1 |
Jiang JY, Gao GY, Feng JF, et al. Traumatic brain injury in China[J]. Lancet Neurol, 2019, 18(3):286-295.
|
2 |
Gao G, Wu X, Feng J, et al. Clinical characteristics and outcomes in patients with traumatic brain injury in China: a prospective, multicentre, longitudinal, observational study[J]. Lancet Neurol, 2020, 19(8):670-677.
|
3 |
Akamatsu Y, Hanafy KA. Cell death and recovery in traumatic brain injury[J]. Neurotherapeutics, 2020, 17(2):446-456.
|
4 |
Weiland A, Wang Y, Wu W, et al. Ferroptosis and its role in diverse brain diseases[J]. Mol Neurobiol, 2019, 56(7):4880-4893.
|
5 |
Delic V, Beck KD, Pang KCH, et al. Biological links between traumatic brain injury and Parkinson's disease[J]. Acta Neuropathol Commun, 2020, 8(1):45.
|
6 |
Gardner RC, Byers AL, Barnes DE, et al. Mild TBI and risk of Parkinson disease: A Chronic Effects of Neurotrauma Consortium Study[J]. Neurology, 2018, 90(20):e1771-e1779.
|
7 |
Gardner RC, Yaffe K. Epidemiology of mild traumatic brain injury and neurodegenerative disease[J]. Mol Cell Neurosci, 2015, 66(Pt B):75-80.
|
8 |
Mishra VK, Shih HH, Parveen F, et al. Identifying the therapeutic significance of mesenchymal stem cells[J]. Cells, 2020, 9(5):1145. doi: 10.3390/cells9051145.
|
9 |
Bang OY, Lee JS, Lee PH, et al. Autologous mesenchymal stem cell transplantation in stroke patients[J]. Ann Neurol, 2005, 57(6):874-882.
|
10 |
Zhang Y, Zhang Y, Chopp M, et al. Mesenchymal stem cell-derived exosomes improve functional recovery in rats after traumatic brain injury: a dose-response and therapeutic window study[J]. Neurorehabil Neural Repair, 2020, 34(7):616-626.
|
11 |
Harrell CR, Jovicic N, Djonov V, et al. Mesenchymal stem cell-derived exosomes and other extracellular vesicles as new remedies in the therapy of inflammatory diseases[J]. Cells, 2019, 8(12):1605. doi: 10.3390/cells8121605.
|
12 |
Zhao Y, Gan Y, Xu G, et al. Exosomes from MSCs overexpressing microRNA-223-3p attenuate cerebral ischemia through inhibiting microglial M1 polarization mediated inflammation[J]. Life Sci, 2020, 260:118403. doi: 10.1016/j.lfs.2020.118403.
|
13 |
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, et al. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods[J]. J Cell Physiol, 2019, 234(5):5451-5465.
|
14 |
Qing L, Chen H, Tang J, et al. Exosomes and their MicroRNA Cargo: New Players in Peripheral Nerve Regeneration[J]. Neurorehabil Neural Repair, 2018, 32(9):765-776.
|
15 |
Yang Y, Ye Y, Kong C, et al. MiR-124 enriched exosomes promoted the M2 polarization of microglia and enhanced hippocampus neurogenesis after traumatic brain injury by inhibiting TLR4 pathway[J]. Neurochem Res, 2019, 44(4):811-828.
|
16 |
Xiao X, Jiang Y, Liang W, et al. miR-212-5p attenuates ferroptotic neuronal death after traumatic brain injury by targeting Ptgs2[J]. Mol Brain, 2019, 12(1):78. doi: 10.1186/s13041-019-0501-0.
|
17 |
Xin H, Katakowski M, Wang F, et al. MicroRNA cluster miR-17-92 cluster in exosomes enhance neuroplasticity and functional recovery after stroke in rats[J]. Stroke, 2017, 48(3):747-753.
|
18 |
Pan Q, Wang Y, Lan Q, et al. Exosomes derived from mesenchymal stem cells ameliorate hypoxia/reoxygenation-injured ecs via transferring microRNA-126[J]. Stem Cells Int, 2019, 2019:2831756. doi: 10.1155/2019/2831756.
|
19 |
Pan Q, Kuang X, Cai S, et al. miR-132-3p priming enhances the effects of mesenchymal stromal cell-derived exosomes on ameliorating brain ischemic injury[J]. Stem Cell Res Ther, 2020, 11(1):260. doi: 10.1186/s13287-020-01761-0.
|
20 |
Slater SC, Jover E, Martello A, et al. MicroRNA-532-5p Regulates Pericyte Function by Targeting the Transcription Regulator BACH1 and Angiopoietin-1[J]. Mol Ther, 2018, 26(12):2823-2837.
|
21 |
Cui GH, Wu J, Mou FF, et al. Exosomes derived from hypoxia-preconditioned mesenchymal stromal cells ameliorate cognitive decline by rescuing synaptic dysfunction and regulating inflammatory responses in APP/PS1 mice[J]. FASEB J, 2018, 32(2):654-668.
|
22 |
Williams AM, Dennahy IS, Bhatti UF, et al. Mesenchymal stem cell-derived exosomes provide neuroprotection and improve long-term neurologic outcomes in a swine model of traumatic brain injury and hemorrhagic shock[J]. J Neurotrauma, 2019, 36(1):54-60.
|
23 |
Huang X, Ding J, Li Y, et al. Exosomes derived from PEDF modified adipose-derived mesenchymal stem cells ameliorate cerebral ischemia-reperfusion injury by regulation of autophagy and apoptosis[J]. Exp Cell Res, 2018, 371(1):269-277.
|
24 |
Zhao M, Liu S, Wang C, et al. Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA[J]. ACS Nano, 2021, 15(1):1519-1538.
|
25 |
Ni H, Yang S, Siaw-Debrah F, et al. Exosomes derived from bone mesenchymal stem cells ameliorate early inflammatory responses following traumatic brain injury[J]. Front Neurosci, 2019, 13:14. doi: 10.3389/fnins.2019.00014.
|
26 |
Chen Y, Li J, Ma B, et al. MSC-derived exosomes promote recovery from traumatic brain injury via microglia/macrophages in rat[J]. Aging(Albany NY), 2020, 12(18):18274-18296.
|
27 |
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR 216a5p from hypoxic preconditioned mesenchymal stem cells repairtraumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1):47. doi: 10.1186/s12974-020-1726-7.
|
28 |
Wu J, He J, Tian X, et al. microRNA-9-5p alleviates blood-brain barrier damage and neuroinflammation after traumatic brain injury[J]. J Neurochem, 2020, 153(6):710-726.
|
29 |
Weston NM, Rolfe AT, Freelin AH, et al. Traumatic brain injury modifies synaptic plasticity in newly-generated granule cells of the adult hippocampus[J]. Exp Neurol, 2021, 336:113527. doi: 10.1016/j.expneurol.2020.113527.
|
30 |
Ngwenya LB, Danzer SC. Impact of traumatic brain injury on neurogenesis[J]. Front Neurosci, 2019, 12:1014. doi: 10.3389/fnins.2018.01014.
|
31 |
Medalla M, Chang W, Calderazzo SM, et al. Treatment with mesenchymal-derived extracellular vesicles reduces injury-related pathology in pyramidal neurons of monkey perilesional ventral premotor cortex[J]. J Neurosci, 2020, 40(17):3385-3407.
|
32 |
Zhang Y, Chopp M, Meng Y, et al. Effect of exosomes derived from multipluripotent mesenchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury[J]. J Neurosurg, 2015, 122(4):856-867.
|
33 |
Anderson JD, Johansson HJ, Graham CS, et al. Comprehensive proteomic analysis of mesenchymal stem cell exosomes reveals modulation of angiogenesis via nuclear Factor-KappaB signaling[J]. Stem Cells, 2016, 34(3):601-613.
|
34 |
Gonzalez-King H, García NA, Ontoria-Oviedo I, et al. Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes[J].Stem Cells, 2017, 35(7):1747-1759.
|
35 |
Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications[J]. Neurobiol Dis, 2004, 16(1):1-13.
|
36 |
Sorby-Adams AJ, Marcoionni AM, Dempsey ER, et al. The role of neurogenic inflammation in blood-brain barrier disruption and development of cerebral oedema following acute central nervous system (CNS) injury[J]. Int J Mol Sci, 2017, 18(8):1788. doi: 10.3390/ijms18081788.
|
37 |
van Vliet EA, Ndode-Ekane XE, Lehto LJ, et al. Long-lasting blood-brain barrier dysfunction and neuroinflammation after traumatic brain injury[J]. Neurobiol Dis, 2020, 145:105080. doi: 10.1016/j.nbd.2020.105080.
|
38 |
Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-brain barrier pathophysiology in traumatic brain injury[J]. Transl Stroke Res, 2011, 2(4):492-516.
|
39 |
Turner RJ, Sharp FR. Implications of MMP9 for blood brain barrier disruption and hemorrhagic transformation following ischemic stroke[J]. Front Cell Neurosci, 2016, 10:56. doi: 10.3389/fncel.2016.00056.
|
40 |
Ségaliny A, Riazifar M, Pham V, et al. Elucidation of exosome migration across the blood-brain barrier model in vitro[J]. Cell Mol Bioeng, 2016, 9(4):509-529.
|
41 |
Williams AM, Bhatti UF, Brown JF, et al. Early single-dose treatment with exosomes provides neuroprotection and improves blood-brain barrier integrity in swine model of traumatic brain injury and hemorrhagic shock[J]. J Trauma Acute Care Surg, 2020, 88(2):207-218.
|