切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (05) : 313 -319. doi: 10.3877/cma.j.issn.2095-1221.2024.05.007

综述

间充质干细胞调控肠脑轴治疗神经系统疾病的潜力
王俊楠1,2, 刘晔1,2, 李若涵1,2, 叶青松1,2,()   
  1. 1.430060 武汉,湖北武汉大学人民医院再生医学中心
    2.430060 武汉,湖北武汉大学人民医院口腔科
  • 收稿日期:2024-08-08 出版日期:2024-10-01
  • 通信作者: 叶青松

The potential of mesenchymal stem cells in regulating the gut-brain axis in the treatment of neurological diseases

Junnan Wang1,2, Ye Liu1,2, Ruohan Li1,2, Qingsong Ye1,2,()   

  1. 1.Center of Regenerative Medicine
    2.Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China
  • Received:2024-08-08 Published:2024-10-01
  • Corresponding author: Qingsong Ye
引用本文:

王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.

Junnan Wang, Ye Liu, Ruohan Li, Qingsong Ye. The potential of mesenchymal stem cells in regulating the gut-brain axis in the treatment of neurological diseases[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(05): 313-319.

肠脑轴是指胃肠道与中枢神经系统之间存在的双向调控作用。近年来,肠脑轴成为了一个新的研究热点,大量研究探索肠道微生物群与神经系统疾病之间的关系。干细胞疗法是一种再生医学治疗方法,间充质干细胞 (MSCs)在改善神经病理损伤和肠道炎症方面具有良好的疗效。本文阐述肠脑轴与几种常见神经系统疾病的关系以及肠脑轴在疾病进展中的关键作用,指出MSCs 在调控肠脑轴治疗神经系统疾病方面的优势和潜力,并综述MSCs 在调控肠脑轴治疗神经系统疾病中的应用进展,以期为神经系统疾病的治疗提供新思路。

The gut-brain axis is the bidirectional regulation between the gastrointestinal tract and the central nervous system. In recent years, the gut-brain axis has become a new research hotspot,and many studies have explored the relationship between gut microbiota and nervous system diseases.Stem cell therapy is a regenerative medicine treatment method. Mesenchymal stem cells (MSCs) have shown good efficacy in improving neuropathological injury and intestinal inflammation. The current article describes the relationship between the gut-brain axis and several common nervous system diseases and the key role of the gut-brain axis in disease progression, pointing out the advantages and potential of mesenchymal stem cells in regulating gut-brain axis in the treatment of nervous system diseases, and reviews the application progress of mesenchymal stem cells in regulating the gut-brain axis in the treatment of nervous system diseases, providing new ideas for the treatment of nervous system diseases.

图1 肠脑轴——中枢神经系统与胃肠道之间的双向交流
图2 宿主微生物群影响阿尔兹海默症病理损伤的主要途径 注:TNF 为肿瘤坏死因子;IL-1β 为白细胞介素-1β
图3 间充质干细胞在神经系统疾病中的主要作用方式 注:IL-1 为白细胞介素-1;TNF 为肿瘤坏死因子;BDNF 为脑源性神经营养因子;GDNF 为胶质细胞源性神经营养因子;NGF 为神经生长因子
1
Levy M, Kolodziejczyk AA, Thaiss CA, et al. Dysbiosis and the immune system[J]. Nat Rev Immunol, 2017, 17(4):219-232.
2
Cryan JF, O'Riordan KJ, Cowan CSM, et al. The microbiota-gut-brain axis[J]. Physiol Rev, 2019, 99(4):1877-2013.
3
Bharti R, Grimm DG. Current challenges and best-practice protocols for microbiome analysis[J]. Brief Bioinform, 2021, 22(1):178-193.
4
Fang P, Kazmi SA, Jameson KG, et al. The microbiome as a modifier of neurodegenerative disease risk[J]. Cell Host Microbe, 2020,28(2):201-222.
5
Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gutbrain axis[J]. Science, 2021, 374(6571):1087-1092.
6
Yokokawa K, Iwahara N, Hisahara S, et al. Transplantation of mesenchymal stem cells improves amyloid-β pathology by modifying microglial function and suppressing oxidative stress[J]. J Alzheimers Dis, 2019, 72(3):867-884.
7
Wang SS, Jia J, Wang Z. Mesenchymal stem cell-derived extracellular vesicles suppresses iNOS expression and ameliorates neural impairment in Alzheimer's disease mice[J]. J Alzheimers Dis, 2018,61(3):1005-1013.
8
王娟, 刘晔, 熊威, 等. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(2):93-106.
9
Hoegenauer C, Hammer HF, Mahnert A, et al. Methanogenic archaea in the human gastrointestinal tract[J]. Nat Rev Gastroenterol Hepatol,2022, 19(12):805-813.
10
Needham BD, Kaddurah-Daouk R, Mazmanian S K. Gut microbial molecules in behavioural and neurodegenerative conditions[J]. Nat Rev Neurosci, 2020, 21(12):717-731.
11
Zou P, Yang F, Ding Y, et al. Lipopolysaccharide downregulates the expression of ZO-1 protein through the Akt pathway[J]. BMC Infect Dis, 2022, 22(1):774. doi: 10.1186/s12879-022-07752-1.
12
Jiang M, Zhang X, Yan X, et al. GSK3β is involved in promoting Alzheimer's disease pathologies following chronic systemic exposure to Porphyromonas gingivalis lipopolysaccharide in amyloid precursor proteinNL-F/NL-F knock-in mice[J]. Brain Behav Immun, 2021, 98:1-12.
13
Wang Q, Yang Q, Liu X. The microbiota-gut-brain axis and neurodevelopmental disorders[J]. Protein Cell, 2023, 14(10):762-775.
14
Mayer EA, Nance K, Chen S. The gut-brain axis[J]. Annu Rev Med,2022, 73:439-453.
15
Gong W, Guo P, Li Y, et al. Role of the gut-brain axis in the shared genetic etiology between gastrointestinal tract diseases and psychiatric disorders: a genome-wide pleiotropic analysis[J]. JAMA psychiatry,2023, 80(4):360-370.
16
Loh J S, Mak W Q, Tan LKS, et al. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases[J]. Signal Transduct Target Ther, 2024, 9(1):37.doi: 10.1038/s41392-024-01743-1.
17
Morais LH, Schreiber HL, Mazmanian SK. The gut microbiota-brain axis in behaviour and brain disorders[J]. Nat Rev Microbiol, 2021,19(4):241-255.
18
Yamashiro K, Tanaka R, Urabe T, et al. Gut dysbiosis is associated with metabolism and systemic inflammation in patients with ischemic stroke[J]. PloS One, 2017, 12(2):e0171521. doi: 10.1371/journal.pone.0171521.
19
Honarpisheh P, Bryan RM, McCullough LD. Aging microbiota-gutbrain axis in stroke risk and outcome[J]. Circ Res, 2022, 130(8):1112-1144.
20
Parr E, Ferdinand P, Roffe C. Management of acute stroke in the older person[J]. Geriatrics (Basel), 2017, 2(3):27. doi: 10.3390/geriatrics 2030027.
21
Chidambaram SB, Rathipriya AG, Mahalakshmi AM, et al. The influence of gut dysbiosis in the pathogenesis and management of ischemic stroke[J]. Cells, 2022, 11(7):1239. doi:10.3390/cells1107 1239.
22
Tan C, Wu Q, Wang H, et al. Dysbiosis of gut microbiota and shortchain fatty acids in acute ischemic stroke and the subsequent risk for poor functional outcomes[J]. JPEN J Parenter Enteral Nutr, 2021,45(3):518-529.
23
Yu X, Zhou G, Shao B, et al. Gut microbiota dysbiosis induced by intracerebral hemorrhage aggravates neuroinflammation in mice[J].Front Microbiol, 2021, 12:647304. doi: 10.3389/fmicb.2021.647304.
24
Chen R, Xu Y, Wu P, et al. Transplantation of fecal microbiota rich in short chain fatty acids and butyric acid treat cerebral ischemic stroke by regulating gut microbiota[J]. Pharmacol Res, 2019, 148:104403.doi: 10.1016/j.phrs.2019.104403.
25
Li S, Zhao X, Lin F, et al. Gut flora mediates the rapid tolerance of electroacupuncture on ischemic stroke by activating melatonin receptor through regulating indole-3-propionic acid[J]. Am J Chin Med, 2022,50(4):979-1006.
26
Xu K, Gao X, Xia G, et al. Rapid gut dysbiosis induced by stroke exacerbates brain infarction in turn[J]. Gut, 2021, 8:gutjnl-2020-323263. doi: 10.1136/gutjnl-2020-323263.
27
de Oliveira Araújo R, Villoria GEM, Luiz RR, et al. Association between periodontitis and Alzheimer's disease and its impact on the self-perceived oral health status: a case-control study[J]. Clin Oral Investig, 2021, 25(2):555-562.
28
Seo DO, Holtzman DM. Current understanding of the Alzheimer's disease-associated microbiome and therapeutic strategies[J]. Exp Mol Med, 2024, 56(1):86-94.
29
Friedland RP, Chapman MR. The role of microbial amyloid in neurodegeneration[J]. PLoS Pathog, 2017, 13(12):e1006654. doi:10.1371/journal.ppat.1006654.
30
Vogt NM, Kerby RL, Dill-McFarland KA, et al. Gut microbiome alterations in Alzheimer's disease[J]. Sci Rep, 2017, 7(1):13537. doi:10.1038/s41598-017-13601-y.
31
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly[J]. Neurobiol Aging, 2017, 49:60-68.
32
Brandscheid C, Schuck F, Reinhardt S, et al. Altered gut microbiome composition and tryptic activity of the 5xFAD Alzheimer's mouse model[J]. J Alzheimers Dis, 2017, 56(2):775-788.
33
Kim MS, Kim Y, Choi H, et al. Transfer of a healthy microbiota reduces amyloid and tau pathology in an Alzheimer's disease animal model[J]. Gut, 2020, 69(2):283-294.
34
Wang ZH, Gong K, Liu X, et al. C/EBPβ regulates delta-secretase expression and mediates pathogenesis in mouse models of Alzheimer's disease[J]. Nat Commun, 2018, 9(1):1784. doi: 10.1038/s41467-018-04120-z.
35
Chen C, Zhou Y, Wang H, et al. Gut inflammation triggers C/EBPβ/δ-secretase-dependent gut-to-brain propagation of Aβ and Tau fibrils in Alzheimer's disease[J]. EMBO J, 2021, 40(17):e106320. doi: 10.15252/embj.2020106320.
36
Chen C, Liao J, Xia Y, et al. Gut microbiota regulate Alzheimer's disease pathologies and cognitive disorders via PUFA-associated neuroinflammation[J]. Gut, 2022, 71(11):2233-2252.
37
Xia Y, Xiao Y, Wang ZH, et al. Bacteroides Fragilis in the gut microbiomes of Alzheimer's disease activates microglia and triggers pathogenesis in neuronal C/EBPβ transgenic mice[J]. Nat Commun,2023, 14(1):5471. doi: 10.1038/s41467-023-41283-w.
38
Claudino Dos Santos JC, Lima MPP, Brito GAC, et al. Role of enteric glia and microbiota-gut-brain axis in parkinson disease pathogenesis[J].Ageing Res Rev, 2023, 84:101812. doi: 10.1016/j.arr.2022.101812.
39
Ye H, Robak LA, Yu M, et al. Genetics and Pathogenesis of Parkinson's Syndrome[J]. Annu Rev Pathol, 2023, 18:95-121.
40
Chahine LM, Beach TG, Brumm MC, et al. In vivo distribution of α-synuclein in multiple tissues and biofluids in Parkinson disease[J].Neurology, 2020, 95(9):e1267-e1284.
41
Stokholm MG, Danielsen EH, Hamilton-Dutoit SJ, et al. Pathological α-synuclein in gastrointestinal tissues from prodromal Parkinson disease patients[J]. Ann Neurol, 2016, 79(6):940-949.
42
Tan AH, Lim SY, Lang AE. The microbiome-gut-brain axis in Parkinson disease-from basic research to the clinic[J]. Nat Rev Neurol,2022, 18(8):476-495.
43
Kim S, Kwon SH, Kam TI, et al. Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson's disease[J]. Neuron, 2019, 103(4):627-641.e7.
44
Bassil F, Brown HJ, Pattabhiraman S, et al. Amyloid-Beta (Aβ) plaques promote seeding and spreading of alpha-synuclein and Tau in a mouse model of lewy body disorders with Aβ pathology[J]. Neuron, 2020,105(2):260-275.e6.
45
Li N, Hua J. Interactions between mesenchymal stem cells and the immune system[J]. Cell Mol Life Sci, 2017, 74(13):2345-2360.
46
Andrzejewska A, Dabrowska S, Lukomska B, et al. Mesenchymal stem cells for neurological disorders[J]. Adv Sci (Weinh), 2021,8(7):2002944.doi: 10.1002/advs.202002944.
47
冯佳, 谢芳莘, 杨嘉洁, 等. TIMP2 基因修饰间充质干细胞治疗阿尔兹海默症的实验小鼠模型研究[J]. 中国输血杂志, 2020,33(5):441-445.
48
卜美玲, 穆晓颖, 赵晨阳. 脂肪间充质干细胞脑内定向移植治疗大鼠脑出血的机制研究[J]. 中国当代医药, 2024, 31(20):14-17.
49
Li Y, Huang J, Wang J, et al. Human umbilical cord-derived mesenchymal stem cell transplantation supplemented with curcumin improves the outcomes of ischemic stroke via AKT/GSK-3β/β-TrCP/Nrf2 axis[J]. J Neuroinflammation, 2023, 20(1):49.doi: 10.1186/s12974-023-02738-5.
50
叶青松, 彭友俭, 骆瑜. 细胞外泌体的分离提取标准化及临床转化进展[J]. 口腔疾病防治, 2022, 30(9):609-619.
51
刘君鹏, 李云飞, 李永坤. 间充质干细胞外泌体对缺血性脑卒中大鼠神经功能恢复的影响[J]. 中国当代医药, 2024, 31(17):4-8.
52
孙逸梅, 毛诗慧, 李琳, 等. 骨髓间充质干细胞源性外泌体促进小胶质细胞/巨噬细胞M2 极化抑制急性期脑缺血大鼠炎症反应[J].中国药科大学学报, 2023, 54(5):599-606.
53
Harrell CR, Jovicic N, Djonov V, et al. Mesenchymal stem cellderived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases[J]. Cells, 2019, 8(12):1605. doi:10.3390/cells8121605.
54
Palanisamy CP, Pei J, Alugoju P, et al. New strategies of neurodegenerative disease treatment with extracellular vesicles (EVs)derived from mesenchymal stem cells (MSCs)[J]. Theranostics, 2023,13(12):4138-4165.
55
Zhang Q, Deng P, Chen S, et al. Electroacupuncture and human iPSC-derived small extracellular vesicles regulate the gut microbiota in ischemic stroke via the brain-gut axis[J]. Front Immunol, 2023,14:1107559.doi: 10.3389/fimmu.2023.1107559.
56
Sun J, Xu G. Mesenchymal stem cell-derived exosomal miR-150- 3p affects intracerebral hemorrhage by regulating TRAF6/NF-κB axis, gut microbiota and metabolism[J]. Stem Cell Rev Rep, 2023, 19(6):1907-1921.
57
Zhang L, Jiang Z, Hu S, et al. GSK3β substrate-competitive inhibitors regulate the gut homeostasis and barrier function to inhibit neuroinflammation in scopolamine-induced Alzheimer's disease model mice[J]. Inflammation, 2024. doi:10.1007/s10753-024-02133-z.
58
Xiong W, Liu Y, Zhou H, et al. Human dental pulp stem cells mitigate the neuropathology and cognitive decline via AKT-GSK3β-Nrf2 pathways in Alzheimer's disease[J]. Int J Oral Sci, 2024, 16(1):40.doi:10.1038/s41368-024-00300-4.
59
Anderson S, Prateeksha P, Das H. Dental pulp-derived stem cells reduce inflammation, accelerate wound healing and mediate M2 polarization of myeloid cells[J]. Biomedicines, 2022, 10(8):1999. doi:10.3390/biomedicines10081999.
60
Sha S, Shen X, Cao Y, et al. Mesenchymal stem cells-derived extracellular vesicles ameliorate Alzheimer's disease in rat models via the microRNA-29c-3p/BACE1 axis and the Wnt/β-catenin pathway[J].Aging, 2021, 13(11):15285-15306.
61
Naaldijk Y, Jäger C, Fabian C, et al. Effect of systemic transplantation of bone marrow-derived mesenchymal stem cells on neuropathology markers in APP/PS1 Alzheimer mice[J]. Neuropathol Appl Neurobiol,2017, 43(4):299-314.
62
Santamaria G, Brandi E, Vitola PL, et al. Intranasal delivery of mesenchymal stem cell secretome repairs the brain of Alzheimer's mice[J]. Cell Death Differ, 2021, 28(1):203-218.
63
Losurdo M, Pedrazzoli M, D'Agostino C, et al. Intranasal delivery of mesenchymal stem cell-derived extracellular vesicles exerts immunomodulatory and neuroprotective effects in a 3xTg model of Alzheimer's disease[J]. Stem Cells Transl Med, 2020, 9(9):1068-1084.
64
Liu A, Liang X, Wang W, et al. Human umbilical cord mesenchymal stem cells ameliorate colon inflammation via modulation of gut microbiota-SCFAs-immune axis[J]. Stem Cell Res Ther, 2023,14(1):271. doi: 10.1186/s13287-023-03471-9.
65
Lee JY, Tuazon JP, Ehrhart J, et al. Gutting the brain of inflammation:A key role of gut microbiome in human umbilical cord blood plasma therapy in Parkinson's disease model[J]. J Cell Mol Med, 2019,23(8):5466-5474.
66
Lee JY, Tuazon JP, Corey S, et al. A gutsy move for cell-based regenerative medicine in Parkinson's disease: targeting the gut microbiome to sequester inflammation and neurotoxicity[J]. Stem Cell Rev Rep, 2019, 15(5):690-702.
67
Lee JY, Wang ZJ, Moscatello A, et al. Inflammatory gut as a pathologic and therapeutic target in Parkinson's disease[J]. Cell Death Discov,2022, 8(1):396.doi: 10.1038/s41420-022-01175-2.
68
Lee JY, Castelli V, Sanberg PR, et al. Probing gut participation in Parkinson's disease pathology and treatment via stem cell therapy[J].Int J Mol Sci, 2023, 24(13):10600.doi: 10.3390/ijms241310600.
69
Pu Y, Wu Q, Zhang Q, et al. Mesenchymal stem-cell-derived microvesicles ameliorate MPTP-induced neurotoxicity in mice: a role of the gut-microbiota-brain axis[J]. Psychopharmacology, 2023,240(5):1103-1118.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[3] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[4] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[5] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[6] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[7] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[8] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[9] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[10] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[11] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[12] 张益帆, 耿晓东, 冀雨薇, 张可颖, 林淑芃, 蔡广研, 陈香美, 洪权. 富亮氨酸α-2糖蛋白1增强间充质干细胞对急性肾损伤的疗效研究[J]. 中华肾病研究电子杂志, 2024, 13(01): 16-25.
[13] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[14] 白璐, 李青霞, 冯一卓, 刘雪倩, 刘若琪, 曲卓敏, 赵凌霞. 丁酸盐治疗糖尿病肾病的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(03): 303-308.
[15] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
阅读次数
全文


摘要