切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (01) : 51 -58. doi: 10.3877/cma.j.issn.2095-1221.2022.01.009

综述

肿瘤转移的分子机制及靶向干预研究新进展
李卓林1, 贾如雪1, 吴亚婷1, 张胜行1, 王水良1,()   
  1. 1. 350025 福州,厦门大学医学院附属东方医院福建省适配体技术重点实验室;350025 福州,福建医科大学福总临床医学院 (第九〇〇医院)全军临床检验医学研究所
  • 收稿日期:2020-10-15 出版日期:2022-02-01
  • 通信作者: 王水良
  • 基金资助:
    国家自然科学基金(81772848); 福建省科技创新联合资金项目(2017Y9127); 福建省对外合作项目(2019I0025)

Advances in molecular mechanisms underlying tumor metastasis and its targeted intervention

Zhuolin Li1, Ruxue Jia1, Yating Wu1, Shenghang Zhang1, Shuiliang Wang1,()   

  1. 1. Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou 350025, China; Institute for Clinical Laboratory Medicine of PLA, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fuzhou 350025, China
  • Received:2020-10-15 Published:2022-02-01
  • Corresponding author: Shuiliang Wang
引用本文:

李卓林, 贾如雪, 吴亚婷, 张胜行, 王水良. 肿瘤转移的分子机制及靶向干预研究新进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 51-58.

Zhuolin Li, Ruxue Jia, Yating Wu, Shenghang Zhang, Shuiliang Wang. Advances in molecular mechanisms underlying tumor metastasis and its targeted intervention[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(01): 51-58.

肿瘤转移是一个多阶段的恶性进展过程,涉及肿瘤细胞从原发部位逃逸,侵入脉管系统并在其中存活,随循环系统到达远处靶器官并穿出脉管系统播散定植,最终克隆性生长形成转移瘤。转移过程的每一阶段与肿瘤细胞本身遗传和表观遗传改变以及微环境中诸多因素的综合调控密切相关。本综述概要介绍了恶性肿瘤转移多步骤过程中所涉的分子调控机制以及肿瘤转移靶向干预新措施等方面的研究进展;同时,就未来肿瘤转移研究相关的新技术和新方向作一简单的展望。

Metastasis is a multistage malignant process in which cancer cells escape from the primary tumor, invade into and survive in the circulation, arrive at and seed in distant target organs, colonize ultimately and grow into metastases. Each stage of metastatic process is involved in genetic as well as epigenetic changes of tumor cells themselves and subjected to comprehensive regulation by interaction between tumor cells and microenvironment. In this review, we summarize the recent advances in molecular mechanisms underlying the multiple stages of tumor metastasis and its targeted intervention. We also discuss a brief prospect of novel experimental technique and future directions of research in tumor metastasis.

图1 恶性肿瘤转移各阶段调控模式注:TGFβ为转化生长因子β;RTK为受体酪氨酸激酶;HIF1α为缺氧诱导因子-1α;BMP4为骨形态发生蛋白4;MMPs为基质金属蛋白酶;EMT为上皮-间质转化;EMT-TFs为EMT-诱导转录因子;CTCs为循环肿瘤细胞
1
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5):646-674.
2
Chaffer CL, Weinberg RA. A perspective on cancer cell metastasis[J]. Science, 2011, 331 (6024):1559-1564.
3
Turajlic S, Swanton C. Metastasis as an evolutionary process[J]. Science, 2016, 352(6282):169-175.
4
Dongre A, Weinberg RA. New insights into the mechanisms of epithelial-mesenchymal transition and implications for cancer[J]. Nat Rev Mol Cell Biol, 2019, 20(2):69-84.
5
Lu W, Kang Y. Epithelial-mesenchymal plasticity in cancer progression and metastasis[J]. Dev Cell, 2019, 49(3):361-374.
6
Stemmler MP, Eccles RL, Brabletz S, et al. Non-redundant functions of EMT transcription factors[J]. Nat Cell Biol, 2019, 21(1):102-112.
7
Xu J, Lamouille S, Derynck R. TGF-beta-induced epithelial to mesenchymal transition[J]. Cell Res, 2009, 19(2):156-172.
8
Li Q, Wang C, Wang Y, et al. HSCs-derived COMP drives hepatocellular carcinoma progression by activating MEK/ERK and PI3K/AKT signaling pathways[J]. J Exp Clin Cancer Res, 2018, 37(1):231.
9
Nfonsam VN, Nfonsam LE, Chen D, et al. COMP gene coexpresses with EMT genes and is associated with poor survival in colon cancer patients[J]. J Surg Res, 2019, 233:297-303.
10
Sun L, Wang Y, Wang L, et al. Resolvin D1 prevents epithelial-mesenchymal transition and reduces the stemness features of hepatocellular carcinoma by inhibiting paracrine of cancer-associated fibroblast-derived COMP[J]. J Exp Clin Cancer Res, 2019, 38(1):170.
11
Zhong W, Hou H, Liu T, et al. Cartilage oligomeric matrix protein promotes epithelial-mesenchymal transition by interacting with transgelin in colorectal cancer[J]. Theranostics, 2020, 10(19):8790-8806.
12
Chen Z, He S, Zhan Y, et al. TGF-β-induced transgelin promotes bladder cancer metastasis by regulating epithelial-mesenchymal transition and invadopodia formation. EBioMedicine[J]. EBio Medicine, 2019, 47:208-220.
13
Faubert B, Solmonson A, DeBerardinis RJ. Metabolic reprogramming and cancer progression[J]. Science, 2020, 368(6487):eaaw5473. doi: 10.1126/science.aaw5473.
14
Georgakopoulos-Soares I, Chartoumpekis DV, Kyriazopoulou V, et al. EMT factors and metabolic pathways in cancer[J]. Front Oncol, 2020, 10:499. doi: 10.3389/fonc.2020.00499.
15
Knott SRV, Wagenblast E, Khan S, et al. Asparagine bioavailability governs metastasis in a model of breast cancer[J]. Nature, 2018, 554(7692):378-381.
16
Wang X, Liu R, Zhu W, et al. UDP-glucose accelerates SNAI1 mRNA decay and impairs lung cancer metastasis[J]. Nature, 2019, 571(7763):127-131.
17
Wu JY, Huang TW, Hsieh YT, et al. Cancer-derived succinate promotes macrophage polarization and cancer metastasis via succinate receptor[J]. Mol Cell, 2020, 77(2):213-227.e5.
18
Hua W, Ten Dijke P, Kostidis S, et al. TGFβ-induced metabolic reprogramming during epithelial-to-mesenchymal transition in cancer[J]. Cell Mol Life Sci, 2020, 77(11):2103-2123.
19
Sheng W, Shi X, Lin Y, et al. Musashi2 promotes EGF-induced EMT in pancreatic cancer via ZEB1-ERK/MAPK signaling[J]. J Exp Clin Cancer Res, 2020, 39(1):16. doi: 10.1186/s13046-020-1521-4.
20
Wang H, Yang X, Guo Y, et al. HERG1 promotes esophageal squamous cell carcinoma growth and metastasis through TXNDC5 by activating the PI3K/AKT pathway[J]. J Exp Clin Cancer Res, 2019, 38(1):324. doi: 10.1186/s13046-019-1284-y.
21
Li J, Yang R, Dong Y, et al. Knockdown of FOXO3a induces epithelial-mesenchymal transition and promotes metastasis of pancreatic ductal adenocarcinoma by activation of the β-catenin/TCF4 pathway through SPRY2[J]. J Exp Clin Cancer Res, 2019, 38(1):38. doi: 10.1186/s13046-019-1046-x.
22
Hsu PC, Yang CT, Jablons DM, et al. The crosstalk between src and Hippo/YAP signaling pathways in non-small cell lung cancer (NSCLC)[J]. Cancers (Basel), 2020, 12(6):1361. doi: 10.3390/cancers12061361.
23
Lin YT, Wu KJ. Epigenetic regulation of epithelial-mesenchymal transition: focusing on hypoxia and TGF-β signaling[J]. J Biomed Sci, 2020, 27(1):39. doi: 10.1186/s12929-020-00632-3.
24
Lu C, Sidoli S, Kulej K, et al. Coordination between TGF-β cellular signaling and epigenetic regulation during epithelial to mesenchymal transition[J]. Epigenetics Chromatin, 2019, 12(1):11. doi: 10.1186/s13072-019-0256-y.
25
Kim BN, Ahn DH, Kang N, et al. TGF-β induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer[J]. Sci Rep, 2020, 10(1):10597.doi: 10.1038/s41598-020-67325-7.
26
Morin A, Goncalves J, Moog S, et al. TET-mediated hypermethylation primes SDH-Deficient cells for HIF2α-driven mesenchymal transition[J]. Cell Rep, 2020, 30(13):4551-4566.e7.
27
Wu JE, Wu YY, Tung CH, et al. DNA methylation maintains the CLDN1-EPHB6-SLUG axis to enhance chemotherapeutic efficacy and inhibit lung cancer progression[J]. Theranostics, 2020, 10(19):8903-8923.
28
Valencia AM, Kadoch C. Chromatin regulatory mechanisms and therapeutic opportunities in cancer[J]. Nat Cell Biol, 2019, 21(2):152-161.
29
Nihan Kilinc A, Sugiyama N, Reddy Kalathur RK, et al. Histone deacetylases, Mbd3/NuRD, and Tet2 hydroxylase are crucial regulators of epithelial-mesenchymal plasticity and tumor metastasis[J]. Oncogene, 2020, 39(7):1498-1513.
30
Jiang H, Cao HJ, Ma N, et al. Chromatin remodeling factor ARID2 suppresses hepatocellular carcinoma metastasis via DNMT1-Snail axis[J]. Proc Natl Acad Sci U S A, 2020, 117(9):4770-4780.
31
Zhao BS, Roundtree IA, He C. Posttranscriptional gene regulation by mRNA modifications[J]. Nat Rev Mol Cell Biol, 2017, 18(1):31-42.
32
Wurth L, Gebauer F. RNA-binding proteins, multifaceted translational regulators in cancer[J]. Biochim Biophys Acta, 2015, 1849(7):881-886.
33
Mihailovich M, Militti C, Gabaldon T, et al. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression[J]. Bioessays, 2010, 32(2):109-118.
34
Wurth L, Papasaikas P, Olmeda D, et al. UNR/CSDE1 drives a post-transcriptional program to promote melanoma invasion and metastasis[J]. Cancer Cell, 2016, 30(5):694-707.
35
Martinez-Useros J, Garcia-Carbonero N, Li W, et al. UNR/CSDE1 expression is critical to maintain invasive phenotype of colorectal cancer through regulation of c-MYC and epithelial-to-mesenchymal transition[J]. J Clin Med, 2019, 8(4):560. doi: 10.3390/jcm8040560.
36
Kim J, Yao F, Xiao Z, et al. MicroRNAs and metastasis: small RNAs play big roles[J]. Cancer Metastasis Rev, 2018, 37(1):5-15.
37
Petri BJ, Klinge CM. Regulation of breast cancer metastasis signaling by miRNAs[J]. Cancer Metastasis Rev, 2020, 39(3):837-886.
38
Zhou Y, Huan L, Wu Y, et al. LncRNA ID2-AS1 suppresses tumor metastasis by activating the HDAC8/ID2 pathway in hepatocellular carcinoma[J]. Cancer Lett, 2020, 469:399-409.
39
Ma S, Kong S, Wang F, et al. CircRNAs: biogenesis, functions, and role in drug-resistant tumours[J]. Mol Cancer, 2020, 19(1):119. doi: 10.1186/s12943-020-01231-4.
40
Feng S, Liu W, Bai X, et al. LncRNA-CTS promotes metastasis and epithelial-to-mesenchymal transition through regulating miR-505/ZEB2 axis in cervical cancer[J]. Cancer Lett, 2019, 465:105-117.
41
Chen Q, Liu T, Bao Y, et al. CircRNA cRAPGEF5 inhibits the growth and metastasis of renal cell carcinoma via the miR-27a-3p/TXNIP pathway[J]. Cancer Lett, 2020, 469:68-77.
42
Zhou Z, Lv J, Yu H, et al. Mechanism of RNA modification N6-methyladenosine in human cancer[J]. Mol Cancer, 2020, 19(1):104. doi: 10.1186/s12943-020-01216-3.
43
Chen XY, Zhang J, Zhu JS. The role of m6A RNA methylation in human cancer[J]. Mol Cancer, 2019, 18(1):103. doi: 10.1186/s12943-019-1033-z.
44
Huang H, Weng H, Chen J. m6A modification in coding and non-coding RNAs: roles and therapeutic implications in cancer[J]. Cancer Cell, 2020, 37(3):270-288.
45
Yue B, Song C, Yang L, et al. METTL3-mediated N6-methyladenosine modification is critical for epithelial-mesenchymal transition and metastasis of gastric cancer[J]. Mol Cancer, 2019, 18(1):142.
46
Chen X, Xu M, Xu X, et al. METTL14-mediated N6-methyladenosine modification of SOX4 mRNA inhibits tumor metastasis in colorectal cancer[J]. Mol Cancer, 2020, 19(1):106.
47
Yang X, Zhang S, He C, et al. METTL14 suppresses proliferation and metastasis of colorectal cancer by down-regulating oncogenic long non-coding RNA XIST[J]. Mol Cancer, 2020, 19(1):46.
48
Chen RX, Chen X, Xia LP, et al. N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis[J]. Nat Commun, 2019, 10(1):4695.
49
Chen Y, Lin Y, Shu Y, et al. Interaction between N6-methyladenosine (m6A) modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1):94.
50
Yi YC, Chen XY, Zhang J, et al. Novel insights into the interplay between m6A modification and noncoding RNAs in cancer[J]. Mol Cancer, 2020, 19(1):121.
51
Yang X, Liu M, Li M, et al. Epigenetic modulations of noncoding RNA: a novel dimension of Cancer biology[J]. Mol Cancer, 2020, 19(1):64.
52
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications[J]. Signal Transduct Target Ther, 2020, 5(1):90.
53
Li J, Xu J, Li L, et al. MGAT3-mediated glycosylation of tetraspanin CD82 at asparagine 157 suppresses ovarian cancer metastasis by inhibiting the integrin signaling pathway[J]. Theranostics, 2020, 10(14):6467-6482.
54
Du L, Fakih MG, Rosen ST, et al. SUMOylation of E2F1 regulates expression of EZH2[J]. Cancer Res, 2020, 80(19):4212-4223.
55
Li F, Yuan P, Rao M, et al. piRNA-independent function of PIWIL1 as a co-activator for anaphase promoting complex/cyclosome to drive pancreatic cancer metastasis[J]. Nat Cell Biol, 2020, 22(4):425-438.
56
Yan F, Qian M, He Q, et al. The posttranslational modifications of Hippo-YAP pathway in cancer[J]. Biochim Biophys Acta Gen Subj, 2020, 1864(1):129397. doi: 10.1016/j.bbagen.2019.07.006.
57
Zhang Z, Du J, Wang S, et al. OTUB2 promotes cancer metastasis via hippo-independent activation of YAP and TAZ[J]. Mol Cell, 2019, 73(1):7-21.e7.
58
Meng J, Ai X, Lei Y, et al. USP5 promotes epithelial-mesenchymal transition by stabilizing SLUG in hepatocellular carcinoma[J]. Theranostics, 2019, 9(2):573-587.
59
Parua PK, Booth GT, Sansó M, et al. A Cdk9-PP1 switch regulates the elongation-termination transition of RNA polymerase II[J]. Nature, 2018, 558(7710):460-464.
60
Kecman T, Ku's K, Heo DH, et al. Elongation/termination factor exchange mediated by pp1 phosphatase orchestrates transcription termination[J]. Cell Rep, 2018, 25(1):259-269.e5.
61
Kai F, Drain AP, Weaver VM. The extracellular matrix modulates the metastatic journey[J]. Dev Cell, 2019, 49(3):332-346.
62
Barillari G. The impact of matrix metalloproteinase-9 on the sequential steps of the metastatic process[J]. Int J Mol Sci, 2020, 21(12):4526. doi: 10.3390/ijms21124526.
63
Liu F, Zhang H, Xie F, et al. Hsa_circ_0001361 promotes bladder cancer invasion and metastasis through miR-491-5p/MMP9 axis[J]. Oncogene, 2020, 39(8):1696-1709.
64
Tong WH, Mu JF, Zhang SP. LINC00346 accelerates the malignant progression of colorectal cancer via competitively binding to miRNA-101-5p/MMP9[J]. Eur Rev Med Pharmacol Sci, 2020, 24(12):6639-6646.
65
Fayard B, Bianchi F, Dey J, et al. The serine protease inhibitor protease nexin-1 controls mammary cancer metastasis through LRP-1-mediated MMP-9 expression[J]. Cancer Res, 2009, 69(14):5690-5698.
66
Zhang J, Luo A, Huang F, et al. SERPINE2 promotes esophageal squamous cell carcinoma metastasis by activating BMP4[J]. Cancer Lett, 2020, 469:390-398.
67
de Heer EC, Jalving M, Harris AL. HIFs, angiogenesis, and metabolism: elusive enemies in breast cancer[J]. J Clin Invest, 2020, 130(10):5074-5087.
68
Borriello L, Karagiannis GS, Duran CL, et al. The role of the tumor microenvironment in tumor cell intravasation and dissemination[J]. Eur J Cell Biol, 2020, 99(6):151098. doi: 10.1016/j.ejcb.2020.151098.
69
Follain G, Herrmann D, Harlepp S, et al. Fluids and their mechanics in tumour transit: shaping metastasis[J]. Nat Rev Cancer, 2020, 20(2):107-124.
70
Haemmerle M, Taylor ML, Gutschner T, et al. Platelets reduce anoikis and promote metastasis by activating YAP1 signaling[J]. Nat Commun, 2017, 8(1):310.doi: 10.1038/s41467-017-00411-z.
71
Liu X, Taftaf R, Kawaguchi M, et al. Homophilic CD44 interactions mediate tumor cell aggregation and polyclonal metastasis in patient-derived breast cancer models[J]. Cancer Discov, 2019, 9(1):96-113.
72
Szczerba BM, Castro-Giner F, Vetter M, et al. Neutrophils escort circulating tumour cells to enable cell cycle progression[J]. Nature, 2019, 566(7745):553-557.
73
Gao Y, Bado I, Wang H, et al. Metastasis organotropism: redefining the congenial soil[J]. Dev Cell, 2019, 49(3):375-391.
74
Wortzel I, Dror S, Kenific CM, et al. Exosome-mediated metastasis: communication from a distance[J]. Dev Cell, 2019, 49(3):347-360.
75
Mathieu M, Martin-Jaular L, Lavieu G, et al. Specificities of secretion and uptake of exosomes and other extracellular vesicles for cell-to-cell communication[J]. Nat Cell Biol, 2019, 21(1):9-17.
76
Huang Y, Song N, Ding Y, et al. Pulmonary vascular destabilization in the premetastatic phase facilitates lung metastasis[J]. Cancer Res, 2009, 69(19):7529-7537.
77
Chen G, Huang AC, Zhang W, et al. Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response[J]. Nature, 2018, 560(7718):382-386.
78
Shu S, Yang Y, Allen CL, et al. Metabolic reprogramming of stromal fibroblasts by melanoma exosome microRNA favours a pre-metastatic microenvironment[J]. Sci Rep, 2018, 8(1):12905. doi: 10.1038/s41598-018-31323-7.
79
Ogawa K, Lin Q, Li L, et al. Prometastatic secretome trafficking via exosomes initiates pancreatic cancer pulmonary metastasis[J]. Cancer Lett, 2020, 481:63-75.
80
Keklikoglou I, Cianciaruso C, Güç E, et al. Chemotherapy elicits pro-metastatic extracellular vesicles in breast cancer models[J]. Nat Cell Biol, 2019, 21(2):190-202.
81
Feng W, Dean DC, Hornicek FJ, et al. Exosomes promote pre-metastatic niche formation in ovarian cancer[J]. Mol Cancer, 2019, 18(1):124. doi: 10.1186/s12943-019-1049-4.
82
Houg DS, Bijlsma MF. The hepatic pre-metastatic niche in pancreatic ductal adenocarcinoma[J]. Mol Cancer, 2018, 17(1):95. doi: 10.1186/s12943-018-0842-9.
83
Lee JW, Stone ML, Porrett PM, et al. Hepatocytes direct the formation of a pro-metastatic niche in the liver[J]. Nature, 2019, 567(7747):249-252.
84
Lee JW, Beatty GL. Inflammatory networks cultivate cancer cell metastasis to the liver[J]. Cell Cycle, 2020, 19(6):642-651.
85
Taverna S, Pucci M, Giallombardo M, et al. Amphiregulin contained in NSCLC-exosomes induces osteoclast differentiation through the activation of EGFR pathway[J]. Sci Rep, 2017, 7(1):3170. doi: 10.1038/s41598-017-03460-y.
86
Tiedemann K, Sadvakassova G, Mikolajewicz N, et al. Exosomal release of l-plastin by breast cancer cells facilitates metastatic bone osteolysis[J]. Transl Oncol, 2019, 12(3):462-474.
87
Ge X, Liu W, Zhao W, et al. Exosomal transfer of LCP1 promotes osteosarcoma cell tumorigenesis and metastasis by activating the JAK2/STAT3 signaling pathway[J]. Mol Ther Nucleic Acids, 2020, 21:900-915.
88
Chen J, Ren Q, Cai Y, et al. Mesenchymal stem cells drive paclitaxel resistance in ErbB2/ErbB3-coexpressing breast cancer cells via paracrine of neuregulin 1[J]. Biochem Biophys Res Commun, 2018, 501(1):212-219.
89
林婷婷,任群,王水良.间充质干细胞在恶性肿瘤生物学中作用的研究进展[J/CD]. 中华细胞与干细胞杂志(电子版), 2018, 8(1):39-48.
90
Welch DR, Hurst DR. Defining the hallmarks of metastasis[J]. Cancer Res, 2019, 79(12):3011-3027.
91
Hosseini H, Obradović MMS, Hoffmann M, et al. Early dissemination seeds metastasis in breast cancer[J]. Nature, 2016, 540(7634):552-558.
92
Harper KL, Sosa MS, Entenberg D, et al. Mechanism of early dissemination and metastasis in Her2+ mammary cancer[J]. Nature, 2016, 540(7634):588-592.
93
Prunier C, Baker D, Dijke Ten, et al. TGF-β family signaling pathways in cellular dormancy[J]. Trends Cancer, 2019, 5(1):66-78.
94
Agarwal P, Isringhausen S, Li H, et al. Mesenchymal niche-specific expression of Cxcl12 controls quiescence of treatment-resistant leukemia stem cells[J]. Cell Stem Cell, 2019, 24(5):769-784.e6.
95
Montagner M, Bhome R, Hooper S, et al. Crosstalk with lung epithelial cells regulates Sfrp2-mediated latency in breast cancer dissemination[J]. Nat Cell Biol, 2020, 22(3):289-296.
96
Hen O, Barkan D. Dormant disseminated tumor cells and cancer stem/progenitor-like cells: Similarities and opportunities[J]. Semin Cancer Biol, 2020, 60:157-165.
97
Boire A, Coffelt SB, Quezada SA, et al. Tumour dormancy and reawakening: opportunities and challenges[J]. Trends Cancer, 2019, 5(12):762-765.
98
Albrengues J, Shields MA, Ng D, et al. Neutrophil extracellular traps produced during inflammation awaken dormant cancer cells in mice[J]. Science, 2018, 361(6409):eaao4227. doi: 10.1126/science.aao4227.
99
Tiedemann K, Hussein O, Komarova SV. Role of altered metabolic microenvironment in osteolytic metastasis[J]. Front Cell Dev Biol, 2020, 8:435. doi: 10.3389/fcell.2020.00435.
100
Ganesh K, Massagué J. Targeting metastatic cancer[J]. Nat Med, 2021, 27(1):34-44
101
Steeg PS. Targeting metastasis[J]. Nat Rev Cancer, 2016, 16(4):201-218.
102
Petri BJ, Klinge CM. Regulation of breast cancer metastasis signaling by miRNAs[J]. Cancer Metastasis Rev, 2020, 39(3):837-886.
103
Pal I, Rajesh Y, Banik P, et al. Prevention of epithelial to mesenchymal transition in colorectal carcinoma by regulation of the E-cadherin-β-catenin-vinculin axis[J]. Cancer Lett, 2019, 452:254-263.
104
Halldorsson S, Rohatgi N, Magnusdottir M, et al. Metabolic re-wiring of isogenic breast epithelial cell lines following epithelial to mesenchymal transition[J]. Cancer Lett, 2017, 396:117-129.
105
Wei Q, Qian Y, Yu J, et al. Metabolic rewiring in the promotion of cancer metastasis: mechanisms and therapeutic implications[J]. Oncogene, 2020, 39(39):6139-6156.
106
Ramesh V, Brabletz T, Ceppi P. Targeting EMT in cancer with repurposed metabolic inhibitors[J]. Trends Cancer, 2020, 6(11):942-950.
107
Kanwal M, Smahel M, Olsen M, et al. Aspartate β-hydroxylase as a target for cancer therapy[J]. J Exp Clin Cancer Res, 2020, 39(1):163. doi: 10.1186/s13046-020-01669-w.
108
Lin Q, Chen X, Meng F, et al. ASPH-notch Axis guided exosomal delivery of prometastatic secretome renders breast cancer multi-organ metastasis[J]. Mol Cancer, 2019, 18(1):156. doi: 10.1186/s12943-019-1077-0.
109
Green D, Eyre H, Singh A, et al. Targeting the MAPK7/MMP9 axis for metastasis in primary bone cancer[J]. Oncogene, 2020, 39(33):5553-5569.
110
Tagliatela AC, Hempstead SC, Hibshman PS, et al. Coronin 1C inhibits melanoma metastasis through regulation of MT1-MMP-containing extracellular vesicle secretion[J]. Sci Rep, 2020, 10(1):11958. doi: 10.1038/s41598-020-67465-w.
111
Latifkar A, Ling L, Hingorani A, et al. Loss of sirtuin 1 alters the secretome of breast cancer cells by impairing lysosomal integrity[J]. Dev Cell, 2019, 49(3):393-408.e7.
112
Yang F, Zhao Z, Sun B, et al. Nanotherapeutics for antimetastatic treatment[J]. Trends Cancer, 2020, 6(8):645-659.
113
Xie X, Nie H, Zhou Y, et al. Eliminating blood oncogenic exosomes into the small intestine with aptamer-functionalized nanoparticles[J]. Nat Commun, 2019, 10(1):5476. doi: 10.1038/s41467-019-13316-w.
114
Liu Y, Xie X, Hou X, et al. Functional oral nanoparticles for delivering silibinin and cryptotanshinone against breast cancer lung metastasis[J]. J Nanobiotechnology, 2020, 18(1):83. doi: 10.1186/s12951-020-00638-x.
115
Kaps L, Schuppan D. Targeting cancer associated fibroblasts in liver fibrosis and liver cancer using nanocarriers[J]. Cells, 2020, 9(9):2027. doi: 10.3390/cells9092027.
116
Liu Y, Bhattarai P, Dai Z, et al. Photothermal therapy and photoacoustic imaging via nanotheranostics in fighting cancer[J]. Chem Soc Rev, 2019, 48(7):2053-2108.
117
Chen F, Zhong Z, Tan HY, et al. The significance of circulating tumor cells in patients with hepatocellular carcinoma: real-time monitoring and moving targets for cancer therapy[J]. Cancers (Basel), 2020, 12(7):1734. doi: 10.3390/cancers12071734.
118
Chiang CS, Kao YC, Webster TJ, et al. Circulating tumor-cell-targeting au-nanocage-mediated bimodal phototherapeutic properties enriched by magnetic nanocores[J]. J Mater Chem B, 2020, 8(25):5460-5471.
119
Tjan-Heijnen V, Viale G. The lymph node and the metastasis[J]. N Engl J Med, 2018, 378(21):2045-2046.
120
Pereira ER, Kedrin D, Seano G, et al. Lymph node metastases can invade local blood vessels, exit the node, and colonize distant organs in mice[J]. Science, 2018, 359(6382):1403-1407.
121
Brown M, Assen FP, Leithner A, et al. Lymph node blood vessels provide exit routes for metastatic tumor cell dissemination in mice[J]. Science, 2018, 359(6382):1408-1411.
122
Ubellacker JM, Tasdogan A, Ramesh V, et al. Lymph protects metastasizing melanoma cells from ferroptosis[J]. Nature, 2020, 585(7823):113-118.
123
Grüner BM, Fendt SM. Cancer cells stock up in lymph vessels to survive[J]. Nature, 2020, 585(7823):36-37.
124
Gengenbacher N, Singhal M, Mogler C, et al. Timed Ang2-targeted therapy identifies the angiopoietin-tie pathway as key regulator of fatal lymphogenous metastasis[J]. Cancer Discov, 2021, 11(2):424-445.
125
Recasens A, Munoz L. Targeting cancer cell dormancy[J]. Trends Pharmacol Sci, 2019, 40(2):128-141.
126
Clara JA, Monge C, Yanng Y, et al. Targeting signalling pathways and the immune microenvironment of cancer stem cells - a clinical update[J]. Nat Rev Clin Oncol, 2020, 7(4):204-232.
127
Ferrer AI, Trinidad JR, Sandiford O, et al. Epigenetic dynamics in cancer stem cell dormancy[J]. Cancer Metastasis Rev, 2020, 39(3):721-738.
128
Lu Z, Zou J, Li S, et al. Epigenetic therapy inhibits metastases by disrupting premetastatic niches[J]. Nature, 2020, 579(7798):284-290.
129
Leslie PL, Chao YL, Tsai YH, et al. Histone deacetylase 11 inhibition promotes breast cancer metastasis from lymph nodes[J]. Nat Commun, 2019, 10(1):4192. doi: 10.1038/s41467-019-12222-5.
130
Wen YC, Lin YW, Chu CY, et al. Melatonin-triggered post-transcriptional and post-translational modifications of ADAMTS1 coordinately retard tumorigenesis and metastasis of renal cell carcinoma[J]. J Pineal Res, 2020, 69(2):e12668. doi: 10.1111/jpi.12668.
131
Montazeri K, Bellmunt J. Erdafitinib for the treatment of metastatic bladder cancer[J]. Expert Rev Clin Pharmacol, 2020, 13(1):1-6.
132
Loriot Y, Necchi A, Park SH, et al. Erdafitinib in locally advanced or metastatic urothelial carcinoma[J]. N Engl J Med, 2019, 381(4):338-348.
133
Zhang PF, Huang Y, Liang X, et al. Enhancement of the antitumor effect of HER2-directed CAR-T cells through blocking epithelial-mesenchymal transition in tumor cells[J]. FASEB J, 2020, 34(8):11185-11199.
134
Kim MY, Oskarsson T, Acharyya S, et al. Tumor self-seeding by circulating cancer cells[J]. Cell, 2009, 139(7):1315-1326.
135
Parkins KM, Dubois VP, Kelly JJ, et al. Engineering circulating tumor cells as novel cancer theranostics[J]. Theranostics, 2020, 10(17):7925-7937.
136
Fischer KR, Durrans A, Lee S, et al. Epithelial-to-mesenchymal transition is not required for lung metastasis but contributes to chemoresistance[J]. Nature, 2015, 527(7579):472-476.
137
Bunz F. EMT and back again: visualizing the dynamic phenotypes of metastasis[J]. Cancer ResL, 2020, 80(2):153-155.
138
Lourenco AR, Ban Y, Crowley MJ, et al. Differential contributions of pre- and post-emt tumor cells in breast cancer metastasis[J]. Cancer Res, 2020, 80(2):163-169.
139
Ilina O, Gritsenko PG, Syga S, et al. Cell-cell adhesion and 3D matrixconfinement determine jamming transitions in breast cancer invasion[J]. Nat Cell Biol, 2020, 22(9):1103-1115.
140
Rosenbluth JM, Schackmann RCJ, Gray GK, et al. Organoid cultures from normal and cancer-prone human breast tissues preserve complex epithelial lineages[J]. Nat Commun, 2020, 11(1):1711. doi: 10.1038/s41467-020-15548-7.
141
Zahalka AH, Frenette PS. Nerves in cancer[J]. Nat Rev Cancer, 2020, 20(3):143-157.
142
Hadadi E, Taylor W, Li XM, et al. Chronic circadian disruption modulates breast cancer stemness and immune microenvironment to drive metastasis in mice[J]. Nat Commun, 2020, 11(1):3193. doi: 10.1038/s41467-020-16890-6.
[1] 李康, 冀亮, 赵维, 林乐岷. 自噬在乳腺癌生物学进展中的双重作用[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 195-202.
[2] 林昌盛, 战军, 肖雪. 上皮性卵巢癌患者诊疗中基因检测及分子靶向药物治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(05): 505-510.
[3] 李晨曦, 谭小容, 魏巍, 李慕秋, 龚忠诚. 三级淋巴结构在口腔癌中的特征及意义[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 315-321.
[4] 曹长青, 郭新艳, 高源, 张存, 唐海利, 樊东, 杨小军, 张松, 赵华栋. 肿瘤微环境参与介导HER2阳性乳腺癌曲妥珠单抗耐药的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 90-95.
[5] 晏晴艳, 雍晓梅, 罗洪, 杜敏. 成都地区老年转移性乳腺癌的预后及生存因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 636-638.
[6] 王晓燕, 肖佑, 肖戈, 王真权. 老年结直肠癌肺转移CT特征及高危因素研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 506-509.
[7] 于恒, 陆晓峰, 宋鹏, 毛永欢, 孙锋, 艾世超, 王峰, 陶亮, 胡琼源, 王萌, 刘颂, 王琼, 沈晓菲, 管文贤. 胃癌肝转移危险因素分析及预测模型构建[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 375-379.
[8] 康海, 谭武宾, 周松, 毛正, 米泽振, 李铁求. 膀胱癌根治术后阴茎转移一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 523-525.
[9] 黄承路, 廖飞, 刘显平, 王志强. 血清外泌体Has_circ_0060937过度表达与NSCLC转移和不良预后的关系[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 490-494.
[10] 郝昭昭, 李多, 南岩东. 以肺磨玻璃结节为表现的肺腺癌发生机制研究进展[J]. 中华肺部疾病杂志(电子版), 2023, 16(03): 435-437.
[11] 刘晓梅, 张露, 刘旭, 梁蝶. 巨噬细胞迁移抑制因子靶向miR-127-3p对人肾癌细胞生物学行为的影响[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 76-83.
[12] 王迪, 吕少诚, 黄金灿, 潘飞, 姜涛, 郎韧. 肺腺癌胰腺转移伴门静脉侵犯一例[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 457-460.
[13] 李兆, 张颖, 宋彦呈, 李兆鹏, 刘曙光, 郭栋, 陈栋, 李宇. 构建预测结直肠癌肝转移术后患者生存的列线图模型[J]. 中华结直肠疾病电子杂志, 2023, 12(04): 311-318.
[14] 金玺, 孙康, 郭建, 孔梅. 结直肠癌肝转移发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(02): 163-166.
[15] 李世浩, 王玉姣, 李子豪, 吴彬, 盛银良, 齐宇. 单细胞转录组分析巨噬细胞帽状蛋白对食管鳞癌细胞增殖和转移的影响[J]. 中华胸部外科电子杂志, 2023, 10(02): 98-105.
阅读次数
全文


摘要