切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (06) : 370 -376. doi: 10.3877/cma.j.issn.2095-1221.2023.06.007

综述

间充质干细胞体外大规模培养的研究进展
张闻宇1, 黄玉香1,()   
  1. 1. 266000 青岛,奥克生物开发有限公司
  • 收稿日期:2023-10-17 出版日期:2023-12-01
  • 通信作者: 黄玉香

Research progress in large-scale cultivation of mesenchymal stem cells in vitro

Wenyu Zhang1, Yuxiang Huang1,()   

  1. 1. Allcare Biomedical Development, Qingdao 266000, China
  • Received:2023-10-17 Published:2023-12-01
  • Corresponding author: Yuxiang Huang
引用本文:

张闻宇, 黄玉香. 间充质干细胞体外大规模培养的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 370-376.

Wenyu Zhang, Yuxiang Huang. Research progress in large-scale cultivation of mesenchymal stem cells in vitro[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(06): 370-376.

间充质干细胞(MSCs)是一类具有自我更新和多向分化潜能的干细胞,具有免疫调节和组织修复等功能。随着MSCs在临床中的广泛应用,对细胞体外扩增以获取大量临床级细胞的需求也日益增多。因此,如何在体外获得足够数量的MSCs,是MSCs培养、制备及临床应用亟待解决的核心问题。本文总结了当前MSCs二维和三维大规模培养方法的优点、局限性以及实际应用,并对规模化、自动化和智能化培养体系的发展趋势进行展望。

Mesenchymal stem cells are a type of stem cells with self-renewal and multi- directional differentiation potential, which have functions such as immune regulation and tissue repair. With the wide application of mesenchymal stem cells in clinical practice, there is an increasing demand for cell expansion in vitro to obtain many clinical-grade cells. Therefore, getting a sufficient quantity of mesenchymal stem cells in vitro is the core problem to be solved in mesenchymal stem cell culture, preparation and clinical application. In this paper, we summarize the advantages and limitations of the current two-dimensional and three-dimensional large-scale cultivation methods for mesenchymal stem cells and the practical applications of large-scale cultivation. It also looks forward to the development trends of large-scale, automatic and intelligent cultivation systems.

表1 2D及3D大规模培养方法的优点与局限性
图1 MSCs 3D培养方式示意图[5]注:a图为固体球形或圆盘状颗粒微载体;b图为由纤维素或明胶制备的多孔微载体;c图为包裹凝胶的微囊体;d图为3D培养形成的球状细胞聚集体;e图为中空纤维。Cross-Sectional View为横剖面视图;Nutrients In为营养物质进入;Waste Out为代谢废物排出;Porous Fiber为多孔纤维;Intercapillary Space为毛细血管内空间;Extracapillary Space为毛细血管外空间
52
Bhang SH, Lee S, Shin J, et al. Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization[J]. Tissue Eng Part A, 2012, 18(19-20):2138-2147.
53
Chen L, Wang H, Huang C. Modulation of inherent niches in 3D multicellular MSC spheroids reconfigures metabolism and enhances therapeutic potential[J]. Cells, 2021, 10 (10):2747. doi: 10.3390/cells10102747.
54
Li P, Liu F, Wu C, et al. Feasibility of human hair follicle-derived mesenchymal stem cells/ CultiSpher®-G constructs in regenerative medicine[J]. Cell Tissue Res, 2015, 362(1): 69-86.
55
Thitiset T, Damrongsakkul S, Yodmuang S, et al. A novel gelatin/ chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering[J]. Biomater Res, 2021, 25(1):19. doi: 10.1186/s40824-021-00220-y.
56
Timmins NE, Kiel M, Gunther M, et al. Closed system isolation and scalable expansion of human placental mesenchymal stem cells[J]. Biotechnol Bioeng, 2012, 109(7):1817-1826.
57
Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair[J]. Nat Rev Rheumatol, 2013, 9(10):584-594.
58
Rafiq QA, Twomey K, Kulik M, et al. Developing an automated robotic factory for novel stem cell therapy production[J]. Regen Med, 2016, 11(4):351-354.
1
Mckee C, Chaudhry GR. Advances and challenges in stem cell culture[J]. Colloids Surf B Biointerfaces, 2017, 159:62-77.
2
Mizukami A, Swiech K. Mesenchymal stromal cells: from discovery to manufacturing and commercialization[J]. Stem Cells Int, 2018, 2018:4083921. doi: 10.1155/2018/4083921.
3
Wu X, Su J, Wei J, et al. Recent advances in three-dimensional stem cell culture systems and applications[J]. Stem Cells Int, 2021, 2021:9477332. doi: 10.1155/2021/9477332.
4
Lambrechts T, Sonnaert M, Schrooten J, et al. Large-scale mesenchymal stem/stromal cell expansion: a visualization tool for bioprocess comparison[J]. Tissue Eng Part B Rev, 2016, 22(6):485-498.
5
Kumar A, Starly B. Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes[J]. Biofabrication, 2015, 7(4):44103. doi: 10.1088/1758-5090/7/4/044103.
6
Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1):68. doi: 10.1186/s13287-019-1165-5.
7
Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow[J]. Cell Stem Cell, 2014, 15(2):154-168.
8
Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J]. Nat Rev Nephrol, 2018, 14(8):493-507.
9
Kang JY, Oh M, Joo H, et al. Xeno-free condition enhances therapeutic functions of human Wharton’s Jelly-derived mesenchymal stem cells against experimental colitis by upregulated indoleamine 2,3-dioxygenase activity[J]. J Clin Med, 2020, 9(9):2913. doi: 10.3390/jcm9092913.
10
Wu X, Wu D, Mu Y, et al. Serum-free medium enhances the therapeutic effects of umbilcal cord mesenchymal stromal cells on a murine model for acute colitis[J]. Front Bioeng Biotechnol, 2020, 8:586. doi: 10.3389/fbioe.2020.00586.
11
Sagaradze G, Grigorieva O, Nimiritsky P, et al. Conditioned medium from human mesenchymal stromal cells: towards the clinical translation[J]. Int J Mol Sci, 2019, 20(7):1656. doi: 10.3390/ijms20071656.
12
Lee M, Youn C, Kim J, et al. Enhanced cell growth of adipocyte-derived mesenchymal stem cells using chemically-defined serum-free media[J]. Int J Mol Sci, 2017, 18(8):1779. doi: 10.3390/ijms18081779.
13
Egger D, Lavrentieva A, Kugelmeier P, et al. Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell-based therapy products[J]. Eng Life Sci, 2022, 22(3-4):361-372.
14
Kropp C, Massai D, Zweigerdt R. Progress and challenges in large-scale expansion of human pluripotent stem cells[J]. Process Biochemistry, 2017, 59:244-254.
15
Ratcliffe E, Thomas RJ, Williams DJ. Current understanding and challenges in bioprocessing of stem cell-based therapies for regenerative medicine[J]. Br Med Bull, 2011, 100:137-155.
16
Rowley JA, Abraham E, Campbell A, et al. Meeting lot-size challenges of manufacturing adherent cells for therapy[J]. Bioprocess International, 2012, 10(3):16-22.
17
Mareschi K, Rustichelli D, Calabrese R, et al. Multipotent mesenchymal stromal stem cell expansion by plating whole bone marrow at a low cellular density: a more advantageous method for clinical use[J]. Stem Cells Int, 2012, 2012:920581. doi: 10.1155/2012/920581.
18
van den Bos C, Keefe R, Schirmaier C, et al. Therapeutic human cells: manufacture for cell therapy/ regenerative medicine[J]. Adv Biochem Eng Biotechnol, 2014, 138:61-97.
19
Li Y, Guo G, Li L, et al. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance[J]. Cell Tissue Res, 2015, 360(2):297-307.
20
Petrenko Y, Syková E, Kubinová Š. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids[J]. Stem Cell Res Ther, 2017, 8(1):94. doi: 10.1186/s13287-017-0558-6.
21
Tavassoli H, Alhosseini SN, Tay A, et al. Large-scale production of stem cells utilizing microcarriers: a biomaterials engineering perspective from academic research to commercialized products[J]. Biomaterials, 2018, 181:333-346.
22
Qasim A Rafiq K C A C. Scale-up of human mesenchymal stem cell culture: current technologies and future challenges Qasim A Rafiq, Karen Coopman and Christopher J Hewitt[J]. Current Opinion in Chemical Engineering, 2013, 2(1):8-16.
23
Leslie SK, Kinney RC, Schwartz Z, et al. Microencapsulation of stem cells for therapy[J]. Methods Mol Biol, 2017, 1479:251-259.
24
Hernández RM, Orive G, Murua A, et al. Microcapsules and microcarriers for in situ cell delivery[J]. Adv Drug Deliv Rev, 2010, 62(7-8):711-730.
25
Mao AS, Shin J, Utech S, et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery[J]. Nat Mater, 2017, 16(2):236-243.
26
Wilson JL, Mcdevitt TC. Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation[J]. Biotechnol Bioeng, 2013, 110 (3):667-682.
27
Kim W, Gwon Y, Park S, et al. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration[J]. Bioact Mater, 2022, 19:50-74.
28
Cesarz Z, Tamama K. Spheroid culture of mesenchymal stem cells[J]. Stem Cells Int, 2016, 2016:9176357. doi: 10.1155/2016/9176357.
29
Cheng N, Wang S, Young T. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities[J]. Biomaterials, 2012, 33 (6):1748-1758.
30
Jiang B, Yan L, Miao Z, et al. Spheroidal formation preserves human stem cells for prolonged time under ambient conditions for facile storage and transportation[J]. Biomaterials, 2017, 133:275-286.
31
Jyothilekshmi I, Jayaprakash NS. Trends in monoclonal antibody production using various bioreactor syst[J]. J Microbiol Biotechnol, 2021, 31(3):349-357.
32
Lam AT, Lee AP, Jayaraman P, et al. Multiomics analyses of cytokines, genes, miRNA, and regulatory networks in human mesenchymal stem cells expanded in stirred microcarrier-spinner cultures[J]. Stem Cell Res, 2021, 53:102272. doi: 10.1016/j.scr.2021.102272.
33
Zhang J, Peng Y, Guo M, et al. Large-scale expansion of human umbilical cord-derived mesenchymal stem cells in a stirred suspension bioreactor enabled by computational fluid dynamics modeling[J]. Bioengineering, 2022, 9(7):274. doi: 10.3390/bioengineering9070274.
34
Frank ND, Jones ME, Vang B, et al. Evaluation of reagents used to coat the hollow-fiber bioreactor membrane of the Quantum® Cell Expansion System for the culture of human mesenchymal stem cells[J]. Mater Sci Eng C Mater Biol Appl, 2019, 96:77-85.
35
Zhang Y, Na T, Zhang K, et al. GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs[J]. J Tissue Eng Regen Med, 2022, 16(10):934-944.
36
Bou-Ghannam S, Kim K, Grainger DW, et al. 3D cell sheet structure augments mesenchymal stem cell cytokine production[J]. Sci Rep, 2021, 11(1):8170. doi: 10.1038/s41598-021-87571-7.
37
Li J, Peng Q, Yang R, et al. Application of mesenchymal stem cells during machine perfusion:an emerging novel strategy for organ preservation[J]. Front Immunol, 2021, 12:713920. doi: 10.3389/fimmu.2021.713920.
38
Yue R, Lu S, Luo Y,et al. Mesenchymal stem cell-derived exosomal microrna-182-5p alleviates myocardial ischemia/reperfusion injury by targeting gsdmd in mice[J]. Cell Death Discov, 2022, 8(1):202. doi: 10.1038/s41420-022-00909-6.
39
Bang C, Thum T. Exosomes: New players in cell-cell communication[J]. Int J Biochem Cell Biol, 2012, 44(11):2060-2064.
40
Cao J, Wang B, Tang T, et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury[J]. Stem Cell Res Ther, 2020, 11(1):206. doi: 10.1186/s13287-020-01719-2.
41
Yan L, Wu X. Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity[J]. Cell Biol Toxicol, 2020, 36(2):165-178.
42
Haraszti RA, Miller R, Stoppato M, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity[J]. Mol Ther, 2018, 26(12):2838-2847.
43
Yan X, Zhang K, Yang Y, et al. Dispersible and dissolvable porous microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion[J]. Tissue Eng Part C Methods, 2020, 26(5):263-275.
44
Nikolits I, Radwan S, Liebner F, et al. Hydrogels from TEMPO- Oxidized nanofibrillated cellulose supportin vitro cultivation of encapsulated human mesenchymal stem cells[J]. ACS Appl Bio Mater, 2023, 6(2):543-551.
45
Nebel S, Lux M, Kuth S, et al. Alginate core-shell capsules for 3D cultivation of adipose-derived mesenchymal stem cells[J]. Bioengineering, 2022, 9(2):66. doi: 10.3390/bioengineering9020066.
46
Yuan Y, Kallos MS, Hunter C, et al. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture[J]. J Tissue Eng Regen Med, 2014, 8(3):210-225.
47
Huang S, Chou D, Chang Y, et al. Development of a pneumatically driven active cover lid for multi-well microplates for use in perfusion three-dimensional cell culture[J]. Sci Rep, 2015, 5:18352. doi: 10.1038/srep18352.
48
Xie L, Mao M, Zhou L, et al. Spheroid mesenchymal stem cells and mesenchymal stem cell-derived microvesicles: two potential therapeutic strategies[J]. Stem Cells Dev, 2016, 25(3):203-213.
49
Ylöstalo JH, Bartosh TJ, Coble K, et al. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype[J]. Stem Cells, 2012, 30(10):2283-2296.
50
Bartosh TJ, Ylöstalo JH, Mohammadipoor A, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties[J]. Proc Natl Acad Sci U S A, 2010, 107(31):13724-13729.
51
Kim M, Yun H, Park DY, et al. Three-dimensional spheroid culture increases exosome secretion from mesenchymal stem cells[J]. Tissue Eng Regen Med, 2018, 15(4):427-436.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[3] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[4] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[5] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[6] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[7] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[8] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[9] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[10] 王娟, 刘晔, 熊威, 蒋财磊, 贺燕, 叶青松. 间充质干细胞缓解阿尔茨海默病氧化应激的新思路[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 93-106.
[11] 梁国豪, 张茜, 张研. 间充质干细胞及其衍生物治疗高原低氧环境下心血管疾病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 107-112.
[12] 景水力, 王娟, 刘晔, 周亨, 熊威, 叶青松. 间充质干细胞在脊髓损伤中的应用及研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 113-121.
[13] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[14] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?