1 |
Chargaff E, West R. The biological significance of the thromboplastic protein of blood[J]. J Biol Chem, 1946, 166(1):189-197.
|
2 |
Couch Y, Buzàs EI, Di Vizio D, et al. A brief history of nearly EV-erything - The rise and rise of extracellular vesicles[J]. J Extracell Vesicles, 2021, 10(14):e12144. doi: 10.1002/jev2.12144.
|
3 |
Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles[J]. Nat Rev Drug Discov, 2022, 21(5):379-399.
|
4 |
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1):1535750. doi: 10.1080/20013078.2018.1535750.
|
5 |
EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013, 12(5):347-357.
|
6 |
He C, Zheng S, Luo Y, et al. Exosome theranostics: biology and translational medicine[J]. Theranostics, 2018, 8(1):237-255.
|
7 |
Tofiño-Vian M, Guillén MI, Pérez Del Caz MD, et al. Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes[J]. Cell Physiol Biochem, 2018, 47(1):11-25.
|
8 |
Li X, Liao J, Su X, et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1[J]. Theranostics, 2020, 10(21):9561-9578.
|
9 |
Ding M, Shen Y, Wang P, et al. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer's disease[J]. Neurochem Res, 2018, 43(11):2165-2177.
|
10 |
Zhang C, Zhu Z, Gao J, et al. Plasma exosomal miR-375-3p regulates mitochondria-dependent keratinocyte apoptosis by targeting XIAP in severe drug-induced skin reactions[J]. Sci Transl Med, 2020, 12(574):eaaw6142. doi: 10.1126/scitranslmed.aaw6142.
|
11 |
Neviani P, Wise PM, Murtadha M, et al. Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms[J]. Cancer Res, 2019, 79(6):1151-1164.
|
12 |
Luan X, Sansanaphongpricha K, Myers I, et al. Engineering exosomes as refined biological nanoplatforms for drug delivery[J]. Acta Pharmacol Sin, 2017, 38(6):754-763.
|
13 |
Toh WS, Lai RC, Hui J HP, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment[J]. Semin Cell Dev Biol, 2017, 67:56-64.
|
14 |
Elsharkasy OM, Nordin JZ, Hagey DW, et al. Extracellular vesicles as drug delivery systems: Why and how?[J]. Adv Drug Deliv Rev, 2020, 159:332-343.
|
15 |
Lu Y, Mai Z, Cui L, et al. Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration[J]. Stem Cell Res Ther, 2023, 14(1):55. doi: 10.1186/s13287-023-03275-x.
|
16 |
Prada I, Amin L, Furlan R, et al. A new approach to follow a single extracellular vesicle-cell interaction using optical tweezers[J]. Biotechniques, 2016, 60(1):35-41.
|
17 |
Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. doi: 10.1126/science.aau6977.
|
18 |
Armstrong JP, Holme MN, Stevens MM. Re-engineering extracellular vesicles as smart nanoscale therapeutics[J]. ACS Nano, 2017, 11(1):69-83.
|
19 |
Moloudizargari M, Asghari MH, Goel A. The therapeutic triad of extracellular vesicles: As drug targets, as drugs, and as drug carriers[J]. Biochem Pharmacol, 2021, 192:114714. doi: 10.1016/j.bcp.2021.114714.
|
20 |
Pan Z, Sun W, Chen Y, et al. Extracellular vesicles in tissue engineering: biology and engineered strategy[J]. Adv Healthc Mater, 2022, 11(21):e2201384. doi: 10.1002/adhm.202201384.
|
21 |
Ni Z, Zhou S, Li S, et al. Exosomes: roles and therapeutic potential in osteoarthritis[J]. Bone Res, 2020, 8:25. doi: 10.1038/s41413-020-0100-9.
|
22 |
Smyth T, Kullberg M, Malik N, et al. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes[J]. J Control Release, 2015, 199:145-155.
|
23 |
Li S, Stöckl S, Lukas C, et al. Curcumin-primed human BMSC-derived extracellular vesicles reverse IL-1β-induced catabolic responses of OA chondrocytes by upregulating miR-126-3p[J]. Stem Cell Res Ther, 2021, 12(1):252. doi: 10.1186/s13287-021-02317-6.
|
24 |
Liu Y, Zhang Z, Wang B, et al. Inflammation-stimulated MSC-derived small extracellular vesicle miR-27b-3p regulates macrophages by targeting CSF-1 to promote temporomandibular joint condylar regeneration[J]. Small, 2022, 18(16):e2107354. doi: 10.1002/smll.202107354.
|
25 |
Zhuang Y, Zhao Z, Cheng M, et al. HIF-1α regulates osteogenesis of periosteum-derived stem cells under hypoxia conditions via modulating POSTN expression[J]. Front Cell Dev Biol, 2022, 10:836285. doi: 10.3389/fcell.2022.836285.
|
26 |
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1):47. doi: 10.1186/s12974-020-1726-7.
|
27 |
Wan S, Bao D, Li J, et al. Extracellular vesicles from hypoxic pretreated urine-derived stem cells enhance the proliferation and migration of chondrocytes by delivering miR-26a-5p[J]. Cartilage, 2022, 13(2):19476035221077401. doi: 10.1177/19476035221077401.
|
28 |
Gao Y, Yuan Z, Yuan X, et al. Bioinspired porous microspheres for sustained hypoxic exosomes release and vascularized bone regeneration[J]. Bioact Mater, 2022, 14:377-388.
|
29 |
Shtam TA, Kovalev RA, Varfolomeeva EY, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro[J]. Cell Commun Signal, 2013, 11:88. doi: 10.1186/1478-811X-11-88.
|
30 |
Liu Y, Zeng Y, Si HB, et al. Exosomes derived from human urine-derived stem cells overexpressing miR-140-5p alleviate knee osteoarthritis through downregulation of VEGFA in a rat model[J]. Am J Sports Med, 2022, 50(4):1088-1105.
|
31 |
Vader P, Mol EA, Pasterkamp G, et al. Extracellular vesicles for drug delivery[J]. Adv Drug Deliv Rev, 2016, 106(Pt A):148-156.
|
32 |
Fuhrmann G, Serio A, Mazo M, et al. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins[J]. J Control Release, 2015, 205:35-44.
|
33 |
Li S, Liu J, Liu S, et al. Chitosan oligosaccharides packaged into rat adipose mesenchymal stem cells-derived extracellular vesicles facilitating cartilage injury repair and alleviating osteoarthritis[J]. J Nanobiotechnology, 2021, 19(1):343. doi: 10.1186/s12951-021-01086-x.
|
34 |
Pomatto MaC, Bussolati B, D'antico S, et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs[J]. Mol Ther Methods Clin Dev, 2019, 13:133-144.
|
35 |
Guo S, Perets N, Betzer O, et al. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury[J]. ACS Nano, 2019, 13(9):10015-10028.
|
36 |
He R, Jiang Y, Shi Y, et al. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis[J]. Mater Sci Eng C Mater Biol Appl, 2020, 117:111314. doi: 10.1016/j.msec.2020.111314.
|
37 |
Zhu Q, Ling X, Yang Y, et al. Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy[J]. Adv Sci (Weinh), 2019, 6(6): 1801899. doi: 10.1002/advs.201801899.
|
38 |
Yang Z, Xie J, Zhu J, et al. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation[J]. J Control Release, 2016, 243:160-171.
|
39 |
Cheng J, Sun Y, Ma Y, et al. Engineering of MSC-derived exosomes: a promising cell-free therapy for osteoarthritis[J]. Membranes (Basel), 2022, 12(8):739. doi: 10.3390/membranes12080739.
|
40 |
Naseri Z, Oskuee RK, Jaafari MR, et al. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo[J]. Int J Nanomedicine, 2018, 13:7727-7747.
|
41 |
Xu X, Liang Y, Li X, et al. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration[J]. Biomaterials, 2021, 269:120539. doi: 10.1016/j.biomaterials.2020.120539.
|
42 |
Hood JL, Scott MJ, Wickline SA. Maximizing exosome colloidal stability following electroporation[J]. Anal Biochem, 2014, 448:41-49.
|
43 |
Mishra A, Singh P, Qayoom I, et al. Current strategies in tailoring methods for engineered exosomes and future avenues in biomedical applications[J]. J Mater Chem B, 2021, 9(32):6281-6309.
|
44 |
Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanomedicine, 2016, 12(3):655-664.
|
45 |
Yang X, Xie B, Peng H, et al. Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes[J]. J Control Release, 2021, 329:454-467.
|
46 |
Luo ZW, Li FX, Liu YW, et al. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration[J]. Nanoscale, 2019, 11(43):20884-20892.
|
47 |
Hu Y, Li X, Zhang Q, et al. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss[J]. Bioact Mater, 2021, 6(9):2905-2913.
|
48 |
Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150:137-149.
|
49 |
Feng K, Xie X, Yuan J, et al. Reversing the surface charge of MSC-derived small extracellular vesicles by εPL-PEG-DSPE for enhanced osteoarthritis treatment[J]. J Extracell Vesicles, 2021, 10(13):e12160. doi: 10.1002/jev2.12160.
|
50 |
Liang Y, Iqbal Z, Lu J, et al. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering[J]. Mol Ther, 2023, 31(5):1207-1224.
|
51 |
Liu Y, Luo J, Chen X, et al. Cell membrane coating technology: a promising strategy for biomedical applications[J]. Nanomicro Lett, 2019, 11(1):100. doi: 10.1007/s40820-019-0330-9.
|
52 |
Han Q, Xie QR, Li F, et al. Targeted inhibition of SIRT6 via engineered exosomes impairs tumorigenesis and metastasis in prostate cancer[J]. Theranostics, 2021, 11(13):6526-6541.
|
53 |
Zhang J, Ji C, Zhang H, et al. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy[J]. Sci Adv, 2022, 8(2):eabj8207. doi: 10.1126/sciadv.abj8207.
|
54 |
Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine[J]. Cells, 2021, 10(8):1959. doi: 10.3390/cells10081959.
|
55 |
|
56 |
Liang Y, Wu JH, Zhu JH, et al. Exosomes secreted by hypoxia-pre-conditioned adipose-derived mesenchymal stem cells reduce neuronal apoptosis in rats with spinal cord injury[J]. J Neurotrauma, 2022, 39(9-10):701-714.
|
57 |
Deng S, Cao H, Cui X, et al. Optimization of exosome-based cell-free strategies to enhance endogenous cell functions in tissue regeneration[J]. Acta Biomater, 2023, 171:68-84.
|
58 |
Cui Y, Hong S, Xia Y, et al. Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy[J]. Adv Sci (Weinh), 2023, 10(27):e2302029. doi: 10.1002/advs.202302029.
|
59 |
Park J, Lee JH, Yoon BS, et al. Additive effect of bFGF and selenium on expansion and paracrine action of human amniotic fluid-derived mesenchymal stem cells[J]. Stem Cell Res Ther, 2018, 9(1):293. doi: 10.1186/s13287-018-1058-z.
|
60 |
Heo JS. Selenium-stimulated exosomes enhance wound healing by modulating inflammation and angiogenesis[J]. Int J Mol Sci, 2022, 23(19):11543. doi: 10.3390/ijms231911543.
|
61 |
Yao Y, Jiang Y, Song J, et al. Exosomes as potential functional nanomaterials for tissue engineering[J]. Adv Healthc Mater, 2023, 12(16):e2201989. doi: 10.1002/adhm.202201989.
|
62 |
Macher M, Platzman I, Spatz JP. Bottom-up assembly of bioinspired, fully synthetic extracellular vesicles[J]. Methods Mol Biol, 2023, 2654: 263-276.
|