切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (02) : 73 -82. doi: 10.3877/cma.j.issn.2095-1221.2024.02.002

论著

间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析
凌淑洵1, 涂玥2,(), 刘思逸2   
  1. 1. 210017 南京中医药大学第二附属医院江苏省第二中医院肾内科
    2. 210023 南京中医药大学针灸推拿学院·养生康复学院 中医养生学教研室
  • 收稿日期:2024-01-26 出版日期:2024-04-01
  • 通信作者: 涂玥
  • 基金资助:
    国家自然科学基金(82174472); 江苏省自然科学基金委员会面上项目(BK20211298)

Visualization analysis on knowledge map of mesenchymal stem cells in the research field of chronic kidney disease

Shuxun Ling1, Yue Tu2,(), Siyi Liu2   

  1. 1. Department of Nephrology, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Second Chinese Medicine Hospital, Nanjing 210023, China
    2. Department of TCM Health Preservation, Acupuncture and moxibustion and Massage College·Health Preservation and Rehabilitation College, Nanjing University of Chinese Medicine, Nanjing 210023, China
  • Received:2024-01-26 Published:2024-04-01
  • Corresponding author: Yue Tu
引用本文:

凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.

Shuxun Ling, Yue Tu, Siyi Liu. Visualization analysis on knowledge map of mesenchymal stem cells in the research field of chronic kidney disease[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(02): 73-82.

目的

基于间充质干细胞(MSCs)在慢性肾脏病(CKD)研究领域相关文献的系统分析,探究该领域研究现状、发展趋势及中医药的应用前景。

方法

该研究通过4个经典的国内外期刊数据库检索文献并进行筛选,利用CiteSpace 6.1.R6软件绘制知识图谱、分析相关数据。

结果

共纳入36篇中文文献,712篇英文文献;中文文献整体发文量较少;2004年至2023年每年发表文献量总体呈上升趋势;基金资助主要集中在美国、中国和德国;共纳入583位作者,尚未形成核心作者团队;共纳入57个国家,美国、中国和韩国为核心研究国家,美国、中国、韩国和沙特在研究中起到重要的链接作用;共被引频次最高的期刊是《KIDNEY INTERNATIONAL》,但尚未形成核心期刊;高频被引文献都是2009年以后发表,包括实验研究、临床研究和综述三类;共纳入548个关键词,聚类关键词首位是肾脏纤维化。

结论

近年来MSCs在CKD领域的研究呈多作者、多团队的加速发展趋势,中国是本领域的核心研究国家之一,起到重要的链接作用。

Objective

Based on the literature on mesenchymal stem cells (MSCs) in the research field of chronic kidney disease (CKD) , this study made the systematic visualization analysis to explore the current status, hotspots and trends, and further speculate on the application of traditional Chinese medicine (TCM) in this field.

Methods

The literature was searched and filtered by four classic domestic and international journal databases. CiteSpace 6.1.R6 software was used to draw knowledge domain maps and analyze the data.

Results

A total of 36 Chinese articles and 712 English articles were included; The overall number of Chinese articles was small. From 2004 to 2023, the mmber of published articles per year generally showed an upward trend. Grants were mainly concentrated in the USA, China, and Germany. A total of 583 authors were included, but the core team of authors had not been formed yet. A total of 57 countries were included. Further, the USA, China, and Korea were the core research countries, and the USA, China, Korea, and Saudi Arabia played important linking roles in the research. The co-cited journal with the highest frequency was KIDNEY INTERNATIONAL. However, no core journals had been established in this research area. The references with the frequency citations were all published after 2009, and they included three categories: experimental studies, clinical studies and reviews. A total of 548 keywords were included. The top 1 clustering keyword was renal fibrosis. The hotspots of recent years were "microvesicles", "exosomes", and "inflammation".

Conclusion

In recent years, studies on MSCs in the research field of CKD have shown an accelerating trend of multi-authors and multi-teams. China was one of the core research countries in this field and played an essential linking role. Their hotspots focus on "microvesicles", "exosomes", and "inflammation".

图1 2004年至2023年年度发文量折线图
图2 作者合作关系图谱
表1 发文量与共被引前5的作者
图3 国家合作关系图谱
图4 机构合作关系图谱
表2 发文量前10的国家和机构
表3 共被引频次排名前6的被引文献
图5 关键词共现图谱
图6 关键词聚类时间线图
表4 关键词聚类分析信息表
图7 关键词突现分析图谱
1
Kalantar-Zadeh K, Jafar TH, Nitsch D, et al. Chronic kidney disease[J]. Lancet, 2021, 398(10302):786-802.
2
Habiba UE, Khan N, Greene DL, et al. The therapeutic effect of mesenchymal stem cells in diabetic kidney disease[J]. J Mol Med (Berl), 2024, 102(4):537-570.
3
Li E, Xu J, Liu N, et al. Application potential of extracellular vesicles derived from mesenchymal stem cells in renal diseases[J]. Stem Cells, 2024, 42(3):216-229.
4
Li W, Chen W, Sun L. An update for mesenchymal stem cell therapy in lupus nephritis[J]. Kidney Dis(Basel), 2021, 7(2):79-89.
5
Yun CW, Lee SH. Potential and therapeutic efficacy of cell-based therapy using mesenchymal stem cells for acute/chronic kidney disease[J]. Int J Mol Sci, 2019, 20(7):1619. doi: 10.3390/ijms20071619.
6
Koniusz S, Andrzejewska A, Muraca M, et al. Extracellular vesicles in physiology, pathology, and therapy of the immune and central nervous system, with focus on extracellular vesicles derived from mesenchymal stem cells as therapeutic tools[J]. Front Cell Neurosci, 2016, 10:109. doi: 10.3389/fncel.2016.00109.
7
Xiang E, Han B, Zhang Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis[J]. Stem Cell Res Ther, 2020, 11(1):336. doi: 10.1186/s13287-020-01852-y.
8
Cao JY, Wang B, Tang TT, et al. Exosomal miR-125b-5p deriving from mesenchymal stem cells promotes tubular repair by suppression of p53 in ischemic acute kidney injury[J]. Theranostics, 2021, 11(11):5248-5266.
9
惠小珊, 白京, 周思远, 等. 中医药调控干细胞诱导分化的理论机制[J]. 中国组织工程研究, 2022, 26(7):1125-1129.
10
王诗琦, 张金生. 中医药调控缺血缺氧微环境对骨髓间充质干细胞增殖、分化及衰老的影响[J]. 中国组织工程研究, 2021, 25(7):1129-1134.
11
Nicholson DN, Greene CS. Constructing knowledge graphs and their biomedical applications[J]. Comput Struct Biotechnol J, 2020, 18:1414-1428.
12
Chen C, Song M. Visualizing a field of research: a methodology of systematic scientometric reviews[J]. PLoS One, 2019, 14(10): e0223994. doi: 10.1371/journal.pone.0223994.
13
Wang C, Meng Q. Global research trends of herbal medicine for pain in three decades (1990-2019):abibliometric analysis[J]. J Pain Res, 2021, 14:1611-1626.
14
Huang L, Shi X, Zhang N, et al. Bibliometric analysis of trends and issues in traditional medicine for stroke research: 2004-2018[J]. BMC Complement Med Ther, 2020, 20(1):39. doi: 10.1186/s12906-020-2832-x.
15
Gao Z, Zhang J, Liu GF, et al. Research trends from 2010 to 2020 for pain treatment with acupuncture: abibliometric analysis[J]. J Pain Res, 2021, 14:941-952.
16
闰伟东. 数字图书馆发展的可视化分析[J]. 公共图书馆, 2012(1): 30-34.
17
Kim SR, Zou X, Tang H, et al. Increased cellular senescence in the murine and human stenotic kidney: effect of mesenchymal stem cells[J]. J Cell Physiol, 2021, 236(2):1332-1344.
18
Aghajani Nargesi A, Lerman LO, Eirin A. Mesenchymal stem cell- derived extracellular vesicles for kidney repair: current status and looming challenges[J]. Stem Cell Res Ther, 2017, 8(1):273. doi: 10.1186/s13287-017-0727-7.
19
Eirin A, Zhu XY, Puranik AS, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate kidney inflammation[J]. Kidney Int, 2017, 92(1):114-124.
20
Zhang L, Zhu XY, Zhao Y, et al. Selective intrarenal delivery of mesenchymal stem cell-derived extracellular vesicles attenuates myocardial injury in experimental metabolic renovascular disease[J]. Basic Res Cardiol, 2020, 115(2):16. doi: 10.1007/s00395-019-0772-8.
21
Kwon SH, Woollard JR, Saad A, et al. Elevated urinary podocyte-derived extracellular microvesicles in renovascular hypertensive patients[J]. Nephrol Dial Transplant, 2017, 32(5):800-807.
22
Tögel F, Yang Y, Zhang P, et al. Bioluminescence imaging to monitor the in vivo distribution of administered mesenchymal stem cells in acute kidney injury[J]. Am J Physiol Renal Physiol, 2008, 295(1):F315-F321.
23
Tögel F, Cohen A, Zhang P, et al. Autologous and allogeneic marrow stromal cells are safe and effective for the treatment of acute kidney injury[J]. Stem Cells Dev, 2009, 18(3):475-485.
24
Tögel F, Zhang P, Hu Z, et al. VEGF is a mediator of the renoprotective effects of multipotent marrow stromal cells in acute kidney injury[J]. J Cell Mol Med, 2009, 13(8B):2109-2114.
25
Gupta S, Verfaillie C, Chmielewski D, et al. Isolation and characterization of kidney-derived stem cells[J]. J Am Soc Nephrol, 2006, 17(11):3028-3040.
26
Xing L, Song E, Yu CY, et al. Bone marrow-derived mesenchymal stem cells attenuate tubulointerstitial injury through multiple mechanisms in UUO model[J]. J Cell Biochem, 2019, 120(6):9737-9746.
27
Atashi F, Modarressi A, Pepper MS. The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review[J]. Stem Cells Dev, 2015, 24(10):1150-1163.
28
Cocozza F, Grisard E, Martin-Jaular L, et al. SnapShot: extracellular vesicles[J]. Cell, 2020, 182(1):262 -262.e1.
29
Birtwistle L, Chen XM, Pollock C. Mesenchymal stem cell-derived extracellular vesicles to the rescue of renal injury[J]. Int J Mol Sci, 2021, 22(12):6596.
30
Kholia S, Herrera Sanchez MB, Cedrino M, et al. Mesenchymal stem cell derived extracellular vesicles ameliorate kidney injury in aristolochic acid nephropathy[J]. Front Cell Dev Biol, 2020, 8:188. doi: 10.3389/fcell.2020.00188.
31
Choi HY, Kim TY, Lee M, et al. Kidney mesenchymal stem cell-derived extracellular vesicles engineered to express erythropoietin improve renal anemia in mice with chronic kidney disease[J]. Stem Cell Rev Rep, 2022, 18(3):980-992.
32
Xie C, Ouyang L, Chen J, et al. The emerging role of mesenchymal stem cells in vascular calcification[J]. Stem Cells Int, 2019, 2019: 2875189. doi: 10.1155/2019/2875189.
33
Wei W, Guo X, Gu L, et al. Bone marrow mesenchymal stem cell exosomes suppress phosphate-induced aortic calcification via SIRT6-HMGB1 deacetylation[J]. Stem Cell Res Ther, 2021, 12(1):235. doi: 10.1186/s13287-021-02307-8.
34
Li W, Wang L, Chu X, et al. Icariin combined with human umbilical cord mesenchymal stem cells significantly improve the impaired kidney function in chronic renal failure[J]. Mol Cell Biochem, 2017, 428(1-2):203-212.
35
郭志伯, 张晨洁, 马李娜, 等. 人羊膜间充质干细胞移植联合百令胶囊改善大鼠肾功能及血液高凝状态[J]. 中国组织工程研究, 2017, 21(1):133-139.
[1] 中华医学会器官移植学分会, 中国医师协会器官移植医师分会. 中国肝移植受者肾损伤管理临床实践指南(2023版)[J]. 中华移植杂志(电子版), 2023, 17(06): 321-331.
[2] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[3] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[4] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[5] 肖伍豪, 刘抗寒. 晚期慢性肾脏病患者骨质疏松症的治疗研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 92-96.
[6] 吴燕升, 张先闻, 王琳. 慢性肾脏病患者肠道微生态与免疫的关系研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 101-105.
[7] 张轶男, 朱国贞. 急性肾损伤向慢性肾脏病转变研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 106-112.
[8] 洪权. 肾脏疾病中的代谢重编程:新机制与新的治疗机会[J]. 中华肾病研究电子杂志, 2024, 13(01): 60-60.
[9] 张益帆, 耿晓东, 冀雨薇, 张可颖, 林淑芃, 蔡广研, 陈香美, 洪权. 富亮氨酸α-2糖蛋白1增强间充质干细胞对急性肾损伤的疗效研究[J]. 中华肾病研究电子杂志, 2024, 13(01): 16-25.
[10] 韦美菊, 潘玲. 肠道菌群-胆汁酸代谢轴在慢性肾脏病中的研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(02): 219-222.
[11] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
[12] 袁蔡骏, 闻萍, 徐玲玲. 连续血糖监测在慢性肾脏病合并糖尿病患者中的应用研究进展[J]. 中华临床医师杂志(电子版), 2024, 18(01): 79-82.
[13] 易成, 韦伟, 赵宇亮. 急性肾脏病的概念沿革[J]. 中华临床医师杂志(电子版), 2023, 17(08): 906-910.
[14] 刘艳苹, 郝艳华, 岳志浩, 于平平, 刘子轩. 智慧应急概念梳理及国内文献研究热点与趋势分析[J]. 中华卫生应急电子杂志, 2024, 10(01): 33-40.
[15] 罗婷, 邱令智, 易东, 鄢华. 线粒体功能障碍与心血管疾病、缺血性脑卒中及慢性肾脏病关系的研究进展[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 60-63.
阅读次数
全文


摘要