切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 137 -142. doi: 10.3877/cma.j.issn.2095-1221.2024.03.002

论著

Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化
杨阳1, 王琤1, 周文土1, 周冰1,()   
  1. 1. 350025 福州,联勤保障部队第九〇〇医院口腔科
  • 收稿日期:2024-03-28 出版日期:2024-06-01
  • 通信作者: 周冰
  • 基金资助:
    联勤保障部队第九〇〇医院2021年度院杰青项目(2021JQ11)

Caveolae/Caveolin-1 regulates osteogenic differentiation of mouse BMSCs together with membrane cholesterol

Yang Yang1, Cheng Wang1, Wentu Zhou1, Bing Zhou1,()   

  1. 1. Department of Stomatology 900th Hospital of Joint Logistic Support Force, Fuzhou 350025, China
  • Received:2024-03-28 Published:2024-06-01
  • Corresponding author: Bing Zhou
引用本文:

杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.

Yang Yang, Cheng Wang, Wentu Zhou, Bing Zhou. Caveolae/Caveolin-1 regulates osteogenic differentiation of mouse BMSCs together with membrane cholesterol[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(03): 137-142.

目的

研究小鼠骨髓间充质干细胞(BMSCs)细胞膜上Caveolae/Caveolin-1与膜胆固醇(Chol)对BMSCs成骨分化的影响。

方法

体外培养BMSCs,未处理细胞作为对照,对细胞进行以下干预:用甲基-β-环糊精(MβCD)处理耗竭细胞膜Chol,添加Chol补充细胞膜Chol,转染非特异性小干扰siRNA (si Ctrl)和转染Caveolin-1 siRNA (si CAV-1)。通过Amplex Red法检测各处理组细胞的Chol含量;RT-PCR与Western blot检测各组Caveolin-1表达;碱性磷酸酶活性测定和茜素红染色观察成骨细胞形成情况。多组间比较采用单因素方差分析,组间两两比较采用LSD-t检验。

结果

与对照相比,MβCD处理细胞后Chol含量[(59.33 ± 11.24)比(127.00 ± 12.45)mmol/L]、Caveolin-1 mRNA (0.52 ± 0.05比1.00 ± 0.15)下降,ALP活性[(18.37 ± 0.31)比(10.13 ± 0.41)U/L]增强,添加Chol后细胞Chol含量[(228.21 ± 10.38)比(127.00 ± 12.45 )mmol/L]、Caveolin-1 mRNA (4.58 ± 0.25比1.00 ± 0.15)和Caveolin-1蛋白表达(184.00 ± 10.25比51.25 ± 8.12)增加,ALP活性[(6.32 ± 0.54)比(10.13 ± 0.41)U/L]减弱(P均< 0.05)。与转染si Ctrl相比,转染si CAV-1的细胞Chol含量[(95.35 ± 14.05)比(136.00 ± 15.52)mmol/L]、Caveolin-1 mRNA (0.10 ± 0.21比1.00 ± 0.45)和Caveolin-1蛋白表达(6.12 ± 0.35比13.06 ± 1.52)下降,ALP活性[(19.28 ± 0.34)比(10.15 ± 0.43)U/L]增强(P均< 0.05)。茜素红染色显示,MβCD处理和转染si CAV-1使BMSCs基质矿化增加,而添加Chol使BMSCs基质矿化减少。

结论

Caveolae/Caveolin-1与膜Chol相互影响并共同调控小鼠BMSCs成骨分化。

Objective

To investigate the effect of Caveolae/Caveolin-1 and membrane cholesterol on the osteogenic differentiation of mouse bone marrow mesenchymal stem cells (BMSCs) .

Methods

BMSCs were cultured in vitro and untreated cells as the control. The following interventions were performed on the cells: depletion of membrane cholesterol using methyl-β-cyclodextrin (MβCD) , supplementation of membrane cholesterol, transfection with non-specific small interfering RNA (si Ctrl) and Caveolin-1 siRNA (si CAV-1) .The Amplex Red method was used to detect the Chol content in the cells of each treatment group. RT-PCR and Western blot were used to detect the expression of Caveolin-1 in each group. Alkaline phosphatase (ALP) activity assays and alizarin red staining were performed to observe osteoblast formation. One-way analysis of variance was used for multi-group comparisons, and the LSD-t test was used for pairwise comparisons between groups. P < 0.05 was considered statistically significant.

Results

Compared to untreated cells, treatment with MβCD led to a decrease in cholesterol [ (59.33 ± 11.24) vs (127.00 ± 12.45) mmol/L], Caveolin-1 mRNA (0.52 ± 0.05 vs 1.00 ± 0.15) , as well as an increase in ALP activity [ (18.37 ± 0.31) vs (10.13 ± 0.41) U/L] (P < 0.05) . Addition of cholesterol resulted in an increase in cholesterol [ (228.21 ± 10.38) vs (127.00 ± 12.45) mmol/L], Caveolin-1 mRNA (4.58 ± 0.25 vs 1.00 ± 0.15) , and Caveolin-1 protein expression (184.00 ± 10.25 vs 51.25 ± 8.12) , as well as a decrease in ALP activity [ (6.32 ± 0.54) vs (10.13 ± 0.41) U/L] (P < 0.05) . Compared to cells transfected with si Ctrl, cells transfected with si CAV-1 showed a decrease in cholesterol [ (95.35 ± 14.05) vs (136.00 ± 15.52) mmol/L], Caveolin-1 mRNA (0.10 ± 0.21 vs 1.00 ± 0.45) , and Caveolin-1 protein expression (6.12 ± 0.35 vs 13.06 ± 1.52) , as well as an increase in ALP activity [ (19.28 ± 0.34) vs (10.15 ± 0.43) U/L] (P < 0.05) . Alizarin red staining showed that treatment with MβCD and transfection with si CAV-1 increased mineralization of the BMSCs matrix, while the addition of cholesterol decreased mineralization.

Conclusion

Caveolae/Caveolin-1 and membrane cholesterol mutually influence and co-regulate the osteogenic differentiation of mouse BMSCs.

表1 RT-PCR的引物序列
图1 细胞膜Chol含量注:MβCD为MβCD处理细胞,Chol为添加Chol细胞,si Ctrl为转染非特异性小干扰siRNA细胞,si CAV-1为转染Caveolin-1 siRNA细胞。与对照相比,aP < 0.05,与si Ctrl比较,bP < 0.05 (n = 3)
图2 Caveolin-1 mRNA表达水平注:MβCD为MβCD处理细胞,Chol为添加Chol细胞,si Ctrl为转染非特异性小干扰siRNA细胞,si CAV-1为转染Caveolin-1 siRNA细胞。与对照相比,aP < 0.05,与si Ctrl比较,bP < 0.05 (n = 3)
图3 细胞Caveolin-1蛋白表达水平注:MβCD为MβCD处理细胞,Chol为添加Chol细胞,si Ctrl为转染非特异性小干扰siRNA细胞,si CAV-1为转染Caveolin-1 siRNA细胞。a图为Western blot检测Caveolin-1蛋白表达;b图为Caveolin-1蛋白表达量,与对照比较,aP < 0.05,与si Ctrl比较,bP < 0.05,ns为差异无统计学意义
图4 细胞ALP活性测定值注:MβCD为MβCD处理细胞,Chol为添加Chol细胞,si Ctrl为转染非特异性小干扰siRNA细胞,si CAV-1为转染Caveolin-1 siRNA细胞。与对照相比,aP < 0.05,与si Ctrl比较,bP < 0.05 (n = 3)
图5 相差显微镜下观察不同方式处理细胞后的结节染色情况(茜素红染色×100)注:a图为对照,b图为MβCD处理细胞,c图为添加Chol细胞,d图为转染非特异性小干扰siRNA细胞,e为转染Caveolin-1 siRNA细胞
1
Wu Z, Zhu M, Mou X, et al. Overexpressing of caveolin-1 in mesenchymal stem cells promotes deep second-degree burn wound healing[J]. J Biosci Bioeng, 2021, 131(4):341-347.
2
Fernandes IPG, Oliveira-Brett AM. Caveolin proteins electrochemical oxidation and interaction with cholesterol[J]. Bioelectrochemistry, 2020, 133:107451. doi: 10.1016/j.bioelechem.2019.107451.
3
Aboy-Pardal MCM, Jimenez-Carretero D, Terrés-Domínguez S, et al. A Deep learning-based tool for the automated detection and analysis of caveolae in transmission electron microscopy images[J]. Comput Struct Biotechnol J, 2023, 21:224-237.
4
Mohamed FEA, Khalil EZI, Toni NDM. Caveolin-1 expression together with VEGF can be a predictor for lung metastasis and poor prognosis in osteosarcoma[J]. Pathol Oncol Res, 2020, 26(3):1787-1795.
5
Fang S, You M, Wei J, et al. Caveolin-1 is involved in fatty infiltration and bone-tendon healing of rotator cuff tear[J]. Mol Med, 2023, 29(1):33. doi: 10.1186/s10020-023-00627-4.
6
Sohn J, Lin H, Fritch MR, et al. Influence of cholesterol/caveolin-1/caveolae homeostasis on membrane properties and substrate adhesion characteristics of adult human mesenchymal stem cells[J]. Stem Cell Res Ther, 2018, 9(1):86. doi: 10.1186/s13287-018-0830-4.
7
Petković M, Vocks A, Müller M, et al. Comparison of different procedures for the lipid extraction from HL-60 cells: A MALDI-TOF mass spectrometric study[J]. Z Naturforsch C J Biosci, 2005, 60(1-2):143-151.
8
杨阳,张纲.小鼠骨髓间充质干细胞成骨分化过程中Caveolin-1的表达[J].口腔医学研究, 2016, 32(11):1132-1136.
9
Yoon H, Kim D, Kim S, et al. Src-mediated phosphorylation, ubiquitination and degradation of caveolin-1 promotes breast cancer cell stemness[J]. Cancer Lett, 2019, 449:8-19.
10
Lee YD, Yoon S, Park CK, et al. Caveolin-1 regulates osteoclastogenesis and bone metabolism in a sex-dependent manner[J]. J Biol Chem, 2015, 290(10):6522-6530.
11
Fu C, He J, Li C, et al. Cholesterol increases adhesion of monocytes to endothelium by moving adhesion molecules out of caveolae[J]. Biochim Biophys Acta, 2010, 1801(7):702-10.
12
Yeh YC, Ling JY, Chen WC, et al. Mechanotransduction of matrix stiffness in regulation of focal adhesion size and number: reciprocal regulation of caveolin-1 and beta1 integrin[J]. Sci Rep, 2017, 7(1):15008. doi: 10.1038/s41598-017-14932-6.
13
Baker N, Sohn J, Tuan RS. Promotion of human mesenchymal stem cell osteogenesis by PI3-kinase/Akt signaling, and the influence of caveolin-1/cholesterol homeostasis[J]. Stem Cell Res Ther, 2015, 6:238. doi: 10.1186/s13287-015-0225-8.
14
Baker N, Zhang G, You Y, et al. Caveolin-1 regulates proliferation and osteogenic differentiation of human mesenchymal stem cells[J]. J Cell Biochem, 2012, 113(12):3773-3787.
15
Tian G, Zhang G, Tan YH. Calcitonin gene-related peptide stimulates BMP-2 expression and the differentiation of human osteoblast-like cells in vitro[J]. Acta Pharmacol Sin, 2013, 34(11):1467-1474.
16
Khalili AA, Ahmad MR. A review of cell adhesion studies for biomedical and biological applications[J]. Int J Mol Sci, 2015, 16(8):18149-18184.
17
Li H, Guo H, Li H. Cholesterol loading affects osteoblastic differentiation in mouse mesenchymal stem cells[J]. Steroids, 2013, 78(4):426-433.
[1] 李璐璐, 马利红, 金佳佳, 谷伟. 干扰素基因刺激因子通过肺巨噬细胞胞葬功能调控急性肺损伤小鼠修复的研究[J]. 中华危重症医学杂志(电子版), 2024, 17(02): 97-103.
[2] 张礼刚, 邹志辉, 许顺, 蔡可可, 胡永涛, 梁朝朝. 酒精对慢性非细菌性前列腺炎中T淋巴细胞变化的影响研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 74-81.
[3] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[4] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[5] 陈显育, 曾谣, 莫钊鸿, 翟航, 张广权, 钟造茂, 陈署贤. 生物信息学分析CETP基因在肝癌中表达及其对预后和免疫的影响[J]. 中华肝脏外科手术学电子杂志, 2024, 13(02): 214-219.
[6] 李青霖, 宋仁杰, 周飞虎. 一种重型劳力性热射病相关急性肾损伤小鼠模型的建立与探讨[J]. 中华肾病研究电子杂志, 2023, 12(05): 265-270.
[7] 朱泽超, 杨新宇, 李侑埕, 潘鹏宇, 梁国标. 染料木黄酮通过SIRT1/p53信号通路对蛛网膜下腔出血后早期脑损伤的作用[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 261-269.
[8] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[9] 蒋心怡, 顾丹丹, 叶艳, 缪佳蓉. RNA测序研究抗菌肽KT2治疗溃疡性结肠炎的作用机制[J]. 中华消化病与影像杂志(电子版), 2024, 14(01): 8-15.
[10] 王淑友, 宋晓晶, 贾术永, 王广军, 张维波. 肝脏去唾液酸糖蛋白受体靶向活体荧光成像评估酒精性肝损伤肝脏功能的研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 443-446.
[11] 梁伟, 王晓彬, 洪笑阳, 蔡明岳, 梁礼聪, 陈烨, 黄培凯, 刘铭宇, 林立腾, 朱康顺. 原位肝癌小鼠微波消融术后复发模型的构建[J]. 中华介入放射学电子杂志, 2023, 11(02): 133-139.
[12] 姚晨晨, 杨雷, 罗诚诚, 佘会. 低密度脂蛋白胆固醇联合甘油三酯与葡萄糖乘积指数在急性冠脉综合征患者发生主要心血管事件中的预测价值[J]. 中华心脏与心律电子杂志, 2024, 12(01): 36-41.
[13] 方倩倩, 王爱忠, 王呈雨, 汪文英, 许涛. 不同七氟烷麻醉深度对老年小鼠术后谵妄的影响[J]. 中华老年病研究电子杂志, 2023, 10(04): 31-35.
[14] 刘玉苓, 王婷婷, 吴高峰, 俞淑静. 健康体检人群内脏脂肪面积与新型炎症标志物的相关性研究[J]. 中华肥胖与代谢病电子杂志, 2023, 09(03): 197-202.
[15] 李洪远, 董书宇, 鹿寒冰. 血清Hcy、sdLDL-C、Lp-PLA2水平对短暂性脑缺血发作进展为急性脑梗死的预测效能[J]. 中华脑血管病杂志(电子版), 2024, 18(01): 40-48.
阅读次数
全文


摘要