切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (04) : 193 -203. doi: 10.3877/cma.j.issn.2095-1221.2024.04.001

论著

姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤
季加翠1, 孙春斌2, 罗恩丽3,()   
  1. 1. 250014 济南,山东省精神卫生中心
    2. 100083,北京科技大学化学与生物工程学院
    3. 518116 深圳,广东深圳大学附属华南医院中医二科
  • 收稿日期:2024-02-07 出版日期:2024-08-01
  • 通信作者: 罗恩丽
  • 基金资助:
    国家自然科学基金(82374567); 广东省自然基金面上项目(2023A1515012779); 深圳市科技创新委员会基础研究面上项目(JCYJ20210324093213035)

Curcumin alleviates LPS-induced neuroinflammatory damage of microglia by regulating the NF-κB/NLRP3 pathway

Jiacui Ji1, Chunbin Sun2, Enli Luo3,()   

  1. 1. Shandong Mental Health Center, Jinan 250014, China
    2. School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
    3. Second Department of Traditional Chinese Medicine, South China Hospital, Shenzhen University, Shenzhen 518116, China
  • Received:2024-02-07 Published:2024-08-01
  • Corresponding author: Enli Luo
引用本文:

季加翠, 孙春斌, 罗恩丽. 姜黄素通过调节NF-κB/NLRP3通路减轻LPS诱导小胶质细胞神经炎症损伤[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 193-203.

Jiacui Ji, Chunbin Sun, Enli Luo. Curcumin alleviates LPS-induced neuroinflammatory damage of microglia by regulating the NF-κB/NLRP3 pathway[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(04): 193-203.

目的

研究姜黄素对脂多糖(LPS)诱导的神经细胞炎症的抑制作用,并探讨姜黄素抑制炎症的分子机制。

方法

以小胶质细胞(BV2)为研究对象,对照不做任何干预,模型组给予100 ng/mL LPS干预24 h构建神经炎症细胞模型,1、5、10 μmol/L姜黄素+ 100 ng/mL LPS干预24 h,应用细胞免疫荧光法检测BV2细胞内白细胞介素6 (IL-6)、IL-10、p-NF-κB、NLRP3、Bax和Bcl-2蛋白表达水平;应用Western blot检测NF-κB/NLRP3信号通路蛋白表达水平;采用ELISA法检测各组细胞上清肿瘤坏死因子α (TNF-α)、IL-1β和iNOS含量。给予NF-κB抑制剂BAY 11-7082后,检测BV2细胞内IL-6、IL-10、Bax和Bcl-2蛋白的表达水平。实验数据采用t检验、单因素方差分析和Dunnett-t检验方法分析。

结果

与对照比较,模型组炎症因子TNF-α(398.80 ± 11.39比113.00 ± 5.93)、IL-1β (592.40 ± 11.32比206.70 ± 6.81)、IL-6 (1.73 ± 0.09比0.99 ± 0.03)、iNOS(88.39 ± 2.14比32.48 ± 1.71)、p-NF-κB (1.92 ± 0.02比1.02 ± 0.05)、NLRP3蛋白表达水平(10.33 ± 0.61比1.02 ± 0.05)和凋亡相关蛋白Bax表达水平(2.68 ± 0.10比1.05 ± 0.08)升高,IL-10蛋白表达水平(0.82 ± 0.03比1.01 ± 0.06)和Bcl-2蛋白表达水平(0.70 ± 0.02比1.11 ± 0.06)降低(P均< 0.05)。Western blot结果表明,与对照比较,模型组p-NF-κB (2.65 ± 0.06比1.04 ± 0.05)和NLRP3蛋白表达水平(4.380 ± 0.08比1.07 ± 0.04)升高(P < 0.001)。与模型组相比,高浓度姜黄素处理后TNF-α (207.90 ± 7.37比398.80 ± 11.39)、IL-1β (405.40 ± 6.56比592.40 ± 11.32)、IL-6 (1.09 ± 0.05比1.73 ± 0.09)、iNOS (39.52 ± 1.32比88.39 ± 2.14)、p-NF-κB (01.21 ± 0.05比1.92 ± 0.02)和NLRP3蛋白表达水平(1.51 ± 0.11比10.33 ± 0.61)降低,IL-10蛋白表达水平(2.61 ± 0.03比0.82 ± 0.03)升高;与模型组相比,高浓度姜黄素处理后Bax蛋白表达水平(0.80 ± 0.04比2.68 ± 0.10)降低,Bcl-2蛋白表达水平(1.93 ± 0.02比0.70 ± 0.02)升高(P < 0.001)。与模型组相比,NF-κB抑制剂作用后,IL-6蛋白表达水平(0.88 ± 0.06比2.70 ± 0.12)和Bax蛋白表达水平(1.14 ± 0.04比3.63 ± 0.16)降低,IL-10蛋白表达水平(1.58 ± 0.03比0.52 ± 0.04)和Bcl-2蛋白表达水平(1.48 ± 0.11比0.53 ± 0.05)升高(P均< 0.001)。Western blot结果表明,与模型组相比,1、5、10 μmol/L姜黄素处理后p-NF-κB和NLRP3蛋白表达水平降低,且呈浓度依赖性(0.40 ± 0.02比2.65 ± 0.06、0.21 ± 0.02比4.38 ± 0.08,P < 0.001)。

结论

姜黄素可降低LPS诱导的小胶质细胞神经炎症损伤,其机制可能与下调NF-κB/NLRP3信号通路,抑制炎症和细胞凋亡有关。

Objective

To investigatethe inhibitory effect and mechanisms of curcumin on lipopolysaccharide (LPS) -induced inflammation of nerve cells.

Methods

Microglia (BV2) was used in current study and named control group (without any treatment), model group (treated with LPS 100 ng/mL for 24 h) and treatment group (curcumin at 1, 5, 10 μmol/L concentration plus 100 ng/ml LPS for 24 h). The expression levels of interleukin-6 (IL-6), IL-10, p-NF-κB, NLRP3, Bax and Bcl-2 in BV2 cells were detected by immunofluorescence assay. Western blot was used to detect the protein expression of NF-κB/NLRP3 signaling pathway. The contents of tumor necrosis factor α (TNF-α), IL-1β and iNOS were detected by ELISA. In addition, the expression levels of IL-6, IL-10, Bax and Bcl-2 proteins in BV2 cells were detected after administration of NF-κB inhibitor BAY 11-7082. The experimental data were analyzed by t test, one-way ANOVA and Dunnett-t test.

Results

Compared with the control group, the inflammatory cytokines TNF-α (398.80 ± 11.39 vs 113.00 ± 5.93), IL-1β (592.40 ± 11.32 vs 206.70 ± 6.81), IL-6 (1.73 ± 0.09 vs 0.99 ± 0.03), iNOS (88.39 ± 2.14 vs 32.48 ± 1.71), p-NF-κB (1.92 ± 0.02 vs 1.02 ± 0.05), INOS (88.39 ± 2.14 vs 32.48 ± 1.71), NLRP3 (10.33 ± 0.61 vs 1.02 ± 0.05) and apoptosis-related protein Bax (2.68 ± 0.10 vs 1.05 ± 0.08) in the model group were increased. IL-10 (0.82 ± 0.03 vs 1.01 ± 0.06) and Bcl-2 protein expression levels (0.70 ± 0.02 vs 1.11 ± 0.06) were decreased (P < 0.05). Western blot results showed that compared with the control group, the protein expression levels of p-NF-κB (2.65 ± 0.06 vs 1.04 ± 0.05) and NLRP3 (4.38 ± 0.08 vs 1.07 ± 0.04) in the model group were increased (P < 0.001). Compared to the model group, the expression levels of TNF-α (207.90 ± 7.37 vs 398.80 ± 11.39), IL-1β (405.40 ± 6.56 vs 592.40 ± 11.32), IL-6 (1.09 ± 0.05 vs 1.73 ± 0.09), iNOS (39.52 ± 1.32 vs 88.39 ± 2.14), p-NF-κB (01.21 ± 0.05 vs 1.92 ± 0.02) and NLRP3 (1.51 ± 0.11 vs 10.33 ± 0.61) were decreased, and the expression levels of IL-10 (2.61 ± 0.03 vs 0.82 ± 0.03) were increased after treatment with high concentration of curcumin. Compared with the model group, the expression level of Bax protein was decreased (0.80 ± 0.04 vs 2.68 ± 0.10), while the expression level of Bcl-2 protein was increased after high concentration curcumin treatment (1.93 ± 0.02 vs 0.70 ± 0.02) (P < 0.001). Compared with the model group, the expression levels of IL-6 (0.88 ± 0.06 vs 2.70 ± 0.12) and Bax protein (1.14 ± 0.04 vs 3.63 ± 0.16) were decreased, while the expression levels of IL-10 (1.58 ± 0.03 vs 0.52 ± 0.04) and Bcl-2 protein (1.48 ± 0.11 vs 0.53 ± 0.05) were increased after NF-κB inhibitor treatment (P < 0.001). Western blot results showed that compared with the model group, the expression levels of p-NF-κB and NLRP3 protein were decreased after curcumin treatment with 1, 5 and 10 μmol/L concentration in dose-dependent manner (0.40 ± 0.02 vs 2.65 ± 0.06, 0.21 ± 0.02 vs 4.38 ± 0.08, P < 0.001) .

Conclusion

Curcumin could reduce LPS-induced neuroinflammatory damage in microglia, and its mechanism may be related to down-regulating NF-κB/NLRP3 signaling pathway, inhibiting inflammation and apoptosis.

图1 不同浓度的姜黄素对BV2小胶质细胞增殖的影响注:与0 μmol/L比较,aP < 0.01,bP < 0.001;ns表示差异无统计学意义
图2 IL-6和IL-10荧光定量分析与模型比较,aP < 0.001,bP < 0.05
图3 荧光显微镜观察BV2细胞IL-6和IL-10蛋白免疫荧光结果(×20)
图4 ELISA检测BV2小胶质细胞上清中TNF-α、IL-1β和iNOS的含量注:a ~ c分别TNF-α、IL-1β和iNOS的含量;与模型比较,aP < 0.001
图5 p-NF-κB和NLRP3蛋白荧光定量分析注:与模型比较,aP < 0.001
图6 荧光显微镜观察BV2细胞p-NF-κB和NLRP3蛋白免疫荧光结果(×20)
图7 BV2细胞p-NF-κB和NLRP3蛋白表达注:a图为BV2细胞p-NF-κB和NLP3蛋白表达水平;b、c图分别为p-NF-κB和NLRP3蛋白相对表达水平;与模型比较,aP < 0.001
图8 荧光显微镜观察BV2细胞Bax和Bcl-2蛋白免疫荧光结果(×20)
图9 Bax和Bcl-2蛋白荧光定量分析注:与模型比较,aP < 0.001,bP < 0.01
图10 IL-10和IL-6蛋白荧光定量分析注:与模型比较,aP < 0.001,bP < 0.01
图11 荧光显微镜观察BV2细胞IL-10和IL-6蛋白免疫荧光结果(×20)
图12 荧光显微镜观察BV2细胞Bax和Bcl-2蛋白免疫荧光结果(×20)
图13 Bax和Bcl-2蛋白荧光定量分析注:与模型比较,aP < 0.001,bP < 0.01,c P < 0.05
1
朱睿放, 张宇, 卢应梅. 小胶质细胞及其介导的神经炎症在帕金森病中的作用[J]. 南京医科大学学报(自然科学版), 2023, 43(4):569-576.
2
Ransohoff RM. How neuroinflammation contributes to neurodegeneration[J]. Science, 2016, 353(6301):777-783.
3
何欢, 吴霞. 脂多糖致帕金森病动物模型研究进展[J]. 药学研究, 2015, 34(9):530-533.
4
Liu H, Wang X, Chen L, et al. Microglia modulate stable wakefulness via the thalamic reticular nucleus in mice[J]. Nat Commun, 2021, 12(1):4646. doi: 10.1038/s41467-021-24915-x.
5
宋苏蒙, 王丽琨. 小胶质细胞极化M1/M2表型在脑出血后继发性损伤中的作用[J]. 中风与神经疾病杂志, 2021, 38(12):65-68.
6
刘家岐, 楚世峰, 张大永, 等. 小胶质细胞极化在帕金森病中的作用[J]. 中国药理学与毒理学杂志, 2019, 33(10):864.
7
Hu X, Leak RK, Shi Y, et al. Microglial and macrophage polarization—new prospects for brain repair[J]. Nat Rev Neurol, 2015, 11(1):56-64.
8
Zhang Z, Zhang Z, Lu H, et al. Microglial polarization and inflammatory mediators after intracerebral hemorrhage[J]. Mol Neurobiol, 2017, 54(3):1874-1886.
9
Boche D, Perry VH, Nicoll JA. Review:activation patterns of microglia and their identification in the human brain[J]. Neuropathol Appl Neurobiol, 2013, 39(1):3-18.
10
Orihuela R, Mcpherson CA, Harry GJ. Microglial M1/M2 polarization and metabolic states[J]. Br J Pharmacol, 2016, 173(4):649-665.
11
Kumar A, Loane DJ. Neuroinflammation after traumatic brain injury: opportunities for therapeutic intervention[J]. Brain Behav Immun, 2012, 26(8):1191-1201.
12
Zeng F, Wu Y, Li X, et al. Custom-made ceria nanoparticles show a neuroprotective effect by modulating phenotypic polarization of the microglia[J]. Angew Chem Int Ed Engl, 2018, 57(20): 5808-5812.
14
温洁,高颖颖.银杏素调节NF-κB/NLRP3/Caspase-1信号通路对高糖诱导肾小球内皮细胞焦亡的影响[J]. 河北医药, 2023, 45(15):2251-2255,2260.
15
Qiu Z, He Y, Ming H, et al. Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes[J]. J Diabetes Res, 2019, 2019:8151836. doi: 10.1155/2019/8151836.
16
Sivasinprasansn S, Wikan N, Tocharus J, et al. Pelargonic acid vanillylamide and rosuvastatin protect against oxidized low-density lipoprotein-induced endothelial dysfunction by inhibiting the NF-κB/NLRP3 pathway and improving cell-cell junctions[J]. Chem Biol Interact, 2021, 345:109572. doi: 10.1016/j.cbi.2021.109572.
17
李洪涛,邓宇,王添乐,等.丹参新醌乙减轻ox-LDL诱导的内皮细胞损伤:基于抑制NF-κB/NLRP3信号通路介导的细胞焦亡[J]. 南方医科大学学报, 2023, 43(8):1425-1431.
18
ŠPANIĆ E, Langer Horvat L, HOF PR, et al. Role of microglial cells in Alzheimer's Disease tau propagation[J]. Front Aging Neurosci, 2019, 11:271. doi: 10.3389/fnagi.2019.00271.
19
Zhang L, Zheng H, Wu R, et al. The effect of minocycline on amelioration of cognitive deficits and pro-inflammatory cytokines levels in patients with schizophrenia[J]. Schizophr Res, 2019, 212:92-8.
20
Zhang L, Zheng H, Wu R, et al. Minocycline adjunctive treatment to risperidone for negative symptoms in schizophrenia: Association with pro-inflammatory cytokine levels[J]. Prog Neuropsychopharmacol Biol Psychiatry, 2018, 85:69-76.
21
Xue M, Yong VW. Neuroinflammation in intracerebral haemorrhage: immunotherapies with potential for translation[J]. Lancet Neurol, 2020, 19(12):1023-1032.
22
Fereydouni N, Darroudi M, Movaffgh J, et al. Curcumin nanofibers for the purpose of wound healing[J]. J Cell Physiol, 2019, 234(5):5537-5554.
23
Mokhtari M, Razzaghi R, Momen-heravi M. The effects of curcumin intake on wound healing and metabolic status in patients with diabetic foot ulcer: A randomized, double-blind, placebo-controlled trial[J]. Phytother Res, 2021, 35(4):2099-2107.
24
Li F, Shi Y, Liang J, et al. Curcumin-loaded chitosan nanoparticles promote diabetic wound healing via attenuating inflammation in a diabetic rat model[J]. J Biomater Appl, 2019, 34(4):476-486.
25
Mittal A, Kumar N, Chauhan NS. Curcumin Encapsulated PEGylated Nanoliposomes: A Potential Anti-Infective Therapeutic Agent[J]. Indian J Microbiol, 2019, 59(3):336-343.
26
Mohanty C, Pradhan J. A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111:110751. doi: 10.1016/j.msec.2020.110751.
27
Lee HJ, Jeong M, Na YG, et al. An EGF- and curcumin-co-encapsulated nanostructured lipid carrier accelerates chronic-wound healing in diabetic rats[J]. Molecules, 2020, 25(20):4610. doi: 10.3390/molecules25204610.
28
Qiao P, Ma J, Wang Y, et al. Curcumin prevents neuroinflammation by inducing microglia to transform into the M2-phenotype via CaMKKβ-dependent activation of the AMP-activated protein kinase signal pathway[J]. Curr Alzheimer Res, 2020, 17(8):735-752.
29
张嘉维, 郑亚玲, 罗燕, 等.姜黄素调控TREM2-TLR4对脂多糖诱导的小胶质细胞炎症因子表达的影响 [J]. 中国临床神经科学, 2019, 27(4):386-394.
30
Ran Y, Su W, Gao F, et al. Curcumin ameliorates white matter injury after ischemic stroke by inhibiting microglia/macrophage pyroptosis through NF-κB suppression and NLRP3 inflammasome inhibition[J]. Oxid Med Cell Longev, 2021, 2021:552127. doi: 10.1155/2021/1552127.
31
Lan C, Qian Y, Wang Y, et al. The protective role of curcumin in human dental pulp stem cells stimulated by lipopolysaccharide via inhibiting NF-κB p65 phosphorylation to suppress NLRP3 inflammasome activation[J]. Clin Oral Investig, 2023, 27(6):2875-2885.
32
段松堂, 卢威, 喻巍, 等. 绿原酸抑制NF-κB/NLRP3炎性体通路减轻LPS诱导小胶质细胞神经炎症损伤研究[J]. 中国药师, 2022, 25(5):758-764.
33
Ganesan P, Kim B, Ramalaingam P, et al. Antineuroinflammatory activities and neurotoxicological assessment of curcumin loaded solid lipid nanoparticles on LPS-Stimulated BV-2 Microglia cell models[J]. Molecules, 2019, 24(6):1170. doi: 10.3390/molecules24061170.
34
孙春斌, 应艺, 侯迥, 等. 三七总皂苷抑制PI3K/AKT/mTOR信号通路激活自噬缓解小鼠肺纤维化的实验研究[J]. 时珍国医国药, 2020, 31(12):2872-2876.
35
Bedoui S, Herold MJ, Strasser A. Emerging connectivity of programmed cell death pathways and its physiological implications[J]. Nat Rev Mol Cell Biol, 2020, 21 (11):678-695.
36
Wang Z, Gao C, Zhang L, et al. RETRACTED: Hesperidin methylchalcone (HMC) hinders amyloid-β induced Alzheimer's disease by attenuating cholinesterase activity, macromolecular damages, oxidative stress and apoptosis via regulating NF-κB and Nrf2/HO-1 pathways[J]. Int J Biol Macromol. 2023, 233 :123169. doi: 10.1016/j.ijbiomac.2023.123169.
37
Hu P, Li K, Peng XX, et al. Curcumin derived from medicinal homologous foods: its main signals in immunoregulation of oxidative stress, inflammation, and apoptosis[J]. Front Immunol, 2023, 14:1233652. doi: 10.3389/fimmu.2023.1233652.
[1] 张刚, 秦勇, 黄超, 薛震, 吕松岑. 基于骨关节炎软骨细胞表型转化的新兴治疗靶点[J]. 中华关节外科杂志(电子版), 2024, 18(03): 352-362.
[2] 王帆, 余辉, 谢佳乐, 许焕焕, 马瑞, 依日夏提·艾海提, 许珂, 许鹏. 成纤维样滑膜细胞在类风湿关节炎发病机制中的作用[J]. 中华关节外科杂志(电子版), 2024, 18(02): 225-230.
[3] 孔莹莹, 谢璐涛, 卢晓驰, 徐杰丰, 周光居, 张茂. 丁酸钠对猪心脏骤停复苏后心脑损伤的保护作用及机制研究[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 355-362.
[4] 张晓燕, 肖东琼, 高沪, 陈琳, 唐发娟, 李熙鸿. 转录因子12过表达对脓毒症相关性脑病大鼠大脑皮质的保护作用及其机制[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 540-549.
[5] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[6] 罗远杰, 杨靖梅, 孟姝, 敖逸博, 申道南. 槲皮素防治口腔疾病的研究进展[J]. 中华口腔医学研究杂志(电子版), 2024, 18(02): 117-122.
[7] 刘硕儒, 王功炜, 张斌, 李书豪, 胡成. 新型溶瘤病毒M1激活内质网应激致前列腺癌细胞凋亡的机制[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 388-393.
[8] 王颖, 吴德平, 刘煜, 刘国栋. miR-9-5p下调CXCR4减轻创伤性脑损伤大鼠的神经炎症和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 65-72.
[9] 唐龙观, 邬绿莹, 王海红, 陈婉丝, 杨盛英. MTHFR基因多态性与胎盘细胞凋亡的相关性研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 272-276.
[10] 邓春文, 陈嵩, 钟裴, 闵师强, 万健. LncRNA CRNDE通过miR-181a-5p/SOX6轴调节脂多糖诱导人肺泡上皮细胞的炎症反应和细胞凋亡[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 129-136.
[11] 田鹏飞, 王丽娟, 肖圣超. 黄芪总黄酮通过调控miR-190a-5p对缺氧/复氧诱导的心肌细胞损伤的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(06): 346-352.
[12] 张师垚, 徐岩岩, 张琦, 李春强, 赵智成, 刘刚. m6A结合蛋白YTHDC2调节p38MAPK信号通路影响结直肠癌细胞凋亡[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 117-124.
[13] 李景德, 张保艳, 卢培刚, 李博. 法舒地尔对大鼠急性脊髓损伤后神经细胞凋亡和BCL-2蛋白表达水平的影响[J]. 中华神经创伤外科电子杂志, 2024, 10(02): 65-70.
[14] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要