切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (02) : 113 -121. doi: 10.3877/cma.j.issn.2095-1221.2024.02.007

综述

间充质干细胞在脊髓损伤中的应用及研究进展
景水力1, 王娟1, 刘晔1, 周亨1, 熊威1, 叶青松1,()   
  1. 1. 430060 武汉,湖北武汉大学人民医院再生医学中心;430060 武汉,湖北武汉大学人民医院口腔科
  • 收稿日期:2024-02-09 出版日期:2024-04-01
  • 通信作者: 叶青松
  • 基金资助:
    国家自然科学基金(81871503); 湖北省重点研发项目(2022BCA029)

Application and research progress of mesenchymal stem cells in spinal cord injury

Shuili Jing1, Juan Wang1, Ye Liu1, Heng Zhou1, Wei Xiong1, Qingsong Ye1,()   

  1. 1. Center of Regenerative Medicine, Renmin Hospital of Wuhan University, Wuhan 430060, China; Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan 430060, China
  • Received:2024-02-09 Published:2024-04-01
  • Corresponding author: Qingsong Ye
引用本文:

景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.

Shuili Jing, Juan Wang, Ye Liu, Heng Zhou, Wei Xiong, Qingsong Ye. Application and research progress of mesenchymal stem cells in spinal cord injury[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(02): 113-121.

脊髓损伤(SCI)是一种伴有损伤平面以下感觉和运动障碍的中枢神经系统疾病,严重影响患者的自理能力和生活质量。目前SCI的治疗方法不能满足神经再生和功能恢复的需求。间充质干细胞(MSCs)不仅具有多向分化能力,还通过旁分泌效应发挥神经营养、免疫调节和血管生成活性。MSCs及其衍生物成为极具吸引力的SCI生物疗法,新型生物材料的发展进一步推动相关治疗策略的开发。本文就MSCs在SCI领域的治疗作用及应用进展进行综述,以期为未来的研究提供见解和参考。

Spinal cord injury (SCI) is a kind of central nervous system disorder with sensory and motor impairments below the injury level, severely affecting the self-care ability and life quality of patients. The current treatment for SCI fails to meet neural regeneration and functional recovery demands. Mesenchymal stem cells (MSCs) can differentiate multi-directionally and exert neurotrophic, immunomodulatory, and angiogenic activities through paracrine effects. MSCs and their derivatives have become attractive biological therapies for spinal cord injury, and the development of novel biomaterials has further promoted the development of related therapeutic strategies. This review summarizes the therapeutic effect and application progress of MSCs in SCI, aiming to provide insights and references for future research.

图1 脊髓损伤的病理生理过程
图2 间充质干细胞治疗脊髓损伤的作用机制
表1 在Clinal Trails注册的间充质干细胞治疗脊髓损伤的临床研究
注册号 研究题目 开始时间/状态 阶段 国家
NCT01325103 脊髓损伤患者的自体骨髓干细胞移植 2010-07 /完成 Ⅰ期 巴西
NCT01328860 自体干细胞治疗儿童脊髓损伤 2011-04 /终止 Ⅰ期 美固
NCT02482194 自体间充质干细胞移植治疗脊髓损伤 2013-06 /完成 Ⅰ期 巴基斯坦
NCT01676441 自体间充质干细胞在慢性脊髓损伤中的安全性和有效性 2008-08 /终止 Ⅱ/Ⅲ期 韩国
NCT02981576 BMMSC与AT-MSC治疗脊髓损伤患者的安全性和有效性 2016-11 /完成 Ⅰ/Ⅱ期 约旦
NCT02152657 自体间充质干细胞移植在慢性脊髓损伤中的评估:一项初步研究 2015-01 /完成 Ⅰ期 巴西
NCT01909154 自体骨髓基质细胞局部给药治疗慢性截瘫的安全性研究 2013-03 /完成 Ⅰ期 西班牙
NCT01873547 我国脊髓损伤患者康复治疗与干细胞移植疗效差异 2012-06 /完成 Ⅲ期 中国
NCT05152290 培养的同种异体成体脐带来源的间充质干细胞治疗脊髓损伤的安全性 2022-07 /招募 Ⅰ期 阿根廷
NCT02481440 hUC-MSCs反复蛛网膜下腔给药治疗脊髓损伤 2018-03 /完成 Ⅰ/Ⅱ期 中国
NCT02570932 在已确诊的慢性脊髓损伤中给予扩增的自体成人骨髓间充质细胞 2015-07 /完成 Ⅱ期 西班牙
NCT03308565 脂肪干细胞治疗创伤性脊髓损伤 2017-12 /完成 Ⅰ期 美国
NCT04288934 用(autoBMMSCs)与(WJ-MSCs)治疗脊髓损伤 2017-08 /完成 Ⅰ期 约旦
NCT01274975 脊髓损伤患者的自体脂肪来源的间充质干细胞移植 2009-07 /完成 Ⅰ期 未知
NCT03979742 脐带血细胞移植到受伤的脊髓中加之运动训练 2022-02 /招募 Ⅱ期 美国
NCT04520373 自体脂肪来源的间充质干细胞用于脊髓损伤患者 2020-06 /招募 Ⅱ期 美国
NCT0176987 脂肪组织间充质干细胞植入脊髓损伤患者的安全性和效果 2016-01 /完成 Ⅰ/Ⅱ期 韩国
NCT01186679 自体骨髓干细胞治疗脊髓损伤的安全性和有效性 2008-01 /完成 Ⅰ/Ⅱ期 印度
NCT01624779 脊髓损伤患者自体脂肪组织来源的MSC鞘内移植 2012-04 /完成 Ⅰ期 韩国
NCT05693181 脐带血细胞用于急性脊髓损伤患者 2022-12 /招募 Ⅰ/Ⅱ期 俄罗斯
NCT03003364 扩增脐带沃顿胶间充质干细胞在慢性创伤性脊髓损伤中的鞘内给药 2016-12 /完成 Ⅰ/Ⅱ期 西班牙
NCT00816803 细胞脊髓损伤患者的移植 2005-05 /埃及 Ⅰ/Ⅱ期 埃及
NCT04331405 脐带血细胞用于成人严重急性挫伤脊髓损伤 2013-03 /完成 Ⅰ/Ⅱ期 俄罗斯
图3 间充质干细胞及其衍生疗法
表2 间充质干细胞组织工程策略应用于SCI
研究 细胞类型 形式 生物支架类型 对象
2023,Su等[64] ADMSCs 细胞 dECM支架 大鼠急性完全性SCI模型
2023,Zhou等[11] DPSCs 细胞 GelMA水凝胶 大鼠急性完全性SCI模型
2023,He等[66] UCMSCs 细胞 dECM支架 大鼠急性完全性SCI模型
2022,Chen等[67] UCMSCs 分泌组 胶原蛋白支架 大鼠急性完全性SCI模型
2022,Tang等[69] BMMSCs、UCMSCs 细胞 胶原蛋白支架 急性完全性SCI、慢性完全性SCI患者
2021,Zhang等[70] UCMSCs 外泌体 胶原蛋白支架 大鼠急性完全性SCI模型
2020,Li等[71] hPMSCs 外泌体 透明质酸支架 大鼠急性完全性SCI模型
2018,Mukhamedshina等[72] ADMSCs 细胞 纤维蛋白支架 大鼠急性完全性SCI模型
2018,Zaviskova等[73] hWJMSCs 细胞 透明质酸衍生支架 大鼠急性和亚急性半切SCI模型
2018,Xiao等[74] BMMSCs 细胞 胶原蛋白支架 急性完全性SCI患者
2018,Wang等[75] UCMSCs 细胞 胶原蛋白支架 大鼠慢性完全性SCI模型
2018,Peng等[76] BMMSCs 细胞 胶原蛋白支架 大鼠急性半切SCI模型
2018,Ma等[77] BMMSCs 细胞 明胶海绵支架 大鼠急性完全性SCI模型
2017,Yang等[78] BMMSCs 细胞 聚(乳酸-乙醇酸)支架 大鼠急性完全性SCI模型
2017,Li等[79] UCMSCs 细胞 胶原蛋白支架 犬慢性完全性SCI模型
2017,Li等[80] BMMSCs 细胞 透明质酸支架 大鼠急性完全性SCI模型
2016,Li等[81] BMMSCs 细胞 明胶海绵支架 大鼠急性完全性SCI模型、犬急性半切SCI模型
2014,Zhang等[82] BMMSCs 细胞 明胶海绵支架 大鼠急性完全性SCI模型
2012,Cholas等[83] BMMSCs 细胞 胶原蛋白支架 大鼠急性半切SCI模型
1
Courtine G, Sofroniew MV. Spinal cord repair: advances in biology and technology[J]. Nat Med, 2019, 25(6):898-908.
2
Alizadeh A, Dyck SM, Karimi-Abdolrezaee S. Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms[J]. Front Neurol, 2019, 10:282. doi: 10.3389/fneur.2019.00282.
3
Tian T, Zhang S, Yang M. Recent progress and challenges in the treatment of spinal cord injury[J]. Protein Cell, 2023, 14(9):635-652.
4
Fang YM, Chen WC, Zheng WJ, et al. A cutting-edge strategy for spinal cord injury treatment: resident cellular transdifferentiation[J]. Front Cell Neurosci, 2023, 17:1237641. doi: 10.3389/fncel.2023.1237641.
5
Hu X, Xu W, Ren Y, et al. Spinal cord injury: molecular mechanisms and therapeutic interventions[J]. Signal Transduct Target Ther, 2023, 8(1):245. doi: 10.1038/s41392-023-01477-6.
6
Ahuja CS, Wilson JR, Nori S, et al. Traumatic spinal cord injury[J]. Nat Rev Dis Primers, 2017, 3:17018. doi: 10.1038/nrdp.2017.18.
7
Zipser CM, Cragg JJ, Guest JD, et al. Cell-based and stem-cell-based treatments for spinal cord injury: evidence from clinical trials[J]. Lancet Neurol, 2022, 21(7):659-670.
8
Kim GU, Sung SE, Kang KK, et al. Therapeutic potential of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles for the treatment of spinal cord injury[J]. Int J Mol Sci, 2021, 22(24):13672. doi: 10.3390/ijms222413672.
9
Xia Y, Zhu J, Yang R, et al. Mesenchymal stem cells in the treatment of spinal cord injury: Mechanisms, current advances and future challenges[J]. Front Immunol, 2023, 14:1141601. doi: 10.3389/fimmu.2023.1141601.
10
Ding Y, Chen Q. mTOR pathway: A potential therapeutic target for spinal cord injury[J]. Biomed Pharmacother, 2022, 145:112430. doi: 10.1016/j.biopha.2021.112430.
11
Zhou H, Jing S, Xiong W, et al. Metal-organic framework materials promote neural differentiation of dental pulp stem cells in spinal cord injury[J]. J Nanobiotechnology, 2023, 21(1):316. doi: 10.1186/s12951-023-02001-2.
12
Kohno K, Shirasaka R, Yoshihara K, et al. A spinal microglia population involved in remitting and relapsing neuropathic pain[J]. Science, 2022, 376(6588):86-90.
13
He X, Li Y, Deng B, et al. The PI3K/AKT signalling pathway in inflammation, cell death and glial scar formation after traumatic spinal cord injury: Mechanisms and therapeutic opportunities[J]. Cell Prolif, 2022, 55(9):e13275. doi: 10.1111/cpr.13275.
14
Gao X, Han Z, Huang C, et al. An anti-inflammatory and neuroprotective biomimetic nanoplatform for repairing spinal cord injury[J]. Bioact Mater, 2022, 18:569-582.
15
Ren Z, Qi Y, Sun S, et al. Mesenchymal stem cell-derived exosomes: hope for spinal cord injury repair[J]. Stem Cells Dev, 2020, 29(23): 1467-1478.
16
Chen SY, Yang RL, Wu XC, et al. Mesenchymal stem cell transplantation: neuroprotection and nerve regeneration after spinal cord injury[J]. J Inflamm Res, 2023, 16:4763-4776.
17
Ma T, Wu J, Mu J, et al. Biomaterials reinforced MSCs transplantation for spinal cord injury repair[J]. Asian J Pharm Sci, 2022, 17(1):4-19.
18
Vizoso FJ, Eiro N, Cid S, et al. Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine[J]. Int J Mol Sci, 2017, 18(9):1852. doi: 10.3390/ijms18091852.
19
Gnecchi M, Danieli P, Malpasso G, et al. Paracrine mechanisms of mesenchymal stem cells in tissue repair[J]. Methods Mol Biol, 2016, 1416:123-146.
20
Huang LY, Sun X, Pan HX, et al. Cell transplantation therapies for spinal cord injury focusing on bone marrow mesenchymal stem cells: Advances and challenges[J]. World J Stem Cells, 2023, 15(5):385-399.
21
Pal R, Venkataramana NK, Bansal A, et al. Ex vivo-expanded autologous bone marrow-derived mesenchymal stromal cells in human spinal cord injury/paraplegia: a pilot clinical study[J]. Cytotherapy, 2009, 11(7):897-911.
22
Saito F, Nakatani T, Iwase M, et al. Administration of cultured autologous bone marrow stromal cells into cerebrospinal fluid in spinal injury patients: a pilot study[J]. Restor Neurol Neurosci, 2012, 30(2):127-136.
23
Jiang PC, Xiong WP, Wang G, et al. A clinical trial report of autologous bone marrow-derived mesenchymal stem cell transplantation in patients with spinal cord injury[J]. Exp Ther Med, 2013, 6(1):140-146.
24
Mendonca MV, Larocca TF, de Freitas Souza BS, et al. Safety and neurological assessments after autologous transplantation of bone marrow mesenchymal stem cells in subjects with chronic spinal cord injury[J]. Stem Cell Res Ther, 2014, 5(6):126. doi: 10.1186/scrt516.
25
El-Kheir WA, Gabr H, Awad MR, et al. Autologous bone marrow-derived cell therapy combined with physical therapy induces functional improvement in chronic spinal cord injury patients[J]. Cell Transplant, 2014, 23(6):729-745.
26
Assinck P, Duncan GJ, Hilton BJ, et al. Cell transplantation therapy for spinal cord injury[J]. Nat Neurosci, 2017, 20(5):637-647.
27
Lu Y, Zhang W, Tian Z, et al. The optimal transplantation strategy of umbilical cord mesenchymal stem cells in spinal cord injury: a systematic review and network meta-analysis based on animal studies[J]. Stem Cell Res Ther, 2022, 13(1):441. doi: 10.1186/s13287-022-03103-8.
28
Kang KS, Kim SW, Oh YH, et al. A 37-year-old spinal cord-injured female patient, transplanted of multipotent stem cells from human UC blood, with improved sensory perception and mobility, both functionally and morphologically: a case study[J]. Cytotherapy, 2005, 7(4):368-373.
29
Cheng H, Liu X, Hua R, et al. Clinical observation of umbilical cord mesenchymal stem cell transplantation in treatment for sequelae of thoracolumbar spinal cord injury[J]. J Transl Med, 2014, 12:253. doi: 10.1186/s12967-014-0253-7.
30
Alonso-Goulart V, Carvalho LN, Marinho ALG, et al. Biomaterials and adipose-derived mesenchymal stem cells for regenerative medicine: a systematic review[J]. Materials (Basel), 2021, 14(16):4641. doi: 10.3390/ma14164641.
31
Menezes K, Nascimento MA, Goncalves JP, et al. Human mesenchymal cells from adipose tissue deposit laminin and promote regeneration of injured spinal cord in rats[J]. PLoS One, 2014, 9(5):e96020. doi: 10.1371/journal.pone.0096020.
32
Kim Y, Lee SH, Kim WH, et al. Transplantation of adipose derived mesenchymal stem cells for acute thoracolumbar disc disease with no deep pain perception in dogs[J]. J Vet Sci, 2016, 17(1):123-126.
33
Ra JC, Shin IS, Kim SH, et al. Safety of intravenous infusion of human adipose tissue-derived mesenchymal stem cells in animals and humans[J]. Stem Cells Dev, 2011, 20(8):1297-1308.
34
Hur JW, Cho TH, Park DH, et al. Intrathecal transplantation of autologous adipose-derived mesenchymal stem cells for treating spinal cord injury: a human trial[J]. J Spinal Cord Med, 2016, 39(6):655-64.
35
Bydon M, Dietz AB, Goncalves S, et al. CELLTOP Clinical Trial: first report from a phase 1 trial of autologous adipose tissue-derived mesenchymal stem cells in the Treatment of Paralysis Due to traumatic spinal cord injury[J]. Mayo Clin Proc, 2020, 95(2):406-414.
36
Xu Y, Chen M, Zhang T, et al. Spinal cord regeneration using dental stem cell-based therapies[J]. Acta Neurobiol Exp (Wars), 2019, 79(4):319-327.
37
Martens W, Sanen K, Georgiou M, et al. Human dental pulp stem cells can differentiate into Schwann cells and promote and guide neurite outgrowth in an aligned tissue-engineered collagen construct in vitro[J]. FASEB J, 2014, 28(4):1634-1643.
38
Zhang J, Lu X, Feng G, et al. Chitosan scaffolds induce human dental pulp stem cells to neural differentiation: potential roles for spinal cord injury therapy[J]. Cell Tissue Res, 2016, 366(1):129-142.
39
Luo L, Albashari AA, Wang X, et al. Effects of transplanted heparin-poloxamer hydrogel combining dental pulp stem cells and bFGF on spinal cord injury repair[J]. Stem Cells Int, 2018, 2018:2398521. doi: 10.1155/2018/2398521.
40
Ying Y, Huang Z, Tu Y, et al. A shear-thinning, ROS-scavenging hydrogel combined with dental pulp stem cells promotes spinal cord repair by inhibiting ferroptosis[J]. Bioact Mater, 2022, 22:274-290.
41
Giovannelli L, Bari E, Jommi C, et al. Mesenchymal stem cell secretome and extracellular vesicles for neurodegenerative diseases: Risk-benefit profile and next steps for the market access[J]. Bioact Mater, 2023, 29:16-35.
42
Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine[J]. Cells, 2021, 10(8):1959. doi: 10.3390/cells10081959.
43
Pegtel DM, Gould SJ. Exosomes[J]. Annu Rev Biochem, 2019, 88:487-514.
44
Nakazaki M, Morita T, Lankford KL, et al. Small extracellular vesicles released by infused mesenchymal stromal cells target M2 macrophages and promote TGF-beta upregulation, microvascular stabilization and functional recovery in a rodent model of severe spinal cord injury[J]. J Extracell Vesicles, 2021, 10(11):e12137. doi: 10.1002/jev2.12137.
45
Lankford KL, Arroyo EJ, Nazimek K, et al. Intravenously delivered mesenchymal stem cell-derived exosomes target M2-type macrophages in the injured spinal cord[J]. PLoS One, 2018, 13(1):e0190358. doi: 10.1371/journal.pone.0190358.
46
Lu Y, Zhou Y, Zhang R, et al. Bone mesenchymal stem cell-derived extracellular vesicles promote recovery following spinal cord injury via improvement of the integrity of the blood-spinal cord barrier[J]. Front Neurosci, 2019, 13:209. doi: 10.3389/fnins.2019.00209.
47
Kang J, Guo Y. Human umbilical cord mesenchymal stem cells derived exosomes promote neurological function recovery in a rat spinal cord injury model[J]. Neurochem Res, 2022, 47(6):1532-1540.
48
Sung SE, Seo MS, Kim YI, et al. Human epidural AD-MSC exosomes improve function recovery after spinal cord injury in rats[J]. Biomedicines, 2022, 10(3):678. doi: 10.3390/biomedicines10030678.
49
Yan J, Zhang L, Li L, et al. Developmentally engineered bio-assemblies releasing neurotrophic exosomes guide in situ neuroplasticity following spinal cord injury[J]. Mater Today Bio, 2022, 16:100406. doi: 10.1016/j.mtbio.2022.100406.
50
Zhou W, Silva M, Feng C, et al. Exosomes derived from human placental mesenchymal stem cells enhanced the recovery of spinal cord injury by activating endogenous neurogenesis[J]. Stem Cell Res Ther, 2021, 12(1):174. doi: 10.1186/s13287-021-02248-2.
51
Han M, Yang H, Lu X, et al. Three-dimensional-cultured MSC-derived exosome-hydrogel hybrid microneedle array patch for spinal cord repair[J]. Nano Lett, 2022, 22(15):6391-6401.
52
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1):47. doi: 10.1186/s12974-020-1726-7.
53
Guo S, Perets N, Betzer O, et al. Intranasal delivery of mesenchymal stem cell derived exosomes loaded with phosphatase and tensin homolog siRNA repairs complete spinal cord injury[J]. ACS Nano, 2019, 13(9):10015-10028.
54
Chen Y, Tian Z, He L, et al. Exosomes derived from miR-26a-modified MSCs promote axonal regeneration via the PTEN/AKT/mTOR pathway following spinal cord injury[J]. Stem Cell Res Ther, 2021, 12(1):224. doi: 10.1186/s13287-021-02282-0.
55
Cizkova D, Cubinkova V, Smolek T, et al. Localized intrathecal delivery of mesenchymal stromal cells conditioned medium improves functional recovery in a rat model of spinal cord injury[J]. Int J Mol Sci, 2018, 19(3):870. doi: 10.3390/ijms19030870.
56
Cantinieaux D, Quertainmont R, Blacher S, et al. Conditioned medium from bone marrow-derived mesenchymal stem cells improves recovery after spinal cord injury in rats: an original strategy to avoid cell transplantation[J]. PLoS One, 2013, 8(8):e69515. doi: 10.1371/journal.pone.0069515.
57
Kanekiyo K, Wakabayashi T, Nakano N, et al. Effects of intrathecal injection of the conditioned medium from bone marrow stromal cells on spinal cord injury in rats[J]. J Neurotrauma, 2018, 35(3):521-532.
58
Chen YT, Tsai MJ, Hsieh N, et al. The superiority of conditioned medium derived from rapidly expanded mesenchymal stem cells for neural repair[J]. Stem Cell Res Ther, 2019, 10(1):390. doi: 10.1186/s13287-019-1491-7.
59
Chudickova M, Vackova I, Machova Urdzikova L, et al. The effect of Wharton Jelly-derived mesenchymal stromal cells and their conditioned media in the treatment of a rat spinal cord injury[J]. Int J Mol Sci, 2019, 20(18):4516. doi: 10.3390/ijms20184516.
60
Asadi-Golshan R, Razban V, Mirzaei E, et al. Sensory and motor behavior evidences supporting the usefulness of conditioned medium from dental pulp-derived stem cells in spinal cord injury in rats[J]. Asian Spine J, 2018, 12(5):785-793.
61
Sarveazad A, Toloui A, Moarrefzadeh A, et al. Mesenchymal stem cell-conditioned medium promotes functional recovery following spinal cord injury: a systematic review and meta-analysis[J]. Spine Surg Relat Res, 2022, 6(5):433-442.
62
Blando S, Anchesi I, Mazzon E, et al. Can a scaffold enriched with mesenchymal stem cells be a good treatment for spinal cord injury?[J]. Int J Mol Sci, 2022, 23(14):7545. doi: 10.3390/ijms23147545.
63
Levy O, Kuai R, Siren EMJ, et al. Shattering barriers toward clinically meaningful MSC therapies[J]. Sci Adv, 2020, 6(30):eaba6884. doi: 10.1126/sciadv.aba6884.
64
Su X, Teng M, Zhang Y, et al. Decellularized extracellular matrix scaffold seeded with adipose-derived stem cells promotes neurorestoration and functional recovery after spinal cord injury through Wnt/beta-catenin signaling pathway regulation[J]. Biomed Mater, 2023, 19(1). doi: 10.1088/1748-605X/ad0fa1.
65
Ai A, Hasanzadeh E, Safshekan F, et al. Enhanced spinal cord regeneration by gelatin/alginate hydrogel scaffolds containing human endometrial stem cells and curcumin-loaded PLGA nanoparticles in rat[J]. Life Sci, 2023, 330:122035. doi: 10.1016/j.lfs.2023.122035.
66
He W, Shi C, Yin J, et al. Spinal cord decellularized matrix scaffold loaded with engineered basic fibroblast growth factor-overexpressed human umbilical cord mesenchymal stromal cells promoted the recovery of spinal cord injury[J]. J Biomed Mater Res B Appl Biomater, 2023, 111(1):51-61.
67
Chen C, Xu HH, Liu XY, et al. 3D printed collagen/silk fibroin scaffolds carrying the secretome of human umbilical mesenchymal stem cells ameliorated neurological dysfunction after spinal cord injury in rats[J]. Regen Biomater, 2022, 9:rbac014. doi: 10.1093/rb/rbac014.
68
He W, Zhang X, Li X, et al. A decellularized spinal cord extracellular matrix-gel/GelMA hydrogel three-dimensional composite scaffold promotes recovery from spinal cord injury via synergism with human menstrual blood-derived stem cells[J]. J Mater Chem B, 2022, 10(30):5753-5764.
69
Tang F, Tang J, Zhao Y, et al. Long-term clinical observation of patients with acute and chronic complete spinal cord injury after transplantation of NeuroRegen scaffold[J]. Sci China Life Sci, 2022, 65(5):909-926.
70
Zhang L, Fan C, Hao W, et al. NSCs migration promoted and drug delivered exosomes-collagen scaffold via a bio-specific peptide for one-step spinal cord injury repair[J]. Adv Healthc Mater, 2021, 10(8):e2001896. doi: 10.1002/adhm.202001896.
71
Li L, Zhang Y, Mu J, et al. Transplantation of human mesenchymal stem-cell-derived exosomes immobilized in an adhesive hydrogel for effective treatment of spinal cord injury[J]. Nano Lett, 2020, 20(6):4298-4305.
72
Mukhamedshina YO, Akhmetzyanova ER, Kostennikov AA, et al. Adipose-derived mesenchymal stem cell application combined with fibrin matrix promotes structural and functional recovery following spinal cord injury in rats[J]. Front Pharmacol, 2018, 9:343. doi: 10.3389/fphar.2018.00343.
73
Zaviskova K, Tukmachev D, Dubisova J, et al. Injectable hydroxyphenyl derivative of hyaluronic acid hydrogel modified with RGD as scaffold for spinal cord injury repair[J]. J Biomed Mater Res A, 2018, 106(4):1129-1140.
74
Xiao Z, Tang F, Zhao Y, et al. Significant improvement of acute complete spinal cord injury patients diagnosed by a combined criteria implanted with NeuroRegen scaffolds and mesenchymal stem cells[J]. Cell Transplant, 2018, 27(6):907-915.
75
Wang N, Xiao Z, Zhao Y, et al. Collagen scaffold combined with human umbilical cord-derived mesenchymal stem cells promote functional recovery after scar resection in rats with chronic spinal cord injury[J]. J Tissue Eng Regen Med, 2018, 12(2):e1154-e1163.
76
Peng Z, Gao W, Yue B, et al. Promotion of neurological recovery in rat spinal cord injury by mesenchymal stem cells loaded on nerve-guided collagen scaffold through increasing alternatively activated macrophage polarization[J]. J Tissue Eng Regen Med, 2018, 12(3):e1725-e1736.
77
Ma YH, Zeng X, Qiu XC, et al. Perineurium-like sheath derived from long-term surviving mesenchymal stem cells confers nerve protection to the injured spinal cord[J]. Biomaterials, 2018, 160:37-55.
78
Yang EZ, Zhang GW, Xu JG, et al. Multichannel polymer scaffold seeded with activated Schwann cells and bone mesenchymal stem cells improves axonal regeneration and functional recovery after rat spinal cord injury[J]. Acta Pharmacol Sin, 2017, 38(5):623-637.
79
Li X, Tan J, Xiao Z, et al. Transplantation of hUC-MSCs seeded collagen scaffolds reduces scar formation and promotes functional recovery in canines with chronic spinal cord injury[J]. Sci Rep, 2017, 7:43559. doi: 10.1038/srep43559.
80
Li LM, Han M, Jiang XC, et al. Peptide-tethered hydrogel scaffold promotes recovery from spinal cord transection via synergism with mesenchymal stem cells[J]. ACS Appl Mater Interfaces, 2017, 9(4):3330-3342.
81
Li G, Che MT, Zhang K, et al. Graft of the NT-3 persistent delivery gelatin sponge scaffold promotes axon regeneration, attenuates inflammation, and induces cell migration in rat and canine with spinal cord injury[J]. Biomaterials, 2016, 83:233-248.
82
Zhang K, Liu Z, Li G, et al. Electro-acupuncture promotes the survival and differentiation of transplanted bone marrow mesenchymal stem cells pre-induced with neurotrophin-3 and retinoic acid in gelatin sponge scaffold after rat spinal cord transection[J]. Stem Cell Rev Rep, 2014, 10(4):612-625.
83
Cholas R, Hsu HP, Spector M. Collagen scaffolds incorporating select therapeutic agents to facilitate a reparative response in a standardized hemiresection defect in the rat spinal cord[J]. Tissue Eng Part A, 2012, 18(19-20):2158-2172.
84
Li L, Xiao B, Mu J, et al. A MnO(2) Nanoparticle-Dotted hydrogel promotes spinal cord repair via regulating reactive oxygen species microenvironment and synergizing with mesenchymal stem cells[J]. ACS Nano, 2019, 13(12):14283-14293.
85
Kim HY, Kumar H, Jo MJ, et al. Therapeutic efficacy-potentiated and diseased organ-targeting nanovesicles derived from mesenchymal stem cells for spinal cord injury treatment[J]. Nano Lett, 2018, 18(8):4965-4975.
[1] 吴杰, 周志强, 符菁, 李喜功, 张钦. 吸入性氢气对大鼠脊髓损伤后自噬及神经功能的影响[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(05): 363-371.
[2] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[3] 袁丹, 钟潇, 王明松, 贾康. 脊髓损伤神经源性膀胱患者间歇导尿期间尿路感染病原菌分布及影响因素[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 229-236.
[4] 宋玟焱, 杜美君, 陈佳丽, 石冰, 黄汉尧. 唇腭裂手术围手术期疼痛管理的研究进展及基于生物材料治疗新方法的展望[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(06): 397-405.
[5] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[6] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[7] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[8] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[9] 万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.
[10] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[11] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[12] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[13] 薛文, 刘卓, 贾卫华, 张小义, 刘进, 王爱国, 冯志刚, 杨鑫, 田祺, 段虎斌. 大鼠脊髓损伤后降钙素基因相关肽及神经元钙超载的变化及相关性分析[J/OL]. 中华神经创伤外科电子杂志, 2024, 10(04): 198-205.
[14] 于同, 矫健航, 姜炜博, 王中汉, 王洋, 伍旭辉, 吴敏飞. 体位复位与椎板切除减压内固定术治疗胸腰段爆裂性骨折的对比性研究[J/OL]. 中华老年骨科与康复电子杂志, 2024, 10(06): 331-339.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?