切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (04) : 249 -253. doi: 10.3877/cma.j.issn.2095-1221.2024.04.008

综述

中药有效成分结合生物材料在骨组织工程中作用的研究进展
万周程1, 钟章锋2, 钟侨霖3, 王景浩4, 刘婷5,(), 王华军1,(), 郑小飞1,()   
  1. 1. 510630 广州,暨南大学附属第一医院运动医学科 广州市精准骨科与再生医学重点实验室 广东省速度能力研究重点实验室
    2. 999078 澳门科技大学中药质量研究国家重点实验室 澳门科技大学中医药学院
    3. 150081 哈尔滨医科大学药学院
    4. 510630 广州,暨南大学附属第一医院药学部 寒地心血管病全国重点实验室 广州市慢病基础研究与转化重点实验室;999077 香港中文大学中医学院
    5. 510630 广州,暨南大学化学与材料学院
  • 收稿日期:2024-03-26 出版日期:2024-08-01
  • 通信作者: 刘婷, 王华军, 郑小飞
  • 基金资助:
    中央高校基本科研业务费专项资金资助(21623119,21623319,21621103); 国家自然科学基金面上项目(82172440,82074511); 广州市重点项目(202201020087,2023A03J0566,SL2023A03J01128,SL2023A04J01317); 广东省速度能力研究重点实验室开放基金资助项目(2023B1212010009); 广东省医学科学技术研究基金项目(A2023143); 暨南大学医学联合基金资金资助项目(YXJC2022005)

Advances in the role of effective components of traditional Chinese medicine combined with biomaterials in bone tissue engineering

Zhoucheng Wan1, Zhangfeng Zhong2, Qiaolin Zhong3, Jinghao Wang4, Ting Liu5,(), Huajun Wang1,(), Xiaofei Zheng1,()   

  1. 1. Department of Sports Medicine, Guangzhou Key Laboratory of Precision Orthopaedics and Regenerative Medicine, Guangdong Provincial Key Laboratory of Speed Ability Research, Guangzhou 510630, China
    2. State Key Laboratory of Traditional Chinese Medicine Quality Research, Macao University of Science and Technology, College of Traditional Chinese Medicine, Macao University of Science and Technology, Macao 999078, China
    3. College of Traditional Chinese Medicine, Chinese University of Hong Kong, Hong Kong 999077, China
    4. Department of Pharmaceutical, First Affiliated Hospital of Jinan University, National Key Laboratory of Cardiovascular Diseases in Cold Region, Guangzhou Key Laboratory of Basic Research and Transformation of Chronic Diseases, Guangzhou 510630, China; Harbin Medical University School of Pharmacy, Harbin 150081, China
    5. College of Chemistry and Materials, Jinan University, Guangzhou 510630, China
  • Received:2024-03-26 Published:2024-08-01
  • Corresponding author: Ting Liu, Huajun Wang, Xiaofei Zheng
引用本文:

万周程, 钟章锋, 钟侨霖, 王景浩, 刘婷, 王华军, 郑小飞. 中药有效成分结合生物材料在骨组织工程中作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 249-253.

Zhoucheng Wan, Zhangfeng Zhong, Qiaolin Zhong, Jinghao Wang, Ting Liu, Huajun Wang, Xiaofei Zheng. Advances in the role of effective components of traditional Chinese medicine combined with biomaterials in bone tissue engineering[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(04): 249-253.

骨组织工程是快速发展的领域,开发新型生物材料,修复受损或患病的骨组织是其主要研究方向之一。许多中药有效成分对细胞的增殖、分化以及组织或器官的修复和再生等具有重要的促进作用,将中药有效成分添加到骨科生物材料中可以提高材料的治疗效果。因此中药有效成分在骨科生物材料中的应用引起国内外研究者的关注,本文综述了中药有效成分在骨组织工程中的作用,包括促进成骨、保护及修复软骨、促血管形成和抗炎等。

Bone tissue engineering is a rapidly developing field aimed at developing new biomaterials to repair damaged or diseased bone tissue. Many effective components of traditional Chinese medicine play an important role in promoting cell proliferation, differentiation, repair and regeneration of tissues or organs. Adding effective components of traditional Chinese medicine to orthopedic biomaterials can improve the therapeutic effect of materials. Therefore, the application of effective components of traditional Chinese medicine in orthopedic biomaterials has attracted the attention of researchers at home and abroad. This paper reviews the role of effective components of traditional Chinese medicine in bone tissue engineering, including promoting osteogenesis, protecting and repairing cartilage, promoting angiogenesis, anti-inflammatory.

表1 中药有效成分结合生物材料在骨组织工程中作用的研究进展
1
Li D, Nie W, Chen L, et al. Fabrication of curcumin-loaded mesoporous silica incorporated polyvinyl pyrrolidone nanofibers for rapid hemostasis and antibacterial treatment[J]. Rsc Advances, 2017, 7(13):7973-7982. doi: 10.1016/j.msec.2020.111760.
2
Tang H, Hosein A, Mattioli-Belmonte M. Traditional Chinese Medicine and orthopedic biomaterials: Host of opportunities from herbal extracts[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120:111760.
3
Choi S, Noh SH, Lim CO, et al. Icariin-functionalized nanodiamonds to enhance osteogenic capacity in vitro[J]. Nanomaterials, 2020, 10(10): 2071. doi: 10.3390/nano10102071.
4
Lai Y, Cao H, Wang X, et al. Porous composite scaffold incorporating osteogenic phytomolecule icariin for promoting skeletal regeneration in challenging osteonecrotic bone in rabbits[J]. Biomaterials, 2018, 153:1-13.
5
Riaz M, Rahman UN, Zia-Ul-Haq M, et al. Ginseng: a dietary supplement as immune-modulator in various diseases[J]. Trends in Food Science & Technology, 2018:8312-8330.
6
Chen CY, Shie MY, Lee AK, et al. 3D-printed ginsenoside Rb1-loaded mesoporous calcium silicate/calcium sulfate scaffolds for inflammation inhibition and bone regeneration[J]. Biomedicines, 2021, 9(8):907. doi: 10.3390/biomedicines9080907.
7
Son H, Kim E, Jang W. Curcumin induces osteoblast differentiation through mild-endoplasmic reticulum stress-mediated such as BMP2 on osteoblast cells[J]. Life Sci, 2018, 193:34-39.
8
Li Y, Zhang ZZ. Sustained curcumin release from PLGA microspheres improves bone formation under diabetic conditions by inhibiting the reactive oxygen species production[J]. Drug Des Devel Ther, 2018, 12:1453-1466.
9
Xue D, Chen E, Zhang W, et al. The role of hesperetin on osteogenesis of human mesenchymal stem cells and its function in bone regeneration[J]. Oncotarget, 2017, 8(13):21031-21043.
10
Ge Y, Lu J, Sun Z, et al. Ursolic acid loaded-mesoporous bioglass/chitosan porous scaffolds as drug delivery system for bone regeneration[J]. Nanomedicine, 2019, 18:336-346.
11
Zhao ZH, Ma XL, Zhao B, et al. Naringin-inlaid silk fibroin/hydroxyapatite scaffold enhances human umbilical cord-derived mesenchymal stem cell-based bone regeneration[J]. Cell Prolif, 2021, 54(7):e13043. doi: 10.1111/cpr.13043.
12
Weiye C, Bin S, Chao S, et al. Resveratrol induces proliferation and differentiation of mouse pre-osteoblast MC3T3-E1 by promoting autophagy[J]. BMC Complement Med Ther, 2023, 23(1):121. doi: 10.1186/s12906-023-03943-8.
13
Ding X, Li W, Chen D, et al. Asperosaponin VI stimulates osteogenic differentiation of rat adipose-derived stem cells[J]. Regen Ther, 2019, 11:17-24.
14
Zeyuan Z, Zhi Q, Xu Z, et al. Tetrandrine prevents bone loss in ovariectomized mice by inhibiting RANKL-induced osteoclastogenesis[J]. Front Pharmacol, 2019, 10:1530. doi: 10.3389/fphar.2019.01530.
15
Zhang J, Zhang D, Wu C, et al. Icariin-conditioned serum engineered with hyaluronic acid promote repair of articular cartilage defects in rabbit knees[J]. BMC Complement Altern Med, 2019, 19(1):155. doi: 10.1186/s12906-019-2570-0.
16
Cong ZW, Jun HS, Hua KL, et al. Icariin promotes directed chondrogenic differentiation of bone marrow mesenchymal stem cells but not hypertrophy in vitro[J]. Exp Ther Med, 2014, 8(5):1528-1534.
17
Kankala KR, Lu F, Liu C, et al. Effect of icariin on engineered 3D-printed porous scaffolds for cartilage repair[J]. Materials, 2018, 11(8):1390. doi: 10.3390/ma11081390.
18
Yang J, Liu Y, He L, et al. Icariin conjugated hyaluronic acid/collagen hydrogel for osteochondral interface restoration[J]. Acta Biomater, 2018, 74:156-167.
19
Pengzhen W, Yanchen Y, Wei Y, et al. Curcumin exerts a protective effect on murine knee chondrocytes treated with IL-1β through blocking the NF-κB/HIF-2α signaling pathway[J]. Ann Transl Med, 2021, 9(11):940. doi: 10.21037/atm-21-2701.
20
Wang W, Sun L, Zhang P, et al. An anti-inflammatory cell-free collagen/resveratrol scaffold for repairing osteochondral defects in rabbits[J]. Acta Biomater, 2014, 10(12):4983-4995.
21
Hu Y, Gui Z, Zhou Y, et al. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages[J]. Free Radic Biol Med, 2019, 145:146-160.
22
Zhang X, Shi Y, Zhang Z, et al. Intra-articular delivery of tetramethylpyrazine microspheres with enhanced articular cavity retention for treating osteoarthritis[J]. Asian J Pharm Sci, 2018, 13(3):229-238.
23
Chunyang H, Ze W, Jingshan S. Pharmacological effects of icariin[J]. Adv Pharmacol, 2020, 87:179-203.
24
Yuqiong W, LingYan C, Lunguo X, et al. Evaluation of osteogenesis and angiogenesis of icariin in local controlled release and systemic delivery for calvarial defect in ovariectomized rats[J]. Sci Rep, 2017, 7(1):5077. doi: 10.1038/s41598-017-05392-z.
25
Salarian M, Samimi R, Xu ZW, et al. Microfluidic synthesis and angiogenic activity of ginsenoside Rg1-loaded PPF microspheres[J]. ACS Biomater Sci Eng, 2016, 2(11):1872-1882.
26
Chen YB, Lan YW, Hung TH, et al. Mesenchymal stem cell-based HSP70 promoter-driven VEGFA induction by resveratrol promotes angiogenesis in a mouse model[J]. Cell Stress Chaperones, 2015, 20(4):643-652.
27
Dehui F, Hengping L, Zhenning Z, et al. Resveratrol and angiogenin-2 combined with PEGDA/TCS hydrogel for the targeted therapy of hypoxic bone defects via activation of the autophagy pathway[J]. Front Pharmacol, 2021, 12:618724-618724.
28
吴涛, 刘英超, 南开辉, 等. 丹参素涂层β-磷酸三钙支架材料的制备与细胞相容性[J].中国组织工程研究, 2017, 21(14):2247-2253.
29
Chuanlei J, Long B, Jing L, et al. Salvianolic acid B-loaded chitosan/hydroxyapatite scaffolds promotes the repair of segmental bone defect by angiogenesis and osteogenesis[J]. Int J Nanomedicine, 2019, 14:8271-8284.
30
Shangguan WJ, Zhang YH, Li ZC, et al. Naringin inhibits vascular endothelial cell apoptosis via endoplasmic reticulum stress-and mitochondrial-mediated pathways and promotes intraosseous angiogenesis in ovariectomized rats[J]. Int J Mol Med, 2017, 40(6):1741-1749.
31
Qiu B, Xu X, Yi P, et al. Curcumin reinforces MSC-derived exosomes in attenuating osteoarthritis via modulating the miR-124/NF-κB and miR-143/ROCK1/TLR9 signalling pathways[J]. J Cell Mol Med, 2020, 24(18):10855-10865.
32
Chen YW, Yeh CH, Shie MY. Stimulatory effects of the fast setting and suitable degrading Ca-Si-Mg cement on both cementogenesis and angiogenesis differentiation of human periodontal ligament cells[J]. J Mater Chem B, 2015, 3(35):7099-7108.
33
Chen Y, Shie M, Wu AY, et al. Anti-inflammation performance of curcumin-loaded mesoporous calcium silicate cement[J]. J Formos Med Assoc, 2017, 116(9):679-688.
34
Chen B, Liang Y, Zhang J, et al. Synergistic enhancement of tendon-to-bone healing via anti-inflammatory and pro-differentiation effects caused by sustained release of Mg2+/curcumin from injectable self-healing hydrogels[J]. Theranostics, 2021, 11(12):5911-5925.
35
Sheu SY, Chen WS, Sun JS, et al. Biological characterization of oxidized hyaluronic acid/resveratrol hydrogel for cartilage tissue engineering[J] J Biomed Mater Res A, 2013, 101(12):3457-3466.
36
Hu W, Jing P, Wang L, et al. The positive effects of Ginsenoside Rg1 upon the hematopoietic microenvironment in a D-Galactose-induced aged rat model[J]. BMC Complement Altern Med, 2015, 15(1):119. doi: 10.1186/s12906-015-0642-3.
37
Wu T, Chen Y, Liu W, et al. Ginsenoside Rb1/TGF-β1 loaded biodegradable silk fibroin-gelatin porous scaffolds for inflammation inhibition and cartilage regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020, 111:110757. doi: 10.1016/j.msec.2020.110757.
38
Wang QS, Cui YL, Gao LN, et al. Reduction of the pro-inflammatory response by tetrandrine-loading poly(L-lactic acid) films in vitro and in vivo[J]. J Biomed Mater Res A, 2014, 102(11):4098-4107.
39
He M, Qin Z, Liang X, et al. A pH-responsive mesoporous silica nanoparticles-based drug delivery system with controlled release of andrographolide for OA treatment[J]. Regen Biomater, 2021, 8(4):rbab020. doi: 10.1093/rb/rbab020.
[1] 陈宏兴, 张立军, 张勇, 李虎, 周驰, 凡一诺. 膝骨关节炎关节镜清理术后中药外用疗效的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(05): 663-672.
[2] 杨薇, 郝霞, 朱冬振, 张劲柏, 田雪飞, 姚斌. 中医药治疗烧烫伤患者临床效果的荟萃分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(05): 419-426.
[3] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[4] 高思勇, 郭彦君, 陈晖璐, 邓飞龙, 宫苹, 王天璐. 骨结合过程中种植体周血管时空分布的观测研究[J]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 22-29.
[5] 李昊, 韦秀湘, 钟晓霞. 聚焦高黏附力骨黏合剂,促进口腔硬组织修复[J]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 1-4.
[6] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[7] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[8] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[9] 杨睿宇, 黄平平. 干细胞及其衍生物治疗下肢缺血的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 377-382.
[10] 王璐, 黄楚月, 李志利, 王一, 孔德松, 刘飞, 樊志敏. 患者来源的结直肠癌类器官模型的构建及其在有毒中药抗癌活性评价中的应用[J]. 中华结直肠疾病电子杂志, 2022, 11(04): 343-348.
[11] 徐新丽, 于小勇. 表观遗传——中医药治疗糖尿病肾病新视角[J]. 中华肾病研究电子杂志, 2022, 11(05): 276-280.
[12] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[13] 刘晗, 李惠, 朱宇新, 于淼, 李莞盈, 王爽, 狄育竹, 宁丹丹, 曲波. 新型生物材料在内镜黏膜下剥离术中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 167-171.
[14] 王江瑞, 蔡蓓蕾, 王学政, 王磊, 陈同, 张彦琼, 王亚丹. 雷公藤属数据库的开发与应用[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1219-1222.
[15] 王苏贵, 皇立媛, 姜福金, 吴自余, 张先云, 李强, 严大理. 异质性细胞核核糖蛋白A2B1在前列腺癌中的作用及其靶向中药活性成分筛选研究[J]. 中华临床医师杂志(电子版), 2023, 17(06): 731-736.
阅读次数
全文


摘要