切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (01) : 59 -62. doi: 10.3877/cma.j.issn.2095-1221.2022.01.010

综述

神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展
刘伟华1, 赵宇1, 刘仲凤1, 吴焕童1, 张广吉1, 陈志国1,()   
  1. 1. 100053 北京,首都医科大学宣武医院细胞生物学研究室
  • 收稿日期:2021-04-08 出版日期:2022-02-01
  • 通信作者: 陈志国
  • 基金资助:
    国家自然科学基金面上项目(81973351、82171250、82173840)

Research progress in neural stem cell-based therapeutic biologics against central nervous system malignancies

Weihua Liu1, Yu Zhao1, Zhongfeng Liu1, Huantong Wu1, Guangji Zhang1, Zhiguo Chen1,()   

  1. 1. Cell Therapy Center, Xuanwu Hospital Capital Medical University, 100053 Beijing, China
  • Received:2021-04-08 Published:2022-02-01
  • Corresponding author: Zhiguo Chen
引用本文:

刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.

Weihua Liu, Yu Zhao, Zhongfeng Liu, Huantong Wu, Guangji Zhang, Zhiguo Chen. Research progress in neural stem cell-based therapeutic biologics against central nervous system malignancies[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(01): 59-62.

中枢神经系统肿瘤是一类由于神经元、胶质细胞及神经系统中其它相关细胞异常增殖及恶性转化引发的、具有侵袭性的神经系统疾病。由于发病部位常危及控制机体重要功能的中枢,传统治疗方法对原发性神经系统肿瘤的治疗效果不佳,导致该类疾病患者的临床受益有限。因此,开发更为有效的治疗性药物是该领域亟待解决的重大科学问题。神经干细胞(NSCs)是一类具有自我更新和分化的神经系统来源的成体干细胞。已有大量研究报道,NSCs对神经系统来源的肿瘤具有特异的定向迁移及浸润能力,可以将具有肿瘤杀伤活性的药物定向传递到病灶部位。因此,这一特性使得NSCs成为一种具有良好临床转化潜力的生物治疗候选制剂,为中枢神经系统恶性肿瘤的新型药物研发提供了新思路。

Central nervous system (CNS) tumors are aggressive neurological diseases caused by abnormal proliferation and malignant transformation of neurons, glia or other related cells in the nervous system. Since the tumors are often located close to or have invaded into the critical parts of the CNS that are in charge of the vital functions of the body, conventional therapies normally give rise to only sub-optimal clinical outcomes and limited benefit to patients. Thus, it has become a major pressing scientific issue to develop a more effective therapeutic drug in the research field. Neural stem cells (NSCs) are a type of adult stem cells that can self-renew and differentiate into neurons and glia. A large number of studies have shown that NSCs have a specific capability for directional migration to and invasion of nervous system-derived tumors, which can be employed as a tool to deliver anti-tumor drugs to the location of a lesion. This feature makes NSCs a promising candidate for biotherapy with good potential for clinical applications, and provides new ideas on the development of novel drugs against malignant CNS tumors.

表1 Clinical Trial上注册的已完成/正在进行的临床研究
1
Lim M, Xia Y, Bettegowda C, et al. Current state of immunotherapy for glioblastoma[J]. Nat Rev Clin Oncol, 2018, 15(7):422-442.
2
Rajaratnam V, Islam MM, Yang M, et al. Glioblastoma: pathogenesis and current status of chemotherapy and other novel treatments[J]. Cancers (Basel), 2020, 12(4):937.
3
Medikonda R, Dunn G, Rahman M, et al. A review of glioblastoma immunotherapy[J]. J Neurooncol, 2021, 151(1):41-53.
4
Grochowski C, Radzikowska E, Maciejewski R. Neural stem cell therapy-Brief review[J]. Clin Neurol Neurosurg, 2018, 173:8-14.
5
Bagó JR, Okolie O, Dumitru R, et al. Tumor-homing cytotoxic human induced neural stem cells for cancer therapy[J]. Sci Transl Med, 2017, 9(375):eaah6510. doi: 10.1126/scitranslmed.aah6510.
6
Fan L, Liu C, Chen X, et al. Directing induced pluripotent stem cell derived neural stem cell fate with a three-dimensional biomimetic hydrogel for spinal cord injury repair[J]. ACS Appl Mater Interfaces, 2018, 10(21):17742-17755.
7
Park KI, Hack MA, Ourednik J, et al. Acute injury directs the migration, proliferation, and differentiation of solid organ stem cells: evidence from the effect of hypoxia-ischemia in the CNS on clonal "reporter" neural stem cells[J]. Exp Neurol, 2006, 199(1):156-178.
8
Portnow J, Synold TW, Badie B, et al. Neural stem cell-based anticancer gene therapy: a first-in-human study in recurrent high-grade glioma patients[J]. Clin Cancer Res, 2017, 23(12):2951-2960.
9
Jiang W, Yang Y, Mercer-Smith AR, et al. Development of next-generation tumor-homing induced neural stem cells to enhance treatment of metastatic cancers[J]. Sci Adv, 2021, 7(24):eabf1526. doi: 10.1126/sciadv.abf1526.
10
Jiang J, Wu L, Yuan F, et al. Characterization of the immune microenvironment in brain metastases from different solid tumors[J]. Cancer Med, 2020, 9(7):2299-2308.
11
Zhao D, Najbauer J, Garcia E, et al. Neural stem cell tropism to glioma: critical role of tumor hypoxia[J]. Mol Cancer Res, 2008, 6(12):1819-1829.
12
Mooney R, Abdul Majid A, Batalla J, et al. Cell-mediated enzyme prodrug cancer therapies[J]. Adv Drug Deliv Rev, 2017, 118:35-51.
13
Aboody KS, Najbauer J, Metz MZ, et al. Neural stem cell-mediated enzyme/prodrug therapy for glioma: preclinical studies[J]. Sci Transl Med, 2013, 5(184):184ra59. doi: 10.1126/scitranslmed.3005365.
14
Aboody KS, Najbauer J, Danks MK. Stem and progenitor cell-mediated tumor selective gene therapy[J]. Gene Ther, 2008, 15(10):739-752.
15
Matuskova M, Hlubinova K, Pastorakova A, et al. HSV-tk expressing mesenchymal stem cells exert bystander effect on human glioblastoma cells[J]. Cancer Lett, 2010, 290(1):58-67.
16
Rainov NG. A phase Ⅲ clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme[J]. Hum Gene Ther, 2000, 11(17):2389-2401.
17
Li S, Tokuyama T, Yamamoto J, et al. Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells[J]. Cancer Gene Ther, 2005, 12(7):600-607.
18
Satterlee AB, Dunn DE, Lo DC, et al. Tumoricidal stem cell therapy enables killing in novel hybrid models of heterogeneous glioblastoma[J]. Neuro Oncol, 2019, 21(12):1552-1564.
19
Yuan X, Gajan A, Chu Q, et al. Developing TRAIL/TRAIL death receptor-based cancer therapies[J]. Cancer Metastasis Rev, 2018, 37(4):733-748.
20
Bomba HN, Sheets KT, Valdivia A, et al. Personalized-induced neural stem cell therapy: Generation, transplant, and safety in a large animal model[J]. Bioeng Transl Med, 2020, 6(1):e10171. doi: 10.1002/btm2.10171.
21
Guo Y, Luan L, Patil NK, et al. Immunobiology of the IL-15/IL-15Rα complex as an antitumor and antiviral agent[J]. Cytokine Growth Factor Rev, 2017, 38:10-21.
22
Pei D, Hu J, Rao C, et al. Anti-tumor activity and pharmacokinetics of AP25-Fc fusion protein[J]. Int J Med Sci, 2019, 16(7):1032-1041.
23
Heiss JD, Jamshidi A, Shah S, et al. Phase I trial of convection-enhanced delivery of IL13-Pseudomonas toxin in children with diffuse intrinsic pontine glioma[J]. J Neurosurg Pediatr, 2018, 23(3):333-342.
24
Stuckey DW, Hingtgen SD, Karakas N, et al. Engineering toxin-resistant therapeutic stem cells to treat brain tumors[J]. Stem Cells, 2015, 33(2):589-600.
25
Fu LQ, Wang SB, Cai MH, et al. Recent advances in oncolytic virus-based cancer therapy[J]. Virus Res, 2019, 270:197675. doi: 10.1016/j.virusres.2019.197675.
26
Martin NT, Bell J. Oncolytic virus combination therapy: killing one bird with two stones[J]. Mol Ther, 2018, 26(6):1414-1422.
27
Spencer D, Yu D, Morshed RA, et al. Pharmacologic modulation of nasal epithelium augments neural stem cell targeting of glioblastoma[J]. Theranostics, 2019, 9(7):2071-2083.
28
Tobias A L, Thaci B, Auffinger B, et al. The timing of neural stem cell-based virotherapy is critical for optimal therapeutic efficacy when applied with radiation and chemotherapy for the treatment of glioblastoma[J]. Stem Cells Transl Med, 2013, 2(9):655-666.
[1] 周伟, 蔡恒, 范海迪, 李惠中, 王传霞, 顾茂胜. cblC型甲基丙二酸血症MMACHC基因新突变对小鼠神经细胞凋亡及Wnt/β-catenin信号通路的作用机制[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(05): 528-539.
[2] 冯巍, 袁喜平, 胡丙宇, 刘金涛, 商东升. 外伤后进展性胶质母细胞瘤一例报道并文献复习[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 59-60.
[3] 徐如祥, 邱文乔. 生物组装类脑生态位促进神经再生修复展望[J]. 中华神经创伤外科电子杂志, 2022, 08(01): 1-5.
[4] 周兴旺, 刘艳辉. 老年胶质母细胞瘤的治疗进展[J]. 中华神经创伤外科电子杂志, 2021, 07(06): 321-324.
[5] 孙明阳, 刘艳坤, 陈思, 李玉凤, 李玉辉. NHE1抑制剂改善胶质母细胞瘤细胞对替莫唑胺耐药性的研究[J]. 中华神经创伤外科电子杂志, 2021, 07(05): 261-265.
[6] 王洋洋, 高谋, 徐如祥. 过敏毒素、小胶质以及神经干细胞在神经炎症和神经再生中的作用[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 193-198.
[7] 林发牧, 邓燕婷, 梁玉明, 简志聪, 邓妙峰, 陈耿树, 麦剑培, 钱卫添, 元少鹏, 胡建军. CLSPN在胶质瘤中的表达及生物学功能[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 235-241.
[8] 张婵, 薛强, 田锐锋, 陈晓燕. Kir4.1在恶性胶质瘤中的表达及其潜在作用:数据库结合文献分析[J]. 中华神经创伤外科电子杂志, 2021, 07(04): 224-234.
[9] 喻勇, 杨华, 徐卡娅. 胎儿脊柱裂的致病因素与治疗的研究进展[J]. 中华神经创伤外科电子杂志, 2021, 07(03): 187-190.
[10] 贾伟强, 王兆涛, 徐如祥. 毛蕊花糖苷上调SHP1表达抑制STAT3磷酸化治疗胶质母细胞瘤的分子机制研究[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(05): 285-293.
[11] 高谋, 徐如祥, 董勤, 郭莉丽. CR2-Crry预处理诱导神经干细胞在颅脑损伤中发挥神经保护作用[J]. 中华脑科疾病与康复杂志(电子版), 2021, 11(04): 215-220.
[12] 周庆忠, 冯晓兰, 何萍, 张戈, 赵茂, 白永恒, 冯大雄. 封闭Notch信号影响神经干细胞分化的体外研究[J]. 中华临床医师杂志(电子版), 2022, 16(06): 579-587.
[13] 殷秀梅, 杨丽红, 姜涛, 杜元灏. 基于神经干细胞探讨巢蛋白在缺血性脑卒中中的作用机制及针刺效应[J]. 中华针灸电子杂志, 2023, 12(03): 111-116.
[14] 马晓瑭, 王艳, 李素青, 刘金花, 石雨萌, 潘群文. 富含miR-132-3p的神经干细胞释放的外泌体激活MEK1/2/-ERK1/2通路改善缺氧无糖诱导的脑微血管内皮细胞损伤[J]. 中华脑血管病杂志(电子版), 2022, 16(03): 172-181.
[15] 叶飞龙, 杨冠英, 王伟. 对流增强给药治疗胶质母细胞瘤的研究进展[J]. 中华脑血管病杂志(电子版), 2021, 15(05): 287-292.
阅读次数
全文


摘要