切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (06) : 374 -381. doi: 10.3877/cma.j.issn.2095-1221.2024.06.008

综述

间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展
袁园园1,2, 岳乐淇1,2, 张华兴3, 武艳1, 李全海1,2,3,()   
  1. 1.050030 石家庄,河北医科大学第一医院细胞治疗实验室
    2.050011 石家庄,河北医科大学免疫教研室
    3.050011 石家庄,河北医科大学医学与健康研究院 大型科研仪器设备共享服务平台
  • 收稿日期:2024-04-24 出版日期:2024-12-01
  • 通信作者: 李全海
  • 基金资助:
    河北省自然科学基金 (C2020206032)

Advances in the distribution in lung tissue and therapeutic mechanisms of mesenchymal stem cells in respiratory system diseases models

Yuanyuan Yuan1,2, Leqi Yue1,2, Huaxing Zhang3, Yan Wu1, Quanhai Li1,2,3,()   

  1. 1.Laboratory of Cell Therapy, First Hospital of Hebei Medical University, Shijiazhuang 050030, China
    2.Department of Immunology, Hebei Medical University, Shijiazhuang 050011, China
    3.Department of Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050011, China
  • Received:2024-04-24 Published:2024-12-01
  • Corresponding author: Quanhai Li
引用本文:

袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.

Yuanyuan Yuan, Leqi Yue, Huaxing Zhang, Yan Wu, Quanhai Li. Advances in the distribution in lung tissue and therapeutic mechanisms of mesenchymal stem cells in respiratory system diseases models[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(06): 374-381.

间充质干细胞 (MSCs)治疗多种呼吸系统疾病的转化研究引起广泛关注,它主要通过线粒体转移、细胞外囊泡 (EVs)和旁分泌机制发挥疗效;近年临床前研究发现MSCs可迁移至呼吸系统疾病肺组织中,并发挥修复肺部损伤和抑制肺部微环境炎症的功能。本综述汇总MSCs治疗呼吸系统疾病的近期研究进展,详述其在呼吸系统疾病模型中的肺组织分布情况及治疗机制,此文将为MSCs治疗呼吸系统疾病的临床研究提供理论依据和思路策略。

The translational research of mesenchymal stem cells (MSCs)in the treatment of respiratory system diseases has attracted widespread attention. They mainly exerts therapeutic effects through mitochondrial transfer, extracellular vesicles, and paracrine. In recent years, preclinical studies have found that MSCs migrate to lung tissues of respiratory system diseases and exhibit effective functions with repairing lung damage and inhibiting inflammation in the lung microenvironment.This review summarizes the recent progress of MSCs in the treatment of respiratory system diseases,expatiates their lung tissue distribution and therapeutic mechanism in respiratory system diseases models. This article will provide theoretical basis and strategies for the clinical research of MSCs in the treatment of respiratory system diseases.

图1 MSCs在不同疾病中的应用 (图片由biorender软件协助制作) 注:Alzheimer′s disease为阿尔兹海默症;neuroregenerative为神经再生;neuroprotective为神经保护;immunomodulatory为免疫调节;Bone regeneration为骨再生;HLA为人类白细胞抗原;EGFR为表皮生长因子受体家族成员;HSPs为热休克蛋白;MHC为主要组织相容性复合体;Liver fibrosis为肝纤维化;YAP/LOXL2为Yes相关蛋白/赖氨酰氧化酶样蛋白2;Lungs为肺;growth factors为生长因子;chemokines为趋化因子;cytokines为细胞因子;Type Ⅱ alveolar cells为Ⅱ型肺泡细胞;ARDS为急性呼吸窘迫综合征;Pulmonary fibrosis为肺纤维化;COVID-19为新型冠状病毒感染;COPD为慢性阻塞性肺疾病;Acute lung injury为急性肺损伤;Heart为心脏;Cardiomyocytes为心肌细胞;Heart failure为心脏衰竭;Myocardial infarction为心肌梗死;Vasculature为脉管系统;Angiogenesis为血管生成;MSC-Exos为间充质干细胞来源的外泌体
图2 MSCs可迁移至损伤肺组织,修复肺损伤 (图片由biorender软件协助制作) 注:MSCs transplant into mice with lung injury为间充质干细胞移植入肺损伤小鼠体内;Promoting the migration of MSCs to lung为促进间充质干细胞向肺的迁移;MSCs differentiate into alveolar type Ⅱ pneumocyte cells为MSCs分化为肺泡Ⅱ型细胞;Repair and regenerate damaged lung tissue为修复和再生受损肺组织
图3 MSCs对呼吸系统疾病的治疗机制 (图片由biorender软件协助制作) 注:IL-1β为白细胞介素1β;TNF-α为肿瘤坏死因子α;iNOS为诱导型一氧化氮合酶;M2 macrophage为M2型巨噬细胞;Anti-inflammatory cytokines,including为抗炎细胞因子,包括;IL-10为白细胞介素-10;Arg-1为精氨酸酶-1;mtDNA transfer为线粒体DNA转移;Improve integrity为提升完整性;Restor mitochondrial function为恢复线粒体功能;Immune homeostasis为免疫稳态;Promote tissue repair inflammatory reaction为促进组织修复炎症反应;IL-6为白细胞介素-6;IL-23为白细胞介素-23;IFN-γ为干扰素-γ;NK cell为自然杀伤细胞;DC cell为树突状细胞
1
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1):272.
2
Grégoire C, Layios N, Lambermont B, et al. Bone marrow-derived mesenchymal stromal cell therapy in severe COVID-19: preliminary results of a phase I/II Clinical Trial[J]. Front Immunol, 2022, 13:932360.
3
雷耘果,姚嘉,郑俊,等.人脐带间充质干细胞来源的细胞外囊泡增强纤维化肝脏再生能力[J].器官移植, 2023, 14(3):379-388.
4
Møller-Hansen M, Larsen AC, Toft PB, et al. Safety and feasibility of mesenchymal stem cell therapy in patients with aqueous deficient dry eye disease[J]. Ocul Surf, 2021, 19:43-52.
5
Kim HJ, Cho KR, Jang H, et al. Intracerebroventricular injection of human umbilical cord blood mesenchymal stem cells in patients with Alzheimer′s disease dementia: a phase I clinical trial[J]. Alzheimers Res Ther, 2021, 13(1):154.
6
Hashemian SR, Aliannejad R, Zarrabi M, et al. Mesenchymal stem cells derived from perinatal tissues for treatment of critically ill COVID- 19-induced ARDS patients: a case series[J]. Stem Cell Res Ther, 2021, 12(1):91.
7
Held T, Herpel C, Schwindling FS, et al. 3D-printed individualized tooth-borne tissue retraction devices compared to conventional dental splints for head and neck cancer radiotherapy: a randomized controlled trial[J]. Radiat Oncol, 2021, 16(1):75.
8
Bajek A, Olkowska J, Walentowicz-Sadłecka M, et al. High quality independent from a donor: human amniotic fluid derived stem cells-A practical analysis based on 165 clinical cases[J]. J Cell Biochem, 2017,118(1):116-126.
9
Asgari Taei A, Khodabakhsh P, Nasoohi S, et al. Paracrine effects of mesenchymal stem cells in ischemic stroke: opportunities and challenges[J]. Mol Neurobiol, 2022, 59(10):6281-6306.
10
Zhang L, Liu Q, Hu H, et al. Progress in mesenchymal stem cell mitochondria transfer for the repair of tissue injury and treatment of disease[J]. Biomed Pharmacother, 2022, 153:113482.
11
Lin Z, Wu Y, Xu Y, et al. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential[J].Mol Cancer, 2022, 21(1):179.
12
L PK, Kandoi S, Misra R, et al. The mesenchymal stem cell secretome:A new paradigm towards cell-free therapeutic mode in regenerative medicine[J]. Cytokine Growth Factor Rev, 2019, 46:1-9.
13
Krampera M, Le Blanc K. Mesenchymal stromal cells:putative microenvironmental modulators become cell therapy[J]. Cell Stem Cell, 2021, 28(10):1708-1725.
14
Lan T, Luo M, Wei X. Mesenchymal stem/stromal cells in cancer therapy[J]. J Hematol Oncol, 2021, 14(1):195.
15
Pan Y, Wu W, Jiang X, et al. Mesenchymal stem cell-derived exosomes in cardiovascular and cerebrovascular diseases: From mechanisms to therapy[J]. Biomed Pharmacother, 2023, 163:114817.
16
Shi M, Li YY, Xu RN, et al. Mesenchymal stem cell therapy in decompensated liver cirrhosis: a long-term follow-up analysis of the randomized controlled clinical trial[J]. Hepatol Int, 2021, 15(6):1431-1441.
17
Izadi M, Sadr Hashemi Nejad A, Moazenchi M, et al. Mesenchymal stem cell transplantation in newly diagnosed type-1 diabetes patients: a phase Ⅰ/Ⅱ randomized placebo-controlled clinical trial[J]. Stem Cell Res Ther, 2022, 13(1):264.
18
Monsel A, Hauw-Berlemont C, Mebarki M, et al. Treatment of COVID-19-associated ARDS with mesenchymal stromal cells: a multicenter randomized double-blind trial[J]. Crit Care, 2022, 26(1):48.
19
Zheng W, Li H, Hu K, et al. Chondromalacia patellae: current options and emerging cell therapies[J]. Stem Cell Res Ther, 2021, 12(1):412.
20
Chung JW, Chang WH, Bang OY, et al. Efficacy and safety of intravenous mesenchymal stem cells for ischemic stroke[J]. Neurology,2021, 96(7):e1012-e1023.
21
Wang L, Zhang Z, Xu R, et al. Human umbilical cord mesenchymal stem cell transfusion in immune non-responders with AIDS: a multicenter randomized controlled trial[J]. Signal Transduct Target Ther, 2021, 6(1):217.
22
Zhao K, Lin R, Fan Z, et al. Mesenchymal stromal cells plus basiliximab, calcineurin inhibitor as treatment of steroid-resistant acute graft-versus-host disease: a multicenter, randomized, phase 3,open- label trial[J]. J Hematol Oncol, 2022, 15(1):22.
23
Squillaro T, Peluso G, Galderisi U. Clinical trials with mesenchymal stem cells: an update[J]. Cell Transplant, 2016, 25(5):829-848.
24
韩立,惠利健,潘国宇.细胞的命运:间充质干细胞的药代动力学[J].中国细胞生物学学报, 2018, 40(6):857-866.
25
Wolfel R, Corman VM, Guggemos W, et al. MSC therapies for COVID-19: importance of patient coagulopathy, thromboprophylaxis,cell product quality and mode of delivery for treatment safety and efficacy[J]. Front Immunol,2020, 11:1091.
26
Yuan Y, Jiao B, Qu L, et al. The development of COVID-19 treatment[J]. Front Immunol, 2023, 14:1125246.
27
Chen L, Qu J, Kalyani FS, et al. Mesenchymal stem cell-based treatments for COVID-19: status and future perspectives for clinical applications[J]. Cell Mol Life Sci, 2022,79(3):142.
28
Armitage J, Tan DBA, Troedson R, et al. Mesenchymal stromal cell infusion modulates sys temic immunological responses in stable COPD patients: a phase I pilot study[J]. Eur Respir J, 2018, 51(3):1702369.
29
Chen Q, Lv L, Zheng C, et al. Human umbilical cord-derived mesenchymal stem cells repair SU5416-injured emphysema by inhibiting apoptosis via rescuing VEGF-VEGFR2-AKT pathway in rats[J]. Int J Stem Cells, 2022,15(4):395-404.
30
Wang X, Zhao S, Lai J, et al. Anti-inflammatory, antioxidant, and antifibrotic effects of gingival-derived MSCs on bleomycin-induced pulmonary fibrosis in mice[J]. Int J Mol Sci, 2021, 23(1):99.
31
Gao J, Liang Y, Chen J, et al. CXCR4 enhances the inhibitory effects of bone mesenchymal stem cells on lung cell apoptosis in a rat model of smoking-induced COPD[J]. Apoptosis, 2023, 28(3-4):639-652.
32
Xiao K, Hou F, Huang X, et al. Mesenchymal stem cells: current clinical progress in ARDS and COVID-19[J]. Stem Cell Res Ther,2020, 11(1):305.
33
Ning K, Liu S, Yang B, et al. Update on the effects of energy metabolism in bone marrow mesenchymal stem cells differentiation[J].Mol Metab, 2022, 8:101450.
34
Liu Y, Ma T. Metabolic regulation of mesenchymal stem cell in expansion and therapeutic application[J]. Biotechnol Prog, 2015,31(2):468-481.
35
Rybkowska P, Radoszkiewicz K, Kawalec M, et al. The metabolic changes between monolayer (2D) and three-dimensional (3D) culture conditions in human mesenchymal stem/stromal cells derived from adipose tissue[J]. Cells, 2023, 12(1):178.
36
Liu H, Xue W, Ge G, et al. Hypoxic preconditioning advances CXCR4 and CXCR7 expression by activating HIF-1alpha in MSCs[J]. Biochem Biophys Res Commun, 2010, 401:509-515.
37
Mizuta Y, Akahoshi T, Guo J, et al. Exosomes from adipose tissuederived mesenchymal stem cells ameliorate histone-induced acute lung injury by activating the PI3K/Akt pathway in endothelial cells[J]. Stem Cell Res Ther, 2020, 11(1):508.
38
Wang Y, Fang J, Liu B, et al. Reciprocal regulation of mesenchymal stem cells and immune responses[J]. Cell Stem Cell, 2022, 29(11):1515-1530.
39
Yu H, Huang Y, Yang L. Research progress in the use of mesenchymal stem cells and their derived exosomes in the treatment of osteoarthritis[J]. Ageing Res Rev, 2022, 80:101684.
40
Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes:applications in regenerative medicine[J]. Cells, 2021, 10(8):1959.
41
Zhao Y, Yan Z, Liu Y, et al. Effectivity of mesenchymal stem cells for bleomycin-induced pulmonary fibrosis: a systematic review and implication for clinical application[J]. Stem Cell Res Ther, 2021,12(1):470.
42
Sarhadi VK, Daddali R, Seppänen-Kaijansinkko R. Mesenchymal stem cells and extracellular vesicles in osteosarcoma pathogenesis and therapy[J]. Int J Mol Sci, 2021, 22(20):11035.
43
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1):47.
44
Arabpour M, Saghazadeh A, Rezaei N. Anti-inflammatory and M2 macrophage polarization-promoting effect of mesenchymal stem cellderived exosomes[J]. Int Immunopharmacol, 2021, 97:107823.
45
Shi MM, Yang QY, Monsel A, et al. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles[J]. J Extracell Vesicles,2021, 10(10):e12134.
46
Yudintceva N, Mikhailova N, Fedorov V, et al. Mesenchymal stem cells and MSCs-derived extracellular vesicles in infectious diseases: from basic research to clinical practice[J]. Bioengineering (Basel), 2022,9(11):662.
47
Kirkham AM, Monaghan M, Bailey AJM, et al. Mesenchymal stem/stromal cell-based therapies for COVID-19: First iteration of a living systematic review and meta-analysis: MSCs and COVID-19[J].Cytotherapy, 2022, 24(6):639-649.
48
Lee DK, Song SU. Immunomodulatory mechanisms of mesenchymal stem cells and their therapeutic applications[J]. Cell Immunol, 2018,326:68-76.
49
Chen J, Zhang X, Xie J, et al. Overexpression of TGFβ1 in murine mesenchymal stem cells improves lung inflammation by impacting the Th17/Treg balance in LPS-induced ARDS mice[J]. Stem Cell Res Ther,2020, 11(1):311.
50
Yan W, Diao S, Fan Z. The role and mechanism of mitochondrial functions and energy metabolism in the function regulation of the mesenchymal stem cells[J]. Stem Cell Res Ther, 2021, 12(1):140.
51
Wei B, Ji M, Lin Y, et al. Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo[J]. Stem Cell Res Ther, 2023, 14(1):104.
52
Xia L, Zhang C, Lv N, et al. AdMSC-derived exosomes alleviate acute lung injury via transferring mitochondrial component to improve homeostasis of alveolar macrophages[J]. Theranostics, 2022,12(6):2928-2947.
53
Dutra Silva J, Su Y, Calfee CS, et al. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS[J]. Eur Respir J,2021, 58(1):2002978.
54
Meftahi GH, Jangravi Z, Sahraei H, er al. The possible pathophysiology mechanism of cytokine storm in elderly adults with COVID-19 infection: the contribution of "inflame-aging" [J]. Inflamm Res, 2020,69(9):825-839.
55
Leng Z, Zhu R, Hou W, et al. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia[J]. Aging Dis, 2020, 11(2):216-228.
56
Nobari S, Rezvan M, Dashtestani F, et al. Cellular therapy: the hope for Covid-19[J]. Avicenna J Med Biotechnol, 2022, 14(2):104-113.
57
Fernández-Francos S, Eiro N, González-Galiano N, et al. Mesenchymal stem cell-based therapy as an alternative to the treatment of acute respiratory distress syndrome: current evidence and future perspectives[J]. Int J Mol Sci, 2021, 22(15):7850.
58
Liu P, Yang S, Shao X, et al. Mesenchymal stem cells-derived exosomes alleviate acute lung injury by inhibiting alveolar macrophage pyroptosis[J]. Stem Cells Transl Med, 2024, 13(4):371-386.
59
Xiao K, He W, Guan W, et al. Mesenchymal stem cells reverse EMT process through blocking the activation of NF-κB and Hedgehog pathways in LPS-induced acute lung injury[J]. Cell Death Dis, 2020,11(10):863.
60
Chu M, Wang H, Bian L, et al. Nebulization therapy with umbilical cord mesenchymal stem cell-derived exosomes for COVID-19 pneumonia[J]. Stem Cell Rev Rep, 2022, 18(6):2152-2163.
61
Zarrabi M, Shahrbaf MA, Nouri M, et al. Allogenic mesenchymal stromal cells and their extracellular vesicles in COVID-19 induced ARDS: a randomized controlled trial[J]. Stem Cell Res Ther, 2023,14(1):169.
62
Liu X, Gao C, Wang Y, et al. BMSC-derived exosomes ameliorate LPS-induced acute lung injury by miR-384-5p-controlled alveolar macrophage autophagy[J]. Oxid Med Cell Longev, 2021:9973457.
63
Savin IA, Zenkova MA, Sen′kova AV. Pulmonary fibrosis as a result of acute lung inflammation: molecular mechanisms, relevant invivomodels, prognostic and therapeutic approaches[J]. Int J Mol Sci,2022, 23(23):14959.
64
Cheng W, Zeng Y, Wang D. Stem cell-based therapy for pulmonary fibrosis[J]. Stem Cell Res Ther, 2022, 13(1):492.
65
Bao H, Cheng S, Li X, et al. Functional Au nanoparticles for engineering and long-term CT imaging tracking of mesenchymal stem cells in idiopathic pulmonary fibrosis treatment[J]. Biomaterials, 2022,288:121731.
66
Huang J, Huang J, Ning X, et al. CT/NIRF dual-modal imaging tracking and therapeutic efficacy of transplanted mesenchymal stem cells labeled with Au nanoparticles in silica-induced pulmonary fibrosis[J]. J Mater Chem B, 2020, 8(8):1713-1727.
67
Xia Y, Bao H, Huang J, et al. Near-infrared-persistent luminescence/bioluminescence imaging tracking of transplanted mesenchymal stem cells in pulmonary fibrosis[J]. Biomater Sci, 2020, 8(11):3095-3105.
68
Zhao Y, Du L, Sun J, et al. Exosomal miR-218 derived from mesenchymal stem cells inhibits endothelial-to-mesenchymal transition by epigenetically modulating of BMP2 in pulmonary fibrosis[J]. Cell Biol Toxicol, 2023, 39(6):2919-2936.
69
Abbaszadeh H, Ghorbani F, Abbaspour-Aghdam S, et al. Chronic obstructive pulmonary disease and asthma: mesenchymal stem cells and their extracellular vesicles as potential therapeutic tools[J]. Stem Cell Res Ther, 2022, 13(1):262.
70
Kim YS, Kim JY, Shin DM, et al. Tracking intravenous adipose-derived mesenchymal stem cells in a model of elastase-induced emphysema[J].Tuberc Respir Dis (Seoul), 2014, 77(3):116-123.
71
金志贤,王清,毕虹, 等. 间充质干细胞移植对大鼠肺气肿的疗效及其可能机制[J].中华医学杂志, 2015, 95(22):1731-1735.
72
吴华拉,周湘乡,钟玉兰等.碱性成纤维细胞生长因子转染骨髓间充质干细胞移植治疗慢性阻塞性肺疾病的作用及机制[J].中国组织工程研究, 2019, 23(21):3378-3385.
73
何桦,赵祝香,张颖.骨髓间充质干细胞移植在肺气肿大鼠模型肺组织内定植研究[J].中国医学创新, 2014, 11(21):26-30.
74
赵晓建,卢彩平,褚伟伟等.间充质干细胞归巢到大鼠肺气肿组织分化为肺血管内皮细胞[J].中国组织工程研究, 2017, 21(29):4728-4733.
75
Mohammadian M, Sadeghipour HR, Jahromi GP, et al. Simvastatin and bone marrow-derived mesenchymal stem cells (BMSCs) affects serum IgE and lung cytokines levels in sensitized mice[J]. Cytokine, 2019,113:83-88.
76
Meyer NJ, Gattinoni L, Calfee CS. Acute respiratory distress syndrome[J]. Lancet, 2021, 398(10300):622-637.
77
Dos Santos CC, Amatullah H, Vaswani CM, et al. Mesenchymal stromal (stem) cell therapy modulates miR-193b-5p expression to attenuate sepsis-induced acute lung injury[J]. Eur Respir J, 2022,59(1):2004216.
78
Li L, Dong L, Zhang J, et al. Mesenchymal stem cells with downregulated Hippo signaling attenuate lung injury in mice with lipopolysaccharide induced acute respiratory distress syndrome[J]. Int J Mol Med, 2019, 43(3):1241-1252.
79
Zhang X, Chen J, Xue M, et al. Overexpressing p130/E2F4 in mesenchymal stem cells facilitates the repair of injured alveolar epithelial cells in LPS-induced ARDS mice[J]. Stem Cell Res Ther,2019, 10(1):74.
80
Cai SX, Liu AR, Chen S, et al. Activation of Wnt/β-catenin signalling promotes mesenchymal stem cells to repair injured alveolar epithelium induced by lipopolysaccharide in mice[J]. Stem Cell Res Ther, 2015,6(1):65.
81
Cui P, Xin H, Yao Y, et al. Human amnion-derived mesenchymal stem cells alleviate lung injury induced by white smoke inhalation in rats[J].Stem Cell Res Ther, 2018, 9(1):101.
82
Zhang S, Jiang W, Ma L, et al. Nrf2 transfection enhances the efficacy of human amniotic mesenchymal stem cells to repair lung injury induced by lipopolysaccharide[J]. J Cell Biochem, 2018, 119(2):1627-1636.
83
Liu J, Li P, Zhu J, et al. Mesenchymal stem cell-mediated immunomodulation of recruited mononuclear phagocytes during acute lung injury: a high-dimensional analysis study[J]. Theranostics, 2021,11(5):2232-2246.
84
Peng W, Chang M, Wu Y, et al. Lyophilized powder of mesenchymal stem cell supernatant attenuates acute lung injury through the IL-6-p-STAT3-p63-JAG2 pathway[J]. Stem Cell Res Ther, 2021, 12(1):216.
85
Liu G, Lv H, An Y, et al. Tracking of transplanted human umbilical cord-derived mesenchymal stem cells labeled with fluorescent probe in a mouse model of acute lung injury[J]. Int J Mol Med, 2018,41(5):2527-2534.
86
Xiang B, Chen L, Wang X, et al. Transplantation of menstrual bloodderived mesenchymal stem cells promotes the repair of LPS-induced acute lung injury[J]. Int J Mol Sci, 2017, 18(4):689.
87
Liu L, He H, Liu A, et al. Therapeutic effects of bone marrow-derived mesenchymal stem cells in models of pulmonary and extrapulmonary acute lung injury[J]. Cell Transplant, 2015, 24(12):2629-2642.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[3] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[4] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[5] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[6] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[7] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[8] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[9] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[10] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[11] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[12] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[13] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[14] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要