切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (04) : 246 -250. doi: 10.3877/cma.j.issn.2095-1221.2021.04.008

综述

间充质干细胞治疗糖尿病下肢缺血研究进展
胡青林1, 黄平平1,()   
  1. 1. 300020 天津,中国医学科学院血液病医院(中国医学科学院血液学研究所) 实验血液学国家重点实验室 国家血液系统疾病临床医学研究中心
  • 收稿日期:2021-05-02 出版日期:2021-08-01
  • 通信作者: 黄平平
  • 基金资助:
    中国医学科学院医学与健康科技创新工程项目(2017-I2M-1-016)

Advances in mesenchymal stem cells in treatment of diabetic lower limb ischemia

Qinglin Hu1, Pingping Huang1,()   

  1. 1. State Key Laboratory of Experimental Hematology, National Clinical Research Center for Hematological Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
  • Received:2021-05-02 Published:2021-08-01
  • Corresponding author: Pingping Huang
引用本文:

胡青林, 黄平平. 间充质干细胞治疗糖尿病下肢缺血研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(04): 246-250.

Qinglin Hu, Pingping Huang. Advances in mesenchymal stem cells in treatment of diabetic lower limb ischemia[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(04): 246-250.

糖尿病下肢缺血是一种严重的糖尿病并发症,可导致下肢感染、溃疡和坏死,严重时甚至需要截肢。传统治疗和外科治疗在临床上亦有诸多局限性,随着以干细胞治疗为主的再生医学兴起,为糖尿病下肢缺血的治疗带来新的可能性。糖尿病下肢缺血的干细胞治疗中最引人瞩目的是间充质干细胞(MSC)。MSC是一类具有多向分化潜能且低免疫原性的细胞,通过向患者种植,可以改善患者下肢缺血症状、调节免疫,提升患者的生存质量。本文通过对不同组织来源的MSC治疗糖尿病下肢缺血研究进展及研究新方向进行总结,以期为该病的治疗提供理论依据,并对未来的研究寻找方向。

Diabetic lower limb ischemia is a serious diabetic complication that can lead to lower extremity infection, ulcers, necrosis and even amputation. Traditional and surgical treatment have many limitations, and stem cell therapy brings new possibilities for the treatment of diabetic lower limb ischemia.The most promising cells for lower limb ischemia in diabetes are mesenchymal stem cells (MSCs) . MSCs are a kind of pluripotent stem cells with low immunogenicity and multidirectional differentiation ability. By transplantation, it can relieve lower limb ischemia, regulate immunity, and improve the quality of life in patients. This article reviews progress and new findings of research on the treatment of diabetic lower limb ischemia with MSCs derived from different tissues, provide a theoretical basis, and insight for future research.

1
Argenteri A, de Donato G, Setacci F, et al. History of the diagnosis and treatment of critical limb ischemia and diabetic foot[J]. Semin Vasc Surg, 2018, 31(2-4):25-42.
2
Soria-Juan B, Escacena N, Capilla-González V, et al. Cost-effective, safe, and personalized cell therapy for critical limb ischemia in type 2 Diabetes Mellitus[J]. Front Immunol, 2019, 10:1151. doi: 10.3389/fimmu.2019.01151.
3
Brown C, McKee C, Bakshi S, et al. Mesenchymal stem cells: Cell therapy and regeneration potential[J]. J Tissue Eng Regen Med, 2019, 13(9):1738-1755.
4
Gnecchi M, Melo LG. Bone marrow-derived mesenchymal stem cells: isolation, expansion, characterization, viral transduction, and production of conditioned medium[J]. Methods Mol Biol, 2009, 482:281-294.
5
Pereira AR, Mendes TF, Ministro A, et al. Therapeutic angiogenesis induced by human umbilical cord tissue-derived mesenchymal stromal cells in a murine model of hindlimb ischemia[J]. Stem Cell Res Ther, 2016, 7(1):145.
6
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002, 13(12):4279-4295.
7
Karaöz E, Demircan PC, Sağlam O, et al. Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells[J]. Histochem Cell Biol, 2011, 136(4):455-473.
8
Orciani M, Di Primio R. Skin-derived mesenchymal stem cells: isolation, culture, and characterization[J]. Methods Mol Biol, 2013, 989:275-283.
9
Robb KP, Fitzgerald JC, Barry F, et al. Mesenchymal stromal cell therapy: progress in manufacturing and assessments of potency[J]. Cytotherapy, 2019, 21(3):289-306.
10
Ferreira JR, Teixeira GQ, Santos SG, et al. Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-conditioning[J]. Front Immunol, 2018, 9:2837. doi: 10.3389/fimmu.2018.02837.
11
Regmi S, Pathak S, Kim JO, et al. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: Challenges, opportunities, and future perspectives[J]. Eur J Cell Biol, 2019, 98(5-8):151041.
12
Uder C, Brückner S, Winkler S, et al. Mammalian MSC from selected species: Features and applications[J]. Cytometry A, 2018, 93(1):32-49.
13
Konala VBR, Bhonde R, Pal R. Secretome studies of mesenchymal stromal cells (MSCs) isolated from three tissue sources reveal subtle differences in potency[J]. In Vitro Cell Dev Biol Anim, 2020, 56(9):689-700.
14
Yu M, Liu W, Li J, et al. Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway[J]. Stem Cell Res Ther, 2020, 11(1):350.
15
Samakova A, Gazova A, Sabova N, et al. The PI3k/Akt pathway is associated with angiogenesis, oxidative stress and survival of mesenchymal stem cells in pathophysiologic condition in ischemia[J]. Physiol Res, 2019, 68(Suppl 2):S131-s138.
16
Zhao W, Zhang S, Wang B, et al. Runx2 and microRNA regulation in bone and cartilage diseases[J]. Ann N Y Acad Sci, 2016, 1383(1):80-87.
17
Park JS, Chu JS, Tsou AD, et al. The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-β[J]. Biomaterials, 2011, 32(16):3921-3930.
18
Chinnadurai R, Copland IB, Patel SR, et al. IDO-independent suppression of T cell effector function by IFN-γ-licensed human mesenchymal stromal cells[J]. J Immunol, 2014, 192(4):1491-1501.
19
Spaggiari GM, Abdelrazik H, Becchetti F, et al. MSCs inhibit monocyte-derived DC maturation and function by selectively interfering with the generation of immature DCs: central role of MSC-derived prostaglandin E2[J]. Blood, 2009, 113(26):6576-6583.
20
Zhang Q, Fu L, Liang Y, et al. Exosomes originating from MSCs stimulated with TGF-β and IFN-γ promote Treg differentiation[J]. J Cell Physiol, 2018, 233(9):6832-6840.
21
Gao WH, Gao HY, Li YT, et al. Effectiveness of umbilical cord mesenchymal stem cells in patients with critical limb ischemia[J]. Med Clin (Barc), 2019, 153(9):341-346.
22
Yang SS, Kim NR, Park KB, et al. A phase I study of human cord blood-derived mesenchymal stem cell therapy in patients with peripheral arterial occlusive disease[J]. Int J Stem Cells, 2013, 6(1):37-44.
23
Chen S, Zhang W, Wang JM, et al. Differentiation of isolated human umbilical cord mesenchymal stem cells into neural stem cells[J]. Int J Ophthalmol, 2016, 9(1):41-47.
24
Pinheiro CH, de Queiroz JC, Guimarães-Ferreira L, et al. Local injections of adipose-derived mesenchymal stem cells modulate inflammation and increase angiogenesis ameliorating the dystrophic phenotype in dystrophin-deficient skeletal muscle[J]. Stem Cell Rev Rep, 2012, 8(2):363-374.
25
Glenn JD, Whartenby KA. Mesenchymal stem cells: Emerging mechanisms of immunomodulation and therapy[J]. World J Stem Cells, 2014, 6(5):526-539.
26
Chatterjee D, Marquardt N, Tufa DM, et al. Role of gamma-secretase in human umbilical-cord derived mesenchymal stem cell mediated suppression of NK cell cytotoxicity[J]. Cell Commun Signal, 2014, 12:63.
27
Lu D, Jiang Y, Deng W, et al. Long-term outcomes of BMMSC compared with BMMNC for treatment of critical limb ischemia and foot ulcer in patients with diabetes[J]. Cell Transplant, 2019, 28(5):645-652.
28
Bura A, Planat-Benard V, Bourin P, et al. Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia[J]. Cytotherapy, 2014, 16(2):245-257.
29
Tabatabaei Qomi R, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review[J]. World J Stem Cells, 2017, 9(8):107-117.
30
Hassan WU, Greiser U, Wang W. Role of adipose-derived stem cells in wound healing[J]. Wound Repair Regen, 2014, 22(3):313-325.
31
Zollino I, Zuolo M, Gianesini S, et al. Autologous adipose-derived stem cells: Basic science, technique, and rationale for application in ulcer and wound healing[J]. Phlebology, 2017, 32(3):160-171.
32
De Gregorio C, Contador D, Díaz D, et al. Human adipose-derived mesenchymal stem cell-conditioned medium ameliorates polyneuropathy and foot ulceration in diabetic BKS db/db mice[J]. Stem Cell Res Ther, 2020, 11(1):168.
33
Nammian P, Asadi-Yousefabad SL, Daneshi S, et al. Comparative analysis of mouse bone marrow and adipose tissue mesenchymal stem cells for critical limb ischemia cell therapy[J]. Stem Cell Res Ther, 2021, 12(1):58.
34
Gu YQ, Zhang J, Guo LR, et al. Transplantation of autologous bone marrow mononuclear cells for patients with lower limb ischemia[J]. Chin Med J (Engl), 2008, 121(11):963-967.
35
Yan J, Liang J, Cao Y, et al. Efficacy of topical and systemic transplantation of mesenchymal stem cells in a rat model of diabetic ischemic wounds[J]. Stem Cell Res Ther, 2021, 12(1):220.
36
Das AK, Bin Abdullah BJ, Dhillon SS, et al. Intra-arterial allogeneic mesenchymal stem cells for critical limb ischemia are safe and efficacious: report of a phase I study[J]. World J Surg, 2013, 37(4):915-922.
37
Shi R, Lian W, Jin Y, et al. Role and effect of vein-transplanted human umbilical cord mesenchymal stem cells in the repair of diabetic foot ulcers in rats[J]. Acta Biochim Biophys Sin (Shanghai), 2020, 52(6):620-630.
38
An T, Chen Y, Tu Y, et al. Mesenchymal Stromal Cell-Derived Extracellular Vesicles in the Treatment of Diabetic Foot Ulcers: Application and Challenges[J]. Stem Cell Rev Rep, 2021, 17(2):369-378.
39
Casado-Díaz A, Quesada-Gómez JM, Dorado G. Extracellular Vesicles Derived From Mesenchymal Stem Cells (MSC) in Regenerative Medicine: Applications in Skin Wound Healing[J]. Front Bioeng Biotechnol, 2020, 8:146.
40
Bailey AJM, Li H, Kirkham AM, et al. MSC-derived extracellular vesicles to heal diabetic wounds: a systematic review and meta-analysis of preclinical animal studies[J]. Stem Cell Rev Rep, 2021, 1-12. doi: 10.1007/s12015-021-10164-4. Online ahead of print.
41
Huang P, Wang L, Li Q, et al. Atorvastatin enhances the therapeutic efficacy of mesenchymal stem cells-derived exosomes in acute myocardial infarction via up-regulating long non-coding RNA H19[J]. Cardiovasc Res, 2020, 116(2):353-367.
42
Lasala GP, Silva JA, Minguell JJ. Therapeutic angiogenesis in patients with severe limb ischemia by transplantation of a combination stem cell product[J]. J Thorac Cardiovasc Surg, 2012, 144(2):377-382.
43
Tebebi PA, Kim SJ, Williams RA, et al. Improving the therapeutic efficacy of mesenchymal stromal cells to restore perfusion in critical limb ischemia through pulsed focused ultrasound[J]. Sci Rep, 2017, 7:41550. doi: 10.1038/srep41550.
44
Lee JH, Ryu JM, Han YS, et al. Fucoidan improves bioactivity and vasculogenic potential of mesenchymal stem cells in murine hind limb ischemia associated with chronic kidney disease[J]. J Mol Cell Cardiol, 2016, 97:169-179.
45
Kang WC, Oh PC, Lee K, et al. Increasing injection frequency enhances the survival of injected bone marrow derived mesenchymal stem cells in a critical limb ischemia animal model[J]. Korean J Physiol Pharmacol, 2016, 20(6):657-667.
46
Pawitan JA, Bui TA, Mubarok W, et al. Enhancement of the Therapeutic Capacity of Mesenchymal Stem Cells by Genetic Modification: A Systematic Review[J]. Front Cell Dev Biol, 2020, 8:587776. doi: 10.3389/fcell.2020.587776.
47
Choi B, Kim D, Han I, et al. Microenvironmental regulation of stem cell behavior through biochemical and biophysical stimulation[J]. Adv Exp Med Biol, 2018, 1064:147-160.
48
Chen C, Bai X, Ding Y, et al. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering[J]. Biomater Res, 2019, 23:25.
49
De Becker A, Riet IV. Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy?[J]. World J Stem Cells, 2016, 8(3):73-87.
50
Schira J, Falkenberg H, Hendricks M, et al. Characterization of regenerative phenotype of unrestricted somatic stem cells (USSC) from human umbilical cord blood (hUCB) by functional secretome analysis[J]. Mol Cell Proteomics, 2015, 14(10):2630-2643.
[1] 樊逸隽, 杨枫, 王玮, 殷鹤英, 刘俊. 喉前淋巴结转移对甲状腺乳头状癌诊疗价值的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(04): 306-310.
[2] 张林, 刘芳, 赵静, 刘勇, 周青. 远程康复在慢性阻塞性肺疾病患者肺康复中的研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 601-604.
[3] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[4] 汪沛, 倪蓓君, 元及, 宫为一, 范军. 卡瑞利珠单抗联合卡铂和培美曲塞治疗进展期肺腺癌的疗效及预后分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 511-513.
[5] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[6] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[7] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[8] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[9] 蓝冰, 王怀明, 王辉, 马波. 局部晚期结肠癌膀胱浸润的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 505-511.
[10] 任加发, 邬步云, 邢昌赢, 毛慧娟. 2022年急性肾损伤领域基础与临床研究进展[J]. 中华肾病研究电子杂志, 2023, 12(05): 276-281.
[11] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[12] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[13] 张坤淇, 张睿, 徐佳, 康庆林. 漂浮膝损伤的诊治进展[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 252-256.
[14] 吴一菡, 雷章, 卢宏达. MUC16/CA125在良恶性肿瘤诊治中的作用及其研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 591-595.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要