切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (06) : 377 -382. doi: 10.3877/cma.j.issn.2095-1221.2023.06.008

综述

干细胞及其衍生物治疗下肢缺血的研究进展
杨睿宇1, 黄平平1,()   
  1. 1. 300020 天津,中国医学科学院血液病医院 (中国医学科学院血液学研究所),实验血液学国家重点实验室,国家血液系统疾病临床医学研究中心,细胞生态海河实验室;301600 天津,天津医学健康研究院
  • 收稿日期:2023-09-25 出版日期:2023-12-01
  • 通信作者: 黄平平
  • 基金资助:
    中国医学科学院医学与健康科技创新工程项目(2017-I2M-1-016)

Research progress in stem cells and their derivatives in the treatment of lower limb ischemia

Ruiyu Yang1, Pingping Huang1,()   

  1. 1. State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China; Tianjin Institutes of Health Science, Tianjin 301600, China
  • Received:2023-09-25 Published:2023-12-01
  • Corresponding author: Pingping Huang
引用本文:

杨睿宇, 黄平平. 干细胞及其衍生物治疗下肢缺血的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 377-382.

Ruiyu Yang, Pingping Huang. Research progress in stem cells and their derivatives in the treatment of lower limb ischemia[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(06): 377-382.

下肢缺血,是一种外周血管疾病,常规治疗包括药物治疗、介入治疗及外科手术。对于患者而言,这些治疗方法并不适宜,最终可能面临截肢或死亡。因此,具有血管生成、组织再生以及免疫调节功能的干细胞及其衍生物为现有治疗提供了新的思路。但是移植后的细胞存活率低,移植位点的干细胞滞留能力差和定植于受体组织的细胞数量不足等问题限制了其治疗效果及广泛应用。为克服这些困难,包括基因编辑、预处理干细胞及其衍生物在内的生物材料以及水凝胶支架和脉冲聚焦超声等递送系统的发展提供新的策略。因此,本文综述了基于干细胞疗法的干预性研究,旨在通过联合手段提高干细胞治疗的有效性,并为下肢缺血的干细胞疗法提供新策略。

Lower limb ischemia is essentially a peripheral vascular disease, and its conventional treatments include drug therapy, interventional therapy and surgery. However, for many patients, these treatments are inappropriate and they may ultimately face amputation or death. Therefore, stem cell therapy with angiogenesis, tissue regeneration and immune regulation functions provides new ideas for existing treatments. However, problems such as low cell survival rate after transplantation, poor stem cells retention at the transplant site and insufficient number of cells colonized in the recipient tissue limit the therapeutic effect and widespread application of stem cell therapy. To overcome these difficulties, the development of biomaterials and delivery systems provides new strategies. Therefore, this article reviews interventional research based on stem cell therapy, aiming to improve the effectiveness of stem cell therapy through combined means and provide new strategies for stem cell therapy for lower limb ischemia.

1
Fowkes FG, Aboyans V, Fowkes FJ, et al. Peripheral artery disease: epidemiology and global perspectives[J]. Nat Rev Cardiol, 2017, 14(3): 156-170.
2
Teraa M, Gremmels H, Wijnand JGJ, et al. Cell Therapy for chronic limb-threatening ischemia: current evidence and future directions[J]. Stem Cells Transl Med, 2018, 7(12): 842-846.
3
Jaluvka F, Ihnat P, Madaric J, et al. Current Status of Cell-Based Therapy in Patients with Critical Limb Ischemia[J]. Int J Mol Sci, 2020, 21(23): 8999.
4
Hoang DM, Pham PT, Bach TQ, et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther, 2022, 7(1): 272.
5
Folkman J. Therapeutic angiogenesis in ischemic limbs[J]. Circulation, 1998, 97(12): 1108-1110.
6
Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial[J]. Lancet, 2002, 360(9331): 427-435.
7
Huang PP, Li SZ, Han MZ, et al. Autologous transplantation of peripheral blood stem cells as an effective therapeutic approach for severe arteriosclerosis obliterans of lower extremities[J]. Thromb Haemost, 2004, 91(3): 606-609.
8
Dash NR, Dash SN, Routray P, et al. Targeting nonhealing ulcers of lower extremity in human through autologous bone marrow-derived mesenchymal stem cells[J]. Rejuvenation Res, 2009, 12(5): 359-366.
9
Procházka V, Gumulec J, Jalůvka F, et al. Cell therapy, a new standard in management of chronic critical limb ischemia and foot ulcer[J]. Cell Transplant, 2010, 19(11): 1413-1424.
10
Jain P, Perakath B, Jesudason MR, et al. The effect of autologous bone marrow-derived cells on healing chronic lower extremity wounds: results of a randomized controlled study[J]. Ostomy Wound Manage, 2011, 57(7): 38-44.
11
Lasala GP, Silva JA, Minguell JJ. Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product[J]. J Thorac Cardiovasc Surg, 2012, 144(2): 377-382.
12
Gupta PK, Krishna M, Chullikana A, et al. Administration of adult human bone marrow-derived, cultured, pooled, allogeneic mesenchymal stromal cells in critical limb ischemia due to Buerger's disease: phase II study report suggests clinical efficacy[J]. Stem Cells Transl Med, 2017, 6(3): 689-699.
13
Gupta PK, Chullikana A, Parakh R, et al. A double blind randomized placebo controlled phase I/II study assessing the safety and efficacy of allogeneic bone marrow derived mesenchymal stem cell in critical limb ischemia[J]. J Transl Med, 2013, 11: 143.
14
Gupta PK, Shivashankar P, Rajkumar M, et al. Label extension, single- arm, phase III study shows efficacy and safety of stempeucel® in patients with critical limb ischemia due to atherosclerotic peripheral arterial disease[J]. Stem Cell Res Ther 2023, 14(1): 60.
15
Askø Andersen J, Rasmussen A, Frimodt-Møller M, et al. Novel topical allogeneic bone-marrow-derived mesenchymal stem cell treatment of hard-to-heal diabetic foot ulcers: a proof of concept study[J]. Stem Cell Res Ther, 2022, 13(1): 280.
16
Yan J, Liang J, Cao Y, et al. Efficacy of topical and systemic transplantation of mesenchymal stem cells in a rat model of diabetic ischemic wounds[J]. Stem Cell Res Ther, 2021, 12(1): 220.
17
Lu D, Jiang Y, Deng W, et al. Long-term outcomes of BMMSC compared with BMMNC for treatment of critical limb ischemia and foot ulcer in patients with diabetes[J]. Cell Transplant, 2019, 28(5): 645-652.
18
Nammian P, Asadi-Yousefabad S-L, Daneshi S, et al. Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy[J]. Stem Cell Res Ther, 2021, 12(1): 58.
19
Carstens MH, Quintana FJ, Calderwood ST, et al. Treatment of chronic diabetic foot ulcers with adipose-derived stromal vascular fraction cell injections: Safety and evidence of efficacy at 1 year[J]. Stem Cells Transl Med, 2021, 10(8): 1138-1147.
20
Ra JC, Jeong EC, Kang SK, et al. A prospective, nonrandomized, no placebo-controlled, phase I/II clinical trial assessing the safety and efficacy of intramuscular injection of autologous adipose tissue-derived mesenchymal stem cells in patients with severe Buerger's disease[J]. Cell Med, 2016, 9(3): 87-102.
21
Bura A, Planat-Benard V, Bourin P, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia[J]. Cytotherapy, 2014, 16(2): 245-257.
22
Katagiri T, Kondo K, Shibata R, et al. Therapeutic angiogenesis using autologous adipose-derived regenerative cells in patients with critical limb ischaemia in Japan: a clinical pilot study[J]. Sci Rep, 2020, 10(1): 16045.
23
Zhang C, Huang L, Wang X, et al. Topical and intravenous administration of human umbilical cord mesenchymal stem cells in patients with diabetic foot ulcer and peripheral arterial disease: a phase I pilot study with a 3-year follow-up[J]. Stem Cell Res Ther, 2022, 13(1): 451.
24
Yang SS, Kim NR, Park KB, et al. A phase I study of human cord blood-derived mesenchymal stem cell therapy in patients with peripheral arterial occlusive disease[J]. Int J Stem Cells, 2013, 6(1): 37-44.
25
Kim SW, Han H, Chae GT, et al. Successful stem cell therapy using umbilical cord blood-derived multipotent stem cells for Buerger's disease and ischemic limb disease animal model[J]. Stem Cells, 2006, 24(6): 1620-1626.
26
Gao WH, Gao HY, Li YT, et al. Effectiveness of umbilical cord mesenchymal stem cells in patients with critical limb ischemia[J]. Med Clin (Barc), 2019, 153(9):341-346.
27
Lozano Navarro LV, Chen X, Giratá Viviescas LT, et al. Mesenchymal stem cells for critical limb ischemia: their function, mechanism, and therapeutic potential[J]. Stem Cell Res Ther, 2022, 13(1): 345.
28
Gu Y, Rampin A, Alvino VV, et al. Cell therapy for critical limb ischemia: advantages, limitations, and new perspectives for treatment of patients with critical diabetic vasculopathy[J]. Curr Diab Rep, 2021, 21(3): 11.
29
Annex BH, Cooke JP. New directions in therapeutic angiogenesis and arteriogenesis in peripheral arterial disease[J]. Circ Res, 2021, 128(12):1944-1957.
30
Mousaei Ghasroldasht M, Seok J, Park HS, et al. Stem cell therapy: from idea to clinical practice[J]. Int J Mol Sci, 2022, 23(5): 2850.
31
Zhu F, Nie G, Liu C. Engineered biomaterials in stem cell-based regenerative medicine[J]. Life Medicine, 2023, 2(4): lnad027.https://doi.org/10.1093/lifemedi/lnad027.
32
Khademhosseini A, Langer R. A decade of progress in tissue engineering[J]. Nat Protoc, 2016, 11(10): 1775-1781.
33
Dabrowska S, Andrzejewska A, Janowski M, et al. Immunomodulatory and regenerative effects of mesenchymal stem cells and extracellular vesicles: therapeutic outlook for inflammatory and degenerative diseases[J]. Front Immunol, 2021, 11: 591065. doi: 10.3389/fimmu.2020.591065.
34
Hu G, Li Q, Niu X, et al. Exosomes secreted by human-induced pluripotent stem cell-derived mesenchymal stem cells attenuate limb ischemia by promoting angiogenesis in mice[J]. Stem Cell Res Ther, 2015, 6(1): 10.
35
Qiu G, Zheng G, Ge M, et al. Functional proteins of mesenchymal stem cell-derived extracellular vesicles[J]. Stem Cell Res Ther, 2019, 10(1): 359.
36
Figliolini F, Ranghino A, Grange C, et al. Extracellular vesicles from adipose stem cells prevent muscle damage and inflammation in a mouse model of hind limb ischemia: role of neuregulin-1[J]. Arterioscler Thromb Vasc Biol, 2020, 40(1): 239-254.
37
Gangadaran P, Rajendran RL, Lee HW, et al. Extracellular vesicles from mesenchymal stem cells activates VEGF receptors and accelerates recovery of hindlimb ischemia[J]. J Control Release, 2017, 264: 112-126.
38
Herrmann I K, Wood M J A, Fuhrmann G. Extracellular vesicles as a next-generation drug delivery platform[J]. Nat Nanotechnol, 2021, 16(7): 748-759.
39
Ren Y, Aierken A, Zhao L, et al. hUC-MSCs lyophilized powder loaded polysaccharide ulvan driven functional hydrogel for chronic diabetic wound healing[J]. Carbohydr Polym, 2022, 288: 119404.
40
Kostyushev D, Kostyusheva A, Brezgin S, et al. Gene Editing by Extracellular Vesicles[J]. Int J Mol Sci, 2020, 21(19): 7362.
41
Duan L, Xu L, Xu X, et al. Exosome-mediated delivery of gene vectors for gene therapy[J]. Nanoscale, 2021, 13(3): 1387-1397.
42
Zhang Y, Gao S, Liang K, et al. Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs[J]. Sci Adv, 2021, 7(27): eabi4379. doi: 10.1126/sciadv.abi4379.
43
Kuang S, He F, Liu G, et al. CCR2-engineered mesenchymal stromal cells accelerate diabetic wound healing by restoring immunological homeostasis[J]. Biomaterials, 2021, 275: 120963.
44
Hu Y, Tao R, Chen L, et al. Exosomes derived from pioglitazone-pretreated MSCs accelerate diabetic wound healing through enhancing angiogenesis[J]. J Nanobiotechnology, 2021, 19(1): 150.
45
Ding J, Wang X, Chen B, et al. Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis[J]. BioMed Res Int, 2019, 2019: 9742765. doi: 10.1155/2019/9742765.
46
Pendse S, Kale V, Vaidya A. Extracellular vesicles isolated from mesenchymal stromal cells primed with hypoxia: novel strategy in regenerative medicine[J]. Curr Stem Cell Res Ther, 2021, 16(3): 243-261.
47
Chu Z, Huang Q, Ma K, et al. Novel neutrophil extracellular trap- related mechanisms in diabetic wounds inspire a promising treatment strategy with hypoxia-challenged small extracellular vesicles[J]. Bioact Mater, 2023, 27: 257-270.
48
Yang K, Li D, Wang M, et al. Exposure to blue light stimulates the proangiogenic capability of exosomes derived from human umbilical cord mesenchymal stem cells[J]. Stem Cell Res Ther, 2019, 10(1): 358.
49
Liu G, Zhou Y, Zhang X, et al. Advances in hydrogels for stem cell therapy: regulation mechanisms and tissue engineering applications[J]. J Mater Chem B, 2022, 10(29): 5520-5536.
50
Farhat W, Hasan A, Lucia L, et al. Hydrogels for advanced stem cell therapies: a biomimetic materials approach for enhancing natural tissue function[J]. IEEE Rev Biomed Eng, 2019, 12: 333-351.
51
Khayambashi P, Iyer J, Pillai S, et al. Hydrogel encapsulation of mesenchymal stem cells and their derived exosomes for tissue engineering[J]. Int J Mol Sci, 2021, 22(2): 684.
52
Tsiapalis D, O'Driscoll L. Mesenchymal stem cell derived extracellular vesicles for tissue engineering and regenerative medicine applications[J]. Cells, 2020, 9(4): 991.
53
Huang J, Xiong J, Yang L, et al. Cell-free exosome-laden scaffolds for tissue repair[J]. Nanoscale, 2021, 13(19): 8740-8750.
54
Jiang T, Liu S, Wu Z, et al. ADSC-exo@MMP-PEG smart hydrogel promotes diabetic wound healing by optimizing cellular functions and relieving oxidative stress[J]. Mater Today Bio, 2022, 16: 100365.
55
Peng H, Li H, Zhang X, et al. 3D-exosomes laden multifunctional hydrogel enhances diabetic wound healing via accelerated angiogenesis[J]. Chemical engineering journal, 2023, 475: 146238.
56
Zhang K, Zhao X, Chen X, et al. Enhanced therapeutic effects of mesenchymal stem cell-derived exosomes with an injectable hydrogel for hindlimb ischemia treatment[J]. ACS Appl Mater Interfaces, 2018, 10(36): 30081-30091.
57
Zha Y, Li Y, Lin T, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics, 2021, 11(1): 397-409.
58
Zhong Y, Ma H, Lu Y, et al. Investigation on repairing diabetic foot ulcer based on 3D bio-printing Gel/dECM/Qcs composite scaffolds[J]. Tissue Cell, 2023, 85: 102213. doi: 10.1016/j.tice.2023.102213.
59
Qin H, Du L, Luo Z, et al. The therapeutic effects of low-intensity pulsed ultrasound in musculoskeletal soft tissue injuries: Focusing on the molecular mechanism[J]. Front Bioeng Biotechnol, 2022, 10: 1080430. doi: 10.3389/fbioe.2022.1080430.
60
Razavi M, Rezaee M, Telichko A, et al. The paracrine function of mesenchymal stem cells in response to pulsed focused ultrasound[J]. Cell Transplant, 2020, 29: 963689720965478. doi: 10.1177/0963689720965478.
61
Tebebi PA, Kim SJ, Williams RA, et al. Improving the therapeutic efficacy of mesenchymal stromal cells to restore perfusion in critical limb ischemia through pulsed focused ultrasound[J]. Sci Rep, 2017, 7: 41550. doi: 10.1038/srep41550.
62
Xia P, Shi Y, Wang X, et al. Advances in the application of low- intensity pulsed ultrasound to mesenchymal stem cells[J]. Stem Cell Res Ther, 2022, 13(1): 214.
[1] 史孟杰, 贺仕才, 刘斐, 闫燕, 代毅, 王辉. 对miR-206在大鼠下肢缺血再灌注损伤过程中炎症反应的影响分析[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 249-255.
[2] 曹涛, 陶克. 脂肪间充质干细胞外泌体促进创面血管再生的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(02): 154-158.
[3] 吕国忠. 生物活性材料与瘢痕防治[J]. 中华损伤与修复杂志(电子版), 2020, 15(02): 160-160.
[4] 黄静燕, 王焱. 氧化应激状态对骨生物材料理化性能及成骨效能的影响[J]. 中华口腔医学研究杂志(电子版), 2020, 14(05): 334-338.
[5] 阿卜杜•卡维, 李杰, 赖远辉, 艾文佳, 王深明, 李晓曦. 急性下肢缺血130例的临床特点分析和治疗体会[J]. 中华普通外科学文献(电子版), 2013, 07(05): 383-386.
[6] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[7] 陈俊生, 宋晓彪, 郭剑辉, 朱熠林, 刘雨辰. 脱细胞基质材料在腹腔镜治疗青年腹股沟疝临床效果[J]. 中华疝和腹壁外科杂志(电子版), 2021, 15(03): 288-292.
[8] 李绍杰, 唐健雄, 校红兵, 华蕾, 黄磊, 平定, 司仙科, 胡星辰, 蔡昭. 静电纺复合生物材料与SIS生物补片在成人腹股沟疝修补术中的多中心比较研究[J]. 中华疝和腹壁外科杂志(电子版), 2020, 14(04): 336-341.
[9] 刘全国, 龚文斌, 李俊生. 重组蜘蛛丝蛋白在腹股沟疝修补术中的应用前景[J]. 中华疝和腹壁外科杂志(电子版), 2018, 12(04): 252-254.
[10] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[11] 胡青林, 黄平平. 间充质干细胞治疗糖尿病下肢缺血研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 246-250.
[12] 刘晗, 李惠, 朱宇新, 于淼, 李莞盈, 王爽, 狄育竹, 宁丹丹, 曲波. 新型生物材料在内镜黏膜下剥离术中的应用[J]. 中华消化病与影像杂志(电子版), 2023, 13(03): 167-171.
[13] 武兴杰, 黄树圭, 邓军, 李军, 方萍, 朱威. 血管成形联合置管溶栓治疗下肢动脉硬化闭塞症的临床效果研究[J]. 中华介入放射学电子杂志, 2018, 06(03): 232-236.
阅读次数
全文


摘要