切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (02) : 65 -72. doi: 10.3877/cma.j.issn.2095-1221.2024.02.001

论著

miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡
王颖1, 吴德平2, 刘煜1, 刘国栋3,()   
  1. 1. 430012 武汉,中国人民解放军95829部队医院检验病理科
    2. 210002 南京,南京大学医学院附属金陵医院 (东部战区总医院)核医学科
    3. 430012 武汉,中国人民解放军95829部队医院卫勤处
  • 收稿日期:2024-01-15 出版日期:2024-04-01
  • 通信作者: 刘国栋

MiR-9-5p reduces neuroinflammation and apoptosis in rats with traumatic brain injury by down-regulating CXCR4

Ying Wang1, Deping Wu2, Yu Liu1, Guodong Liu3,()   

  1. 1. Department of Laboratory Pathology, 95829 Army Hospital of the People's Liberation Army of China, Wuhan 430012, China
    2. Department of Nuclear Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University/General Hospital of Eastern Theater Command, Nanjing 210002, China
    3. Department of Medical Service, 95829 Army Hospital of the People's Liberation Army of China, Wuhan 430012, China
  • Received:2024-01-15 Published:2024-04-01
  • Corresponding author: Guodong Liu
引用本文:

王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.

Ying Wang, Deping Wu, Yu Liu, Guodong Liu. MiR-9-5p reduces neuroinflammation and apoptosis in rats with traumatic brain injury by down-regulating CXCR4[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(02): 65-72.

目的

探讨miR-9-5p调控CXC型趋化因子受体4 (CXCR4)减轻创伤性脑损伤(TBI)大鼠的神经炎症和细胞凋亡的机制。

方法

采用液压可控损伤装置制备TBI大鼠模型,随机分为模型组、miR-9-5p agomir组、miR-9-5p阴性对照组、CXCR4激动剂NUCC-390(2.2 mg/ kg)组、miR-9-5p agomir+NUCC-390组,每组12只大鼠,另选12只大鼠设为假手术组。药物分组干预处理后,评测大鼠神经功能缺损评分;Morris水迷宫实验检测大鼠认知能力,比较各组平均逃避潜伏期、穿越平台所在位置次数;TUNEL染色检测大鼠海马神经元凋亡率;试剂盒检测大鼠血清与脑组织中炎性介质白细胞介素-18 (IL-18)、诱导型一氧化氮合酶(iNOS)、肿瘤坏死因子-α (TNF-α)水平;qRT-PCR实验检测大鼠脑组织miR-9-5p、CXCR4 mRNA表达水平;Western blot法检测大鼠脑组织CXCR4及凋亡蛋白Bcl-2、Bcl-2相关X蛋白(Bax)、cleaved caspase-3、caspase-3表达水平。多组间比较采用单因素方差分析,组间两两比较采用SNK-q检验。

结果

与假手术组比较,模型组大鼠穿越平台所在位置次数、脑组织miR-9-5p、Bcl-2表达降低,神经功能缺损评分、平均逃避潜伏期、海马神经元凋亡率[(43.92 ± 4.75)%比(1.31 ± 0.36)%]、血清与脑组织中IL-18、iNOS及TNF-α水平[血清:(156.45 ± 20.62)比(64.59 ± 12.04)ng/L、(67.81 ± 9.56)比(12.03 ± 2.68)U/mL、(78.69 ± 8.56)比(31.52 ± 5.03) ng/ L,脑组织:(169.47 ± 15.61)比(75.58 ± 11.33)ng/g pro、(177.86 ± 19.54)比(82.04 ± 9.67)U/g pro、(151.67 ± 12.57)比(61.58 ± 6.53)ng/g pro]、脑组织CXCR4 mRNA及蛋白表达水平[(1.54 ± 0.32)比(0.97 ± 0.17)、(1.03 ± 0.12)比(0.41 ± 0.10)]、Bax、cleaved caspase-3、caspase-3蛋白表达水平升高(P < 0.05)。与模型组比较,miR-9-5p agomir组大鼠穿越平台所在位置次数、脑组织miR-9-5p、Bcl-2表达均升高,神经功能缺损评分、平均逃避潜伏期、海马神经元凋亡率[(2.10 ± 0.68)%比(43.92 ± 4.75)%]、血清与脑组织中IL-18、iNOS及TNF-α水平[血 清:(68.03 ± 13.15)比(156.45 ± 20.62)ng/L、(14.12 ± 3.71)比(67.81 ± 9.56)U/mL、(33.41 ± 6.40)比(78.69 ± 8.56) ng/ L,脑组织:(82.01 ± 14.16)比(169.47 ± 15.61) ng/ g pro、(91.89 ± 11.72) U/ g pro比(177.86 ± 19.54)U/g pro、(70.01 ± 7.42)比(151.67 ± 12.57) ng/ g pro]、脑组织CXCR4 mRNA及蛋白表达水平[(1.08 ± 0.21)比(1.54 ± 0.32)、(0.45 ± 0.09)比(1.03 ± 0.12)]、脑组织CXCR4 mRNA及蛋白表达水平、Bax、cleaved caspase-3、caspase-3蛋白表达水平均降低(P < 0.05);NUCC-390可减弱miR-9-5p agomir对TBI大鼠神经功能的改善作用。

结论

miR- 9-5p可通过下调CXCR4表达,减轻神经炎症,抑制海马神经元细胞凋亡,改善TBI大鼠神经功能,增强其认知能力。

Objective

To explore the mechanism of miR-9-5p in reducing neuroinflammation and apoptosis in rats with traumatic brain injury (TBI) by regulating CXC chemokine receptor 4 (CXCR4) .

Methods

The rats with TBI model were constructed by a hydraulic controllable injury device. They were randomly divided into the model group, miR-9-5p agomir group, miR- 9-5p negative control group, CXCR4 agonist NUCC-390 (2.2 mg/kg) group, and miR-9-5p agomir+NUCC-390 group, with 12 rats per group, another 12 rats were selected as the sham group. After intervention with drugs, the neurological deficit scores of rats were evaluated; The Morris water maze experiment was used to test the cognitive ability of rats, and the average escape latency and the times of crossing platform of each group were compared; TUNEL staining was used to detect the apoptosis rate of hippocampal neurons in rats; kits were used to detect the levels of inflammatory mediator interleukin-18 (IL-18) , inducible nitric oxide synthase (iNOS) , and tumor necrosis factor-α (TNF-α) in serum and brain tissue of rats; qRT-PCR experiment was used to detect the expression level of miR-9-5p, CXCR4 mRNA in rat brain tissue; Western blot was used to detect the expression levels of CXCR4, apoptosis protein Bcl- 2, Bcl-2 associated X protein (Bax) , cleaved caspase-3, and caspase-3 in rat brain tissue. One- way analysis of variance was used for comparison among multiple groups, and SNK-q test was used for further pairwise comparison.

Results

Compared with the sham group, the times of crossing platform, brain tissue miR-9-5p, Bcl- 2 expression level of rats in the model group was reduced, the neurological impairment score, average escape latency, hippocampal neuron apoptosis rate [ (43.92 ± 4.75) % vs (1.31 ± 0.36) %], serum and brain tissue IL-18, iNOS and TNF-α levels [serum: (156.45 ± 20.62) vs (64.59 ± 12.04) ng/L, (67.81 ± 9.56) vs (12.03 ± 2.68) U/mL, (78.69 ± 8.56) vs (31.52 ± 5.03) ng/L; brain tissue: (169.47 ± 15.61) vs (75.58 ± 11.33) ng/g pro, (177.86 ± 19.54) vs (82.04 ± 9.67) U/g pro, (151.67 ± 12.57) vs (61.58 ± 6.53) ng/g pro], brain tissue CXCR4 mRNA and protein expression levels [ (1.54 ± 0.32) vs (0.97 ± 0.17) , (1.03 ± 0.12) vs (0.41 ± 0.10) ], Bax, cleaved caspase-3, and caspase-3 protein expression levels were increased (P < 0.05) . Compared with the model group, the times of crossing platform, brain tissue miR-9-5p, Bcl-2 expression level of rats in the miR-9-5p agomir group was increased, the neurological impairment score, average escape latency, hippocampal neuron apoptosis rate [ (2.10 ± 0.68) % vs (43.92 ± 4.75) %], serum and brain tissue IL-18, iNOS and TNF-α levels [serum: (68.03 ± 13.15) vs (156.45 ± 20.62) ng/L, (14.12 ± 3.71) vs (67.81 ± 9.56)  U/ mL, (33.41 ± 6.40) vs (78.69 ± 8.56) ng/L; brain tissue: (82.01 ± 14.16) vs (169.47 ± 15.61) ng/g pro, (91.89 ± 11.72) vs (177.86 ± 19.54) U/g pro, (70.01 ± 7.42) vs (151.67 ± 12.57)  ng/g pro], brain tissue CXCR4 mRNA and protein expression levels [ (1.08 ± 0.21) vs (1.54 ± 0.32, (0.45 ± 0.09) vs (1.03 ± 0.12) ], Bax, cleaved caspase-3, and caspase-3 protein expression levels were decreased (P < 0.05) ; NUCC-390 could attenuate the improving effect of miR-9-5p agomir on nerve function in TBI rats.

Conclusion

MiR-9-5p could down-regulate the expression of CXCR4 to reduce neuroinflammation, inhibit hippocampal neuronal cell apoptosis, improve the nerve function of TBI rats, and enhance their cognitive ability.

表1 引物序列信息
图1 TUNEL染色观察各组大鼠海马组织神经元凋亡情况(×200,海马CA1区)注:a图为假手术组;b图为模型组;c图为miR-9-5p agomir组;d图为miR-9-5p阴性对照组;e图为NUCC-390组;f图为miR-9-5p agomir+ NUCC-  390组;n为动物数,标尺50 μm
表2 各组大鼠神经功能缺损评分、海马神经元凋亡率、平均逃避潜伏期及穿越平台所在位置次数比较(n = 12, ± s
表3 大鼠血清与脑组织炎性介质水平(n = 12, ± s
图2 Western blot检测各组大鼠脑组织CXCR4及凋亡蛋白表达注:1为假手术组;2为模型组;3为miR-9-5p agomir组;4为miR-9-5p阴性对照组;5为NUCC-390组;6为miR-9-5p agomir+NUCC-390组
表4 大鼠脑组织miR-9-5p、CXCR4 mRNA与蛋白、凋亡蛋白表达水平(n = 12, ± s
1
Jamjoom AAB, Rhodes J, Andrews PJD, et al. The synapse in traumatic brain injury[J]. Brain, 2021, 144(1):18-31.
2
Graham NSN, Jolly A, Zimmerman K, et al. Diffuse axonal injury predicts neurodegeneration after moderate-severe traumatic brain injury[J]. Brain, 2020, 143(12):3685-3698.
3
Mele C, Pingue V, Caputo M, et al. Neuroinflammation and hypothalamo-pituitary dysfunction: focus of traumatic brain injury[J]. Int J Mol Sci, 2021, 22(5):2686. DOI:10.3390/ijms22052686.
4
Delage C, Taib T, Mamma C, et al. Traumatic brain injury: an age-dependent view of post-traumatic neuroinflammation and its treatment[J]. Pharmaceutics, 2021, 13(10):1624. DOI:10.3390/pharmaceutics13101624.
5
Wang F, Chang S, Li J, et al. Lithium alleviated spinal cord injury (SCI)-induced apoptosis and inflammation in rats via BDNF-AS/miR-9-5p axis[J]. Cell Tissue Res, 2021, 384(2):301-312.
6
Wu J, He J, Tian X, et al. microRNA-9-5p alleviates blood-brain barrier damage and neuroinflammation after traumatic brain injury[J]. J Neurochem, 2020, 153(6):710-726.
7
Yi J, Gao ZF. MicroRNA-9-5p promotes angiogenesis but inhibits apoptosis and inflammation of high glucose-induced injury in human umbilical vascular endothelial cells by targeting CXCR4[J]. Int J Biol Macromol, 2019, 130:1-9.
8
Pan Z, Shan Q, Gu P, et al. miRNA-23a/CXCR4 regulates neuropathic pain via directly targeting TXNIP/NLRP3 inflammasome axis[J]. J Neuroinflammation, 2018, 15(1):29. DOI:10.1186/s12974-018-1073-0.
9
Friedman-Levi Y, Liraz-Zaltsman S, Shemesh C, et al. Pharmacological blockers of CCR5 and CXCR4 improve recovery after traumatic brain injury[J]. Exp Neurol, 2021, 338:113604. DOI:10.1016/j.expneurol.2021.113604.
10
李剑侠,黄先锋,邹琳清,等.单唾液酸四己糖神经节苷脂钠对大鼠创伤性脑损伤的保护作用[J]. 中国临床研究, 2020, 33(2):150-153.
11
Stazi M, D'Este G, Mattarei A, et al. An agonist of the CXCR4 receptor accelerates the recovery from the peripheral neuroparalysis induced by Taipan snake envenomation[J]. PLoS Negl Trop Dis, 2020, 14(9): e0008547. DOI:10.1371/journal.pntd.0008547.
12
Longa EZ, Weinstein PR, Carlson SR, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke, 1989, 20(1):84-91.
13
Shulman LM. Emotional traumatic brain injury[J]. Cogn Behav Neurol, 2020, 33(4):301-303.
14
Witcher KG, Bray CE, Chunchai T, et al. Traumatic brain injury causes chronic cortical inflammation and neuronal dysfunction mediated by microglia[J]. J Neurosci, 2021, 41(7):1597-1616.
15
Wu H, Zheng J, Xu S, et al. Mer regulates microglial/macrophage M1/M2 polarization and alleviates neuroinflammation following traumatic brain injury[J]. J Neuroinflammation, 2021, 18(1):2. DOI:10.1186/s12974-020-02041-7.
16
Wang J, Hou Y, Zhang L, et al. Estrogen attenuates traumatic brain injury by inhibiting the activation of microglia and astrocyte-mediated neuroinflammatory responses[J]. Mol Neurobiol, 2021, 58(3):1052-1061.
17
Jin Z, Ren J, Qi S. Exosomal miR-9-5p secreted by bone marrow-derived mesenchymal stem cells alleviates osteoarthritis by inhibiting syndecan-1[J]. Cell Tissue Res, 2020, 381(1):99-114.
18
Mai CL, Tan Z, Xu YN, et al. CXCL12-mediated monocyte transmigration into brain perivascular space leads to neuroinflammation and memory deficit in neuropathic pain[J]. Theranostics, 2021, 11(3):1059-1078.
19
Liraz-Zaltsman S, Friedman-Levi Y, Shabashov-Stone D, et al. Chemokine Receptors CC Chemokine Receptor 5 and C-X-C Motif Chemokine Receptor 4 are new therapeutic targets for brain recovery after traumatic brain injury[J]. J Neurotrauma, 2021, 38(14):2003-2017.
20
Duan Y, Meng Y, Gao Z, et al. microRNA-9-5p protects liver sinusoidal endothelial cell against oxygen glucose deprivation/reperfusion injury[J]. Open Life Sci, 2021, 16(1):375-383.
[1] 王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J]. 中华关节外科杂志(电子版), 2024, 18(02): 375-380.
[2] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[3] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[4] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[5] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[6] 唐龙观, 邬绿莹, 王海红, 陈婉丝, 杨盛英. MTHFR基因多态性与胎盘细胞凋亡的相关性研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 272-276.
[7] 朱先理, 王守森. 大语言模型在创伤性脑损伤病历书写的应用前景[J]. 中华神经创伤外科电子杂志, 2024, 10(01): 55-57.
[8] 王如海, 曹祥记, 王绅, 张敏, 韩超, 于强, 胡海成, 李习珍. 凝血指标对中型创伤性脑损伤患者进展性出血性损伤的预测能力[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 343-349.
[9] 唐春雨, 李倩, 郭姗姗, 叶奇, 张丹. 创伤性颅脑损伤神经生理学特征[J]. 中华神经创伤外科电子杂志, 2023, 09(06): 367-371.
[10] 胡贤瑞, 伍振国, 何竟. 高压氧治疗创伤性脑损伤患者认知功能障碍疗效的Meta分析[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 21-36.
[11] 邸志娟, 李红玲. HBOT在创伤性脑损伤患者中的应用及研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 373-378.
[12] 谢森, 韩轶鹏, 秦至臻, 赵卫良, 毛更生. 脑损伤后慢性炎症反应致巨大占位效应一例报道[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(06): 379-381.
[13] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[14] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
[15] 刘天姿, 王宝军. Toll样受体4在阿尔茨海默病中的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(04): 404-409.
阅读次数
全文


摘要