52 |
Bhang SH, Lee S, Shin J, et al. Transplantation of cord blood mesenchymal stem cells as spheroids enhances vascularization[J]. Tissue Eng Part A, 2012, 18(19-20):2138-2147.
|
53 |
Chen L, Wang H, Huang C. Modulation of inherent niches in 3D multicellular MSC spheroids reconfigures metabolism and enhances therapeutic potential[J]. Cells, 2021, 10 (10):2747. doi: 10.3390/cells10102747.
|
54 |
Li P, Liu F, Wu C, et al. Feasibility of human hair follicle-derived mesenchymal stem cells/ CultiSpher®-G constructs in regenerative medicine[J]. Cell Tissue Res, 2015, 362(1): 69-86.
|
55 |
Thitiset T, Damrongsakkul S, Yodmuang S, et al. A novel gelatin/ chitooligosaccharide/demineralized bone matrix composite scaffold and periosteum-derived mesenchymal stem cells for bone tissue engineering[J]. Biomater Res, 2021, 25(1):19. doi: 10.1186/s40824-021-00220-y.
|
56 |
Timmins NE, Kiel M, Gunther M, et al. Closed system isolation and scalable expansion of human placental mesenchymal stem cells[J]. Biotechnol Bioeng, 2012, 109(7):1817-1826.
|
57 |
Barry F, Murphy M. Mesenchymal stem cells in joint disease and repair[J]. Nat Rev Rheumatol, 2013, 9(10):584-594.
|
58 |
Rafiq QA, Twomey K, Kulik M, et al. Developing an automated robotic factory for novel stem cell therapy production[J]. Regen Med, 2016, 11(4):351-354.
|
1 |
Mckee C, Chaudhry GR. Advances and challenges in stem cell culture[J]. Colloids Surf B Biointerfaces, 2017, 159:62-77.
|
2 |
Mizukami A, Swiech K. Mesenchymal stromal cells: from discovery to manufacturing and commercialization[J]. Stem Cells Int, 2018, 2018:4083921. doi: 10.1155/2018/4083921.
|
3 |
Wu X, Su J, Wei J, et al. Recent advances in three-dimensional stem cell culture systems and applications[J]. Stem Cells Int, 2021, 2021:9477332. doi: 10.1155/2021/9477332.
|
4 |
Lambrechts T, Sonnaert M, Schrooten J, et al. Large-scale mesenchymal stem/stromal cell expansion: a visualization tool for bioprocess comparison[J]. Tissue Eng Part B Rev, 2016, 22(6):485-498.
|
5 |
Kumar A, Starly B. Large scale industrialized cell expansion: producing the critical raw material for biofabrication processes[J]. Biofabrication, 2015, 7(4):44103. doi: 10.1088/1758-5090/7/4/044103.
|
6 |
Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1):68. doi: 10.1186/s13287-019-1165-5.
|
7 |
Zhou BO, Yue R, Murphy MM, et al. Leptin-receptor-expressing mesenchymal stromal cells represent the main source of bone formed by adult bone marrow[J]. Cell Stem Cell, 2014, 15(2):154-168.
|
8 |
Shi Y, Wang Y, Li Q, et al. Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases[J]. Nat Rev Nephrol, 2018, 14(8):493-507.
|
9 |
Kang JY, Oh M, Joo H, et al. Xeno-free condition enhances therapeutic functions of human Wharton’s Jelly-derived mesenchymal stem cells against experimental colitis by upregulated indoleamine 2,3-dioxygenase activity[J]. J Clin Med, 2020, 9(9):2913. doi: 10.3390/jcm9092913.
|
10 |
Wu X, Wu D, Mu Y, et al. Serum-free medium enhances the therapeutic effects of umbilcal cord mesenchymal stromal cells on a murine model for acute colitis[J]. Front Bioeng Biotechnol, 2020, 8:586. doi: 10.3389/fbioe.2020.00586.
|
11 |
Sagaradze G, Grigorieva O, Nimiritsky P, et al. Conditioned medium from human mesenchymal stromal cells: towards the clinical translation[J]. Int J Mol Sci, 2019, 20(7):1656. doi: 10.3390/ijms20071656.
|
12 |
Lee M, Youn C, Kim J, et al. Enhanced cell growth of adipocyte-derived mesenchymal stem cells using chemically-defined serum-free media[J]. Int J Mol Sci, 2017, 18(8):1779. doi: 10.3390/ijms18081779.
|
13 |
Egger D, Lavrentieva A, Kugelmeier P, et al. Physiologic isolation and expansion of human mesenchymal stem/stromal cells for manufacturing of cell-based therapy products[J]. Eng Life Sci, 2022, 22(3-4):361-372.
|
14 |
Kropp C, Massai D, Zweigerdt R. Progress and challenges in large-scale expansion of human pluripotent stem cells[J]. Process Biochemistry, 2017, 59:244-254.
|
15 |
Ratcliffe E, Thomas RJ, Williams DJ. Current understanding and challenges in bioprocessing of stem cell-based therapies for regenerative medicine[J]. Br Med Bull, 2011, 100:137-155.
|
16 |
Rowley JA, Abraham E, Campbell A, et al. Meeting lot-size challenges of manufacturing adherent cells for therapy[J]. Bioprocess International, 2012, 10(3):16-22.
|
17 |
Mareschi K, Rustichelli D, Calabrese R, et al. Multipotent mesenchymal stromal stem cell expansion by plating whole bone marrow at a low cellular density: a more advantageous method for clinical use[J]. Stem Cells Int, 2012, 2012:920581. doi: 10.1155/2012/920581.
|
18 |
van den Bos C, Keefe R, Schirmaier C, et al. Therapeutic human cells: manufacture for cell therapy/ regenerative medicine[J]. Adv Biochem Eng Biotechnol, 2014, 138:61-97.
|
19 |
Li Y, Guo G, Li L, et al. Three-dimensional spheroid culture of human umbilical cord mesenchymal stem cells promotes cell yield and stemness maintenance[J]. Cell Tissue Res, 2015, 360(2):297-307.
|
20 |
Petrenko Y, Syková E, Kubinová Š. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids[J]. Stem Cell Res Ther, 2017, 8(1):94. doi: 10.1186/s13287-017-0558-6.
|
21 |
Tavassoli H, Alhosseini SN, Tay A, et al. Large-scale production of stem cells utilizing microcarriers: a biomaterials engineering perspective from academic research to commercialized products[J]. Biomaterials, 2018, 181:333-346.
|
22 |
Qasim A Rafiq K C A C. Scale-up of human mesenchymal stem cell culture: current technologies and future challenges Qasim A Rafiq, Karen Coopman and Christopher J Hewitt[J]. Current Opinion in Chemical Engineering, 2013, 2(1):8-16.
|
23 |
Leslie SK, Kinney RC, Schwartz Z, et al. Microencapsulation of stem cells for therapy[J]. Methods Mol Biol, 2017, 1479:251-259.
|
24 |
Hernández RM, Orive G, Murua A, et al. Microcapsules and microcarriers for in situ cell delivery[J]. Adv Drug Deliv Rev, 2010, 62(7-8):711-730.
|
25 |
Mao AS, Shin J, Utech S, et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery[J]. Nat Mater, 2017, 16(2):236-243.
|
26 |
Wilson JL, Mcdevitt TC. Stem cell microencapsulation for phenotypic control, bioprocessing, and transplantation[J]. Biotechnol Bioeng, 2013, 110 (3):667-682.
|
27 |
Kim W, Gwon Y, Park S, et al. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration[J]. Bioact Mater, 2022, 19:50-74.
|
28 |
Cesarz Z, Tamama K. Spheroid culture of mesenchymal stem cells[J]. Stem Cells Int, 2016, 2016:9176357. doi: 10.1155/2016/9176357.
|
29 |
Cheng N, Wang S, Young T. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities[J]. Biomaterials, 2012, 33 (6):1748-1758.
|
30 |
Jiang B, Yan L, Miao Z, et al. Spheroidal formation preserves human stem cells for prolonged time under ambient conditions for facile storage and transportation[J]. Biomaterials, 2017, 133:275-286.
|
31 |
Jyothilekshmi I, Jayaprakash NS. Trends in monoclonal antibody production using various bioreactor syst[J]. J Microbiol Biotechnol, 2021, 31(3):349-357.
|
32 |
Lam AT, Lee AP, Jayaraman P, et al. Multiomics analyses of cytokines, genes, miRNA, and regulatory networks in human mesenchymal stem cells expanded in stirred microcarrier-spinner cultures[J]. Stem Cell Res, 2021, 53:102272. doi: 10.1016/j.scr.2021.102272.
|
33 |
Zhang J, Peng Y, Guo M, et al. Large-scale expansion of human umbilical cord-derived mesenchymal stem cells in a stirred suspension bioreactor enabled by computational fluid dynamics modeling[J]. Bioengineering, 2022, 9(7):274. doi: 10.3390/bioengineering9070274.
|
34 |
Frank ND, Jones ME, Vang B, et al. Evaluation of reagents used to coat the hollow-fiber bioreactor membrane of the Quantum® Cell Expansion System for the culture of human mesenchymal stem cells[J]. Mater Sci Eng C Mater Biol Appl, 2019, 96:77-85.
|
35 |
Zhang Y, Na T, Zhang K, et al. GMP-grade microcarrier and automated closed industrial scale cell production platform for culture of MSCs[J]. J Tissue Eng Regen Med, 2022, 16(10):934-944.
|
36 |
Bou-Ghannam S, Kim K, Grainger DW, et al. 3D cell sheet structure augments mesenchymal stem cell cytokine production[J]. Sci Rep, 2021, 11(1):8170. doi: 10.1038/s41598-021-87571-7.
|
37 |
Li J, Peng Q, Yang R, et al. Application of mesenchymal stem cells during machine perfusion:an emerging novel strategy for organ preservation[J]. Front Immunol, 2021, 12:713920. doi: 10.3389/fimmu.2021.713920.
|
38 |
Yue R, Lu S, Luo Y,et al. Mesenchymal stem cell-derived exosomal microrna-182-5p alleviates myocardial ischemia/reperfusion injury by targeting gsdmd in mice[J]. Cell Death Discov, 2022, 8(1):202. doi: 10.1038/s41420-022-00909-6.
|
39 |
Bang C, Thum T. Exosomes: New players in cell-cell communication[J]. Int J Biochem Cell Biol, 2012, 44(11):2060-2064.
|
40 |
Cao J, Wang B, Tang T, et al. Three-dimensional culture of MSCs produces exosomes with improved yield and enhanced therapeutic efficacy for cisplatin-induced acute kidney injury[J]. Stem Cell Res Ther, 2020, 11(1):206. doi: 10.1186/s13287-020-01719-2.
|
41 |
Yan L, Wu X. Exosomes produced from 3D cultures of umbilical cord mesenchymal stem cells in a hollow-fiber bioreactor show improved osteochondral regeneration activity[J]. Cell Biol Toxicol, 2020, 36(2):165-178.
|
42 |
Haraszti RA, Miller R, Stoppato M, et al. Exosomes produced from 3D cultures of MSCs by tangential flow filtration show higher yield and improved activity[J]. Mol Ther, 2018, 26(12):2838-2847.
|
43 |
Yan X, Zhang K, Yang Y, et al. Dispersible and dissolvable porous microcarrier tablets enable efficient large-scale human mesenchymal stem cell expansion[J]. Tissue Eng Part C Methods, 2020, 26(5):263-275.
|
44 |
Nikolits I, Radwan S, Liebner F, et al. Hydrogels from TEMPO- Oxidized nanofibrillated cellulose supportin vitro cultivation of encapsulated human mesenchymal stem cells[J]. ACS Appl Bio Mater, 2023, 6(2):543-551.
|
45 |
Nebel S, Lux M, Kuth S, et al. Alginate core-shell capsules for 3D cultivation of adipose-derived mesenchymal stem cells[J]. Bioengineering, 2022, 9(2):66. doi: 10.3390/bioengineering9020066.
|
46 |
Yuan Y, Kallos MS, Hunter C, et al. Improved expansion of human bone marrow-derived mesenchymal stem cells in microcarrier-based suspension culture[J]. J Tissue Eng Regen Med, 2014, 8(3):210-225.
|
47 |
Huang S, Chou D, Chang Y, et al. Development of a pneumatically driven active cover lid for multi-well microplates for use in perfusion three-dimensional cell culture[J]. Sci Rep, 2015, 5:18352. doi: 10.1038/srep18352.
|
48 |
Xie L, Mao M, Zhou L, et al. Spheroid mesenchymal stem cells and mesenchymal stem cell-derived microvesicles: two potential therapeutic strategies[J]. Stem Cells Dev, 2016, 25(3):203-213.
|
49 |
Ylöstalo JH, Bartosh TJ, Coble K, et al. Human mesenchymal stem/stromal cells cultured as spheroids are self-activated to produce prostaglandin E2 that directs stimulated macrophages into an anti-inflammatory phenotype[J]. Stem Cells, 2012, 30(10):2283-2296.
|
50 |
Bartosh TJ, Ylöstalo JH, Mohammadipoor A, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties[J]. Proc Natl Acad Sci U S A, 2010, 107(31):13724-13729.
|
51 |
Kim M, Yun H, Park DY, et al. Three-dimensional spheroid culture increases exosome secretion from mesenchymal stem cells[J]. Tissue Eng Regen Med, 2018, 15(4):427-436.
|