zhou Y, Wang H, et al. Gut inflammation triggers C/EBPβ/δ-secretase-dependent gut-to-brain propagation of Aβ and Tau fibrils in Alzheimer's disease[J]. EMBO J, 2021, 40(17):e106320. doi: 10.15252/embj.2020106320.
|
36 |
Chen C, Liao J, Xia Y, et al. Gut microbiota regulate Alzheimer's disease pathologies and cognitive disorders via PUFA-associated neuroinflammation[J]. Gut, 2022, 71(11):2233-2252.
|
37 |
Xia Y, Xiao Y, Wang ZH, et al. Bacteroides Fragilis in the gut microbiomes of Alzheimer's disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice[J]. Nat Commun,2023, 14(1):5471. doi: 10.1038/s41467-023-41283-w.
|
38 |
Claudino Dos Santos JC, Lima MPP, Brito GAC, et al. Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis[J].Ageing Res Rev, 2023, 84:101812. doi: 10.1016/j.arr.2022.101812.
|
39 |
Ye H, Robak LA, Yu M, et al. Genetics and Pathogenesis of Parkinson's Syndrome[J]. Annu Rev Pathol, 2023, 18:95-121.
|
40 |
Chahine LM, Beach TG, Brumm MC, et al. In vivo distribution of α-synuclein in multiple tissues and biofluids in Parkinson disease[J].Neurology, 2020, 95(9):e1267-e1284.
|
41 |
Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, et al. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients[J]. Ann Neurol, 2016, 79(6):940-949.
|
42 |
Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease-from basic research to the clinic[J]. Nat Rev Neurol,2022, 18(8):476-495.
|
43 |
Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson's disease[J]. Neuron, 2019, 103(4):627-641.e7.
|
44 |
Bassil F, Brown HJ, Pattabhiraman S, et al. Amyloid-Beta (Aβ) plaques promote seeding and spreading of alpha-synuclein and Tau in a mouse model of lewy body disorders with Aβ pathology[J]. Neuron, 2020,105(2):260-275.e6.
|
45 |
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system[J]. Cell Mol Life Sci, 2017, 74(13):2345-2360.
|
46 |
Andrzejewska A, Dabrowska S, Lukomska B, et al. Mesenchymal stem cells for neurological disorders[J]. Adv Sci (Weinh), 2021,8(7):2002944.doi: 10.1002/advs.202002944.
|
47 |
冯佳, 谢芳莘, 杨嘉洁, 等. TIMP2 基因修饰间充质干细胞治疗阿尔兹海默症的实验小鼠模型研究[J]. 中国输血杂志, 2020,33(5):441-445.
|
48 |
卜美玲, 穆晓颖, 赵晨阳. 脂肪间充质干细胞脑内定向移植治疗大鼠脑出血的机制研究[J]. 中国当代医药, 2024, 31(20):14-17.
|
49 |
Li Y, Huang J, Wang J, et al. Human umbilical cord-derived mesenchymal stem cell transplantation supplemented with curcumin improves the outcomes of ischemic stroke via AKT/GSK-3β/β-TrCP/Nrf2 axis[J]. J Neuroinflammation, 2023, 20(1):49.doi: 10.1186/s12974-023-02738-5.
|
50 |
叶青松, 彭友俭, 骆瑜. 细胞外泌体的分离提取标准化及临床转化进展[J]. 口腔疾病防治, 2022, 30(9):609-619.
|
51 |
刘君鹏, 李云飞, 李永坤. 间充质干细胞外泌体对缺血性脑卒中大鼠神经功能恢复的影响[J]. 中国当代医药, 2024, 31(17):4-8.
|
52 |
孙逸梅, 毛诗慧, 李琳, 等. 骨髓间充质干细胞源性外泌体促进小胶质细胞/巨噬细胞M2 极化抑制急性期脑缺血大鼠炎症反应[J].中国药科大学学报, 2023, 54(5):599-606.
|
53 |
Harrell CR, Jovicic N, Djonov V, et al. Mesenchymal stem cellderived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases[J]. Cells, 2019, 8(12):1605. doi:10.3390/cells8121605.
|
54 |
Palanisamy CP, Pei J, Alugoju P, et al. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs)derived from mesenchymal stem cells (MSCs)[J]. Theranostics, 2023,13(12):4138-4165.
|
55 |
Zhang Q, Deng P, Chen S, et al. Electroacupuncture and human iPSC-derived small extracellular vesicles regulate the gut microbiota in ischemic stroke via the brain-gut axis[J]. Front Immunol, 2023,14:1107559.doi: 10.3389/fimmu.2023.1107559.
|
56 |
Sun J, Xu G. Mesenchymal stem cell-derived exosomal miR-150- 3p affects intracerebral hemorrhage by regulating TRAF6/NF-κB axis, gut microbiota and metabolism[J]. Stem Cell Rev Rep, 2023, 19(6):1907-1921.
|
57 |
Zhang L, Jiang Z, Hu S, et al. GSK3β substrate-competitive inhibitors regulate the gut homeostasis and barrier function to inhibit neuroinflammation in scopolamine-induced Alzheimer's disease model mice[J]. Inflammation, 2024. doi:10.1007/s10753-024-02133-z.
|
58 |
Xiong W, Liu Y, Zhou H, et al. Human dental pulp stem cells mitigate the neuropathology and cognitive decline via AKT-GSK3β-Nrf2 pathways in Alzheimer's disease[J]. Int J Oral Sci, 2024, 16(1):40.doi:10.1038/s41368-024-00300-4.
|
59 |
Anderson S, Prateeksha P, Das H. Dental pulp-derived stem cells reduce inflammation, accelerate wound healing and mediate M2 polarization of myeloid cells[J]. Biomedicines, 2022, 10(8):1999. doi:10.3390/biomedicines10081999.
|
60 |
Sha S, Shen X, Cao Y, et al. Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimer's disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway[J].Aging, 2021, 13(11):15285-15306.
|
61 |
Naaldijk Y, Jäger C, Fabian C, et al. Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice[J]. Neuropathol Appl Neurobiol,2017, 43(4):299-314.
|
62 |
Santamaria G, Brandi E, Vitola PL, et al. Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer's mice[J]. Cell Death Differ, 2021, 28(1):203-218.
|
63 |
Losurdo M, Pedrazzoli M, D'Agostino C, et al. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease[J]. Stem Cells Transl Med, 2020, 9(9):1068-1084.
|
64 |
Liu A, Liang X, Wang W, et al. Human umbilical cord mesenchymal stem cells ameliorate colon inflammation via modulation of gut microbiota-SCFAs-immune axis[J]. Stem Cell Res Ther, 2023,14(1):271. doi: 10.1186/s13287-023-03471-9.
|
65 |
Lee JY, Tuazon JP, Ehrhart J, et al. Gutting the brain of inflammation:A key role of gut microbiome in human umbilical cord blood plasma therapy in Parkinson's disease model[J]. J Cell Mol Med, 2019,23(8):5466-5474.
|
66 |
Lee JY, Tuazon JP, Corey S, et al. A gutsy move for cell-based regenerative medicine in Parkinson's disease: targeting the gut microbiome to sequester inflammation and neurotoxicity[J]. Stem Cell Rev Rep, 2019, 15(5):690-702.
|
67 |
Lee JY, Wang ZJ, Moscatello A, et al. Inflammatory gut as a pathologic and therapeutic target in Parkinson's disease[J]. Cell Death Discov,2022, 8(1):396.doi: 10.1038/s41420-022-01175-2.
|
68 |
Lee JY, Castelli V, Sanberg PR, et al. Probing gut participation in Parkinson's disease pathology and treatment via stem cell therapy[J].Int J Mol Sci, 2023, 24(13):10600.doi: 10.3390/ijms241310600.
|
69 |
Pu Y, Wu Q, Zhang Q, et al. Mesenchymal stem-cell-derived microvesicles ameliorate MPTP-induced neurotoxicity in mice: a role of the gut-microbiota-brain axis[J]. Psychopharmacology, 2023,240(5):1103-1118.
|