切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 129 -136. doi: 10.3877/cma.j.issn.2095-1221.2024.03.001

论著

基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制
陈俊秋1, 邬绿莹2, 马予洁3, 林娜4, 刘飞4, 陈津2,()   
  1. 1. 350025 福州,厦门大学附属东方医院 (第九〇〇医院)福建省适配体技术重点实验室;441021 襄阳,湖北文理学院附属医院襄阳市中心医院检验科
    2. 570311 海口,海南医科大学第二附属医院临床医学研究所
    3. 350025 福州,厦门大学附属东方医院泌尿外科
    4. 350025 福州,厦门大学附属东方医院 (第九〇〇医院)福建省适配体技术重点实验室
  • 收稿日期:2024-04-08 出版日期:2024-06-01
  • 通信作者: 陈津
  • 基金资助:
    国家自然科学基金(82260161); 福建省自然科学基金(2021J011266); 海南省自然科学基金(822MS179)

Potential mechanisms of mesenchymal stem cell-derived exosomes protect islet β cells from hypoxia-induced injury based on lncRNA microarray analysis

Junqiu Chen1, lvying Wu2, Yujie Ma3, Na Lin4, Fei Liu4, Jin Chen2,()   

  1. 1. Fujian Key Laboratory of Aptamers Technology, the 900th Hospital, Xiamen University, Fuzhou 350025, China; Department of Clinical Laboratory, Xiangyang Central Hospital, Hubei University of Arts and Science, Xiangyang 441021, China
    2. Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
    3. Department of Urology, the 900th Hospital, Xiamen University, Fuzhou 350025, China
    4. Fujian Key Laboratory of Aptamers Technology, the 900th Hospital, Xiamen University, Fuzhou 350025, China
  • Received:2024-04-08 Published:2024-06-01
  • Corresponding author: Jin Chen
  • About author:

    Chen Junqiu and Wu lvying are the first authors who Contributed equally to the article.

引用本文:

陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.

Junqiu Chen, lvying Wu, Yujie Ma, Na Lin, Fei Liu, Jin Chen. Potential mechanisms of mesenchymal stem cell-derived exosomes protect islet β cells from hypoxia-induced injury based on lncRNA microarray analysis[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(03): 129-136.

目的

探索间充质干细胞(MSC)外泌体提高低氧条件下胰岛β细胞活性的潜在分子机制。

方法

将小鼠胰岛β细胞分别培养于常氧环境(5% CO2,95%空气)、低氧环境(2%O2,5%CO2,93%N2)以及低氧环境添加MSC外泌体(50 μg/mL)。采用CCK-8检测试剂盒测定小鼠胰岛β细胞活性、细胞凋亡检测试剂盒分析小鼠胰岛β细胞凋亡情况;通过小鼠Arraystart LncRNA微阵列芯片分析不同培养环境下lncRNA和mRNA的表达情况;以Arraystart LncRNA微阵列芯片检测结果为生物信息学分析数据来源,基于t检验并设置显著性阈值P ≤0.05和|Fold Change|≥2为筛选标准,筛选并获得差异表达显著的lncRNA和mRNA,采用Pearson相关系数法分析样本间lncRNA与mRNA表达情况的相关性以明确差异lncRNA的潜在靶基因,进而通过对上述靶基因进行GO和KEGG富集分析,来探究MSC外泌体通过哪条信号通路在低氧条件下增强小鼠胰岛β细胞抗低氧损伤能力。两组间数据比较采用t检验,三组间进行单因素方差分析,然后进行Dunnett's-t多重比较分析。

结果

CCK-8结果显示,与常氧条件相比,低氧条件下小鼠胰岛β细胞OD值(0.44 ± 0.02比0.53 ± 0.01)下降(t = 4.455,P < 0.05)。凋亡分析结果显示,与常氧培养相比,低氧条件下小鼠胰岛β细胞凋亡率(33.03% ± 3.12%比11.27% ± 2.69%)升高(t = 5.289,P < 0.01)。低氧培养条件下加入MSC来源外泌体干预后,小鼠胰岛β细胞活性OD值较单纯低氧培养(0.42 ± 0.03比0.33 ± 0.01)升高(P < 0.01);小鼠胰岛β细胞凋亡率较低氧培养(15.23% ± 0.62%比32.63 % ± 0.95%)降低(P < 0.01)。利用LncRNA微阵列芯片完成小鼠胰岛β细胞中35 293个lncRNA和24 881个mRNA表达水平的检测,结果显示,与常氧培养条件相比低氧培养条件可引起1 726个lncRNA和1 023个mRNA表达差异;与低氧培养条件相比,加入MSC来源外泌体干预后,491个lncRNA和406个mRNA表达差异。对两种不同培养条件下差异lncRNA和mRNA利用韦恩图分别取交集,最终获得均有表达差异的lncRNA 112个、mRNA 60个;进一步相关性分析提示这112个lncRNA存在1 582个潜在靶基因;进而对这些靶基因进行GO和KEGG富集分析,结果显示差异表达lncRNA靶基因主要与MAPK、自噬等信号通路等密切相关。

结论

低氧可引起小鼠胰岛β细胞凋亡,MSC来源外泌体可提高低氧条件下β细胞活性,抑制低氧诱发的小鼠胰岛β细胞凋亡,这可能与lncRNA调控MAPK、自噬等信号通路有关。

Objective

This study aims to explore the potential mechanisms through which mesenchymal stem cell (MSC) exosomes enhance the activity of pancreatic islet β-cells under hypoxic conditions.

Methods

Mouse pancreatic islet β-cells were cultured under three different conditions: normoxic (5% CO2, 95% air) , hypoxic (2% O2, 5% CO2, 93% N2) , and hypoxic conditions with MSC exosome (50 μg/mL) . The activity of β-cells was assessed using the Cell Counting Kit-8 (CCK-8) , while apoptosis was analyzed using a cell apoptosis detection kit. Differential expression of lncRNAs and mRNAs was investigated using Mouse Arraystar LncRNA microarray chips. Mouse Arraystar LncRNA microarray chips were used to analyze the differential expression of lncRNAs and mRNAs. Based on the chip analysis results, the t-test significance threshold was set at P≤0.05 and |Fold Change|≥2 to screen for differentially expressed lncRNAs and mRNAs. Pearson correlation coefficient analysis was used to analyze the correlation between lncRNAs and protein-coding genes among samples. Further enrichment analysis of GO and KEGG was conducted on the potential target genes corresponding to lncRNAs to explore the potential pathways of MSC exosome against hypoxia-induced β-cells apoptosis. T test was used for comparison between the two groups, One-way ANOVA was used for comparison among three groups, and then Dunnett's-t multiple comparison analysis was performed.

Results

The CCK-8 results showed that under hypoxic conditions, the OD value of β-cells significantly decreased compared to normoxic conditions (0.44 ± 0.02 vs 0.53 ± 0.01) (t = 4.455, P < 0.05) , indicating decreased β-cell activity under hypoxic conditions. Apoptosis analysis showed that the apoptosis rate of β-cells under hypoxic conditions was significantly higher than that of the normoxic group (33.03%± 3.12%vs 11.27%± 2.69%) (t = 5.289, P < 0.01) . After intervention with MSC exosomes under hypoxic conditions, the activity of β-cells was significantly increased compared to the hypoxic group (OD value 0.42 ± 0.03 vs 0.33 ± 0.01) (P < 0.01) ; the apoptosis rate of β-cells was significantly decreased compared to the hypoxic group (15.23%± 0.62%vs 32.63%± 0.95%) (P < 0.01) . The LncRNA microarray chip was used to assess the expression levels of 35 923 lncRNAs and 24 881 mRNAs in mouse β-cells. Compared with the normoxic control group, hypoxia caused significant differences in the expression of 1 726 lncRNAs and 1 023 mRNAs; compared with the hypoxic group, addition of exosomes resulted in significant differences in the expression of 491 lncRNAs and 406 mRNAs. The intersection of differentially expressed lncRNAs and mRNAs under two comparison conditions yielded 112 shared lncRNAs and 60 shared mRNAs. Correlation analysis suggests that these 112 lncRNAs are associated with 1 582 potential target genes. GO and KEGG enrichment analysis of these target genes showed that differentially expressed lncRNA target genes were mainly associated with MAPK, autophagy, and other signaling pathways.

Conclusion

Hypoxia could induce apoptosis of β-cells, while MSC exosomes could enhance the activity of β-cells under hypoxic conditions and inhibit hypoxia-induced apoptosis of β-cells, possibly through lncRNA regulation of MAPK, autophagy, and other signaling pathways.

图1 低氧条件下小鼠胰岛β细胞活性降低注:与常氧培养组比较,aP < 0.05;n = 3
图2 低氧培养条件下小鼠胰岛β细胞凋亡数显著增加注:与常氧培养组比较,aP < 0.01;n = 3
图3 MSC来源外泌体促进低氧条件下小鼠胰岛细胞活性注:与常氧培养组比较,aP < 0.01;与低氧培养组比较,bP < 0.01;n = 3
图4 MSC来源外泌体减弱低氧诱发的小鼠胰岛β细胞凋亡注:与常氧培养组比较,aP < 0.01;与低氧培养组比较,bP < 0.01;n = 3
图5 差异表达lncRNA和mRNA注:低氧培养组和常氧培养组对比差异表达mRNA (a图)和差异表达的lncRNA (c图);低氧培养+MSC来源外泌体干预组和低氧培养组对比差异表达mRNA (b图)和差异表达的lncRNA (d图)
图6 差异表达lncRNA交集和差异表达mRNA交集注:a图为差异表达lncRNA交集;b图差异表达mRNA交集;图中A为常氧培养组,B为低氧培养组,C为低氧培养+MSC来源外泌体干预组
图7 差异lncRNA与其潜在靶基因
图8 lncRNA潜在靶基因的GO和KEGG富集分析
1
Magliano DJ, Boyko EJ. IDF Diabetes Atlas 10th edition scientific committee. IDF Diabetes Atlas:10th ed[R/OL].Brussels: International Diabetes Federation, 2021.

URL    
2
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版) [J]. 国际内分泌代谢杂志, 2021, 41(5): 482-548.
3
李永涛, 姜杨, 张善强, et al. 间充质干细胞对糖尿病及其并发症的治疗应用现状 [J]. 齐齐哈尔医学院学报, 2020, 41(7): 886-887.
4
Zang L, Li Y, Hao H, et al. Efficacy of umbilical cord-derived mesenchymal stem cells in the treatment of type 2 diabetes assessed by retrospective continuous glucose monitoring [J]. Stem Cells Translational Medicine, 2023, 12(12):775-782.
5
杜婧, 魏翠英. 间充质干细胞治疗2型糖尿病及其相关并发症的可能机制研究进展 [J]. 山东医药, 2021, 61(22): 84-87.
6
Mathur A, Taurin S, Alshammary S. The safety and efficacy of mesenchymal stem cells in the treatment of type 2 Diabetes-A literature review [J]. Diabetes Metab Syndr Obes, 2023, 16:769-777.
7
Wu Z, Cai J, Chen J, et al. Autologous bone marrow mononuclear cell infusion and hyperbaric oxygen therapy in type 2 diabetes mellitus: an open-label, randomized controlled clinical trial [J]. Cytotherapy, 2014, 16(2): 258-265.
8
Chen J, Chen J, Cheng Y, et al. Mesenchymal stem cell-derived exosomes protect beta cells against hypoxia-induced apoptosis via miR-21 by alleviating ER stress and inhibiting p38 MAPK phosphorylation [J]. Stem Cell Res Ther, 2020, 11(1): 97.
9
Chen J, Ye Y, Liao L, et al. Mesenchymal stem cells promote islet survival in vitro and function in vivo. [J]. CellR4, 2013, 1(2): 128-136.
10
Campbell JE, Newgard CB. Mechanisms controlling pancreatic islet cell function in insulin secretion[J]. Nature reviews Molecular cell biology, 2021, 22(2):142-158.
11
Lansberry T, Stabler C. Immunoprotection of cellular transplants for autoimmune type 1 diabetes through local drug delivery [J]. Advanced Drug Delivery Reviews, 2024, 115179. doi:10.1016/j.addr.2024.115179.
12
Yoon JW, Jun HS. Autoimmune destruction of pancreatic beta cells[J]. Am J Ther, 2005, 12(6): 580-591.
13
Sato Y, Endo H, Okuyama H, et al. Cellular hypoxia of pancreatic beta-cells due to high levels of oxygen consumption for insulin secretion in vitro[J]. J Biol Chem, 2011, 286(14): 12524-12532.
14
Barbu A, Jansson L, Sandberg M, et al. The use of hydrogen gas clearance for blood flow measurements in single endogenous and transplanted pancreatic islets [J]. Microvasc Res, 2015, 97:124-129.
15
Ilegems E, Bryzgalova G, Correia J, et al. Share HIF-1α inhibitor PX-478 preserves pancreatic β cell function in diabetes[J]. Sci Transl Med, 2022, 14(638):eaba9112.
16
Chen Y, He Y, Zhou H. The potential role of lncRNAs in diabetes and diabetic microvascular complications[J]. Endocr J, 2020, 67(7): 659-668.
17
Dieter C, Lemos NE, Corrêa NRF, et al. The impact of lncRNAs in diabetes mellitus: a systematic review and in silico analyses[J]. Front Endocrinol (Lausanne), 2021, 12:602597.doi:10.3389/fendo.2021.602597.eCollection 2021.
18
陈俊秋, 陈津, 黄梁浒, 等. 间充质细胞外泌体促进小鼠胰岛内皮细胞血管生成的研究 [J/OL]. 中华细胞与干细胞杂志(电子版), 2018, 8(4): 212-217.
19
Madani S, Amanzadi M, Aghayan HR, et al. Investigating the safety and efficacy of hematopoietic and mesenchymal stem cell transplantation for treatment of T1DM: a systematic review and meta-analysis [J]. Syst Rev, 2022, 11(1): 82. doi: 10.1186/s13643-022-01950-3.
20
Zhang J, Zheng Y, Huang L, et al. Research progress on mesenchymal stem cells for the treatment of diabetes and its complications[J]. Int J Endocrinol, 2023, 2023:9324270. doi: 10.1155/2023/9324270.eCollection 2023.
21
Xiong J, Hu H, Guo R, et al. Mesenchymal stem cell exosomes as a new strategy for the treatment of diabetes complications[J]. Front Endocrinol (Lausanne). 2021, 12:646233. doi:10.3389/fendo.2021.646233.eCollection 2021.
22
Xu YX, Pu SD, Li X, et al. Exosomal ncRNAs: Novel therapeutic target and biomarker for diabetic complications [J]. Pharmacol Res, 2022, 178:106135. doi: 10.1016/j.phrs.2022.106135.
23
苗海霞, 李冬梅, 郑雁红, et al. 长链非编码RNA在糖尿病中的研究进展 [J]. 内蒙古医学杂志, 2019, 51(8): 933-935.
24
Yuan X, Wang J, Tang X, et al. Berberine ameliorates nonalcoholic fatty liver disease by a global modulation of hepatic mRNA and lncRNA expression profiles[J]. J Transl Med, 2015, 13:24. doi: 10.1186/s12967-015-0383-6.
25
Yang QQ, Deng YF. Genome-wide analysis of long non-coding RNA in primary nasopharyngeal carcinoma by microarray [J]. Histopathology, 2015, 66(7):1022-1030.
26
Zou Y, Li C, Shu F, et al. lncRNA expression signatures in periodontitis revealed by microarray: the potential role of lncRNAs in periodontitis pathogenesis [J]. Journal of cellular biochemistry, 2015, 116(4):640-647.
27
Sumara G, Formentini I, Collins S, et al. Regulation of PKD by the MAPK p38δ in insulin secretion and glucose homeostasis[J]. Cell, 2009, 136(2): 235-248.
28
张丹, 王海杰. 缺血缺氧状态下细胞自噬的研究进展 [J]. 国际病理科学与临床杂志, 2009, 29(4): 293-297.
29
Noguchi M, Hirata N, Tanaka T, et al. Autophagy as a modulator of cell death machinery[J]. Cell Death Dis, 2020, 11(7):517. doi: 10.1038/s41419-020-2724-5.
[1] 曹飞, 庞俊. 前列腺癌免疫微环境中免疫抑制性细胞分类及其作用机制[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 121-125.
[2] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[3] 王志鹏, 张倩, 黄燕华, 孙赟, 方晓明, 施宇佳. 肺鳞癌血清外泌体hsa_circ_0018430的表达和临床意义[J]. 中华肺部疾病杂志(电子版), 2023, 16(06): 774-778.
[4] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[5] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[6] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[7] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[8] 仝心语, 谭凯, 白亮亮, 杜锡林. 外泌体在肝细胞癌诊疗中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(03): 384-388.
[9] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[10] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[11] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[12] 张益帆, 耿晓东, 冀雨薇, 张可颖, 林淑芃, 蔡广研, 陈香美, 洪权. 富亮氨酸α-2糖蛋白1增强间充质干细胞对急性肾损伤的疗效研究[J]. 中华肾病研究电子杂志, 2024, 13(01): 16-25.
[13] 蒲丹, 龙煊, 周玉龙, 李甘霖. 血清外泌体miR-224对结直肠癌肝转移患者射频消融治疗后复发的预测价值[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 45-52.
[14] 王吉, 张颖, 顾雪, 杨朋磊, 陈齐红. 间充质干细胞微泡对ARDS肺纤维化影响的实验研究[J]. 中华临床医师杂志(电子版), 2024, 18(01): 72-78.
[15] 张可, 闫琳琳, 王鹏飞, 章秀林, 赵帆, 胡守奎. 外泌体环状RNA在肿瘤免疫和癌症免疫治疗中的作用[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1102-1108.
阅读次数
全文


摘要