切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (06) : 363 -369. doi: 10.3877/cma.j.issn.2095-1221.2023.06.006

综述

工程化小细胞外囊泡的制备方法和应用前景
付爽1, 刘语菲1, 周洁1, 周振宇2, 王淑芳1,()   
  1. 1. 300071 天津,南开大学生命科学学院生物活性材料教育部重点实验室
    2. 250031 济南,中国人民解放军联勤保障部队第九六〇医院骨科
  • 收稿日期:2023-08-25 出版日期:2023-12-01
  • 通信作者: 王淑芳
  • 基金资助:
    科技部重大专项(2020YFA0803701); 天津市科技计划项目(22JCZDJC00470); 济南市临床医学科技创新计划(202225066)

Preparation method and applicative prospect of engineered sEVs

Shuang Fu1, Yufei Liu1, Jie Zhou1, Zhenyu Zhou2, Shufang Wang1,()   

  1. 1. Key Laboratory of Bioactive Materials for the Ministry of Education College of Life Sciences, Nankai University, Tianjin 300071, China
    2. Department of Orthopedics, the 960th Hospital of the PLA Joint Logistics Support Force, Jinan 250031, China
  • Received:2023-08-25 Published:2023-12-01
  • Corresponding author: Shufang Wang
引用本文:

付爽, 刘语菲, 周洁, 周振宇, 王淑芳. 工程化小细胞外囊泡的制备方法和应用前景[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 363-369.

Shuang Fu, Yufei Liu, Jie Zhou, Zhenyu Zhou, Shufang Wang. Preparation method and applicative prospect of engineered sEVs[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(06): 363-369.

小细胞外囊泡(sEVs)凭借优异的生物相容性、固有稳定性以及低免疫原性,被认为是理想的天然纳米药物递送系统。基于天然sEVs的局限性,工程化sEVs的构建旨在通过负载药物等手段提高其内容物质量和靶向特异性,使sEVs具有更强的药物递送效率,从而最大限度地提高治疗效果。当前的研究已经证实工程化sEVs在生物医学领域和临床应用上表现出极大的潜力。本文重点综述了国内外工程化sEVs制备策略的最新研究成果及其应用前景,针对亲本细胞和sEVs的直接修饰方法进行总结分类并通过举例比较不同方法之间的优缺点;阐述了工程化sEVs在肿瘤、神经系统疾病和组织再生领域的研究进展;评估现阶段工程化sEVs在制备过程中所面临的问题和未来的发展机遇。

Small extracellular vesicles (sEVs) have been considered an ideal natural nano-drug delivery system due to their excellent biocompatibility, inherent stability and low immunogenicity. Based on natural sEVs' limitations, engineered sEVs' construction aims to improve the quality of their contents and target specificity by loading drugs so that sEVs have stronger drug delivery efficiency, thereby maximizing the therapeutic effect. Current studies have confirmed that engineered sEVs have great potential in the biomedical field and clinical applications. This paper focuses on the latest research results and application prospects of the preparation strategies of engineered sEVs at home and abroad. The direct modification methods of parental cells and sEVs were summarized and classified, and the advantages and disadvantages of different methods were compared by examples. The research progress of engineered sEVs of tumors, nervous system diseases and tissue regeneration is described. The problems faced in the preparation of engineered sEVs at the present stage and their development opportunities in the future are evaluated.

图1 EVs的生物学功能[17]注:EVs携带多种生物分子,如核酸(DNA和RNA)、蛋白质(HSP70、HSP90、ALIX和TSG101)、氨基酸和代谢物等。此外,还有一些跨膜蛋白(CD81、CD9、CD63、Flotillin-1)和脂质(胆固醇)。基于这些活性物质,细胞可通过EVs进行细胞间传递信息和物质交换,从而实现多种生物学功能如调控基因转录和翻译、细胞的存活和增殖、血管生成和伤口愈合、废物管理、宿主-微生物相互作用与病毒免疫、平衡免疫应答,调节中枢和外周免疫、受体-配体信号转导、细胞凋亡、细胞分化和瘤变、细胞迁移和转移性疾病、代谢重编程和调节等
图2 EVs在组织再生领域的工程化设计策略[20]注:a图为通过慢病毒转染或电穿孔对亲本细胞进行基因修饰,以上调某些内容物的分泌(miRNAs、细胞因子等)。因此,衍生的EVs将携带可促进组织修复的特定内容物。b图为外部刺激(缺氧、添加NO、促炎性刺激等)作用于亲本细胞也会对分泌的EVs产生间接影响。将供体细胞预分化培养成定向谱系也可提高EVs的再生潜能。c图为EVs逐层纯化的工程化思路。首先,从EVs混合物中分离外泌体,然后确认在组织工程中具有更强功能的特定内容物。d图为利用3D培养和生物反应器优化亲本细胞的培养环境。可以通过监测和控制培养参数来提高EVs的可扩展性和一致性
图3 EV s在组织工程中的应用[61]注:EVs在组织工程中的给药方式包括注射给药、鼻腔给药以及口服给药等。在心脏再生领域中,间充质干细胞来源的EVs被广泛应用,如心脏贴片。同时在肾脏疾病中,EVs也是有潜力的治疗策略。在中枢神经系统疾病中,由于EVs可跨越血脑屏障,EVs作为药物递送系统用于疾病的治疗。此外,在牙髓再生领域,主要用于治疗的是人牙髓间充质干细胞来源的EVs。在骨再生和软骨再生领域中,EVs通过携带的蛋白质和miRNA介导细胞间通讯,从而发挥抗炎和保护软骨等作用
1
Chargaff E, West R. The biological significance of the thromboplastic protein of blood[J]. J Biol Chem, 1946, 166(1):189-197.
2
Couch Y, Buzàs EI, Di Vizio D, et al. A brief history of nearly EV-erything - The rise and rise of extracellular vesicles[J]. J Extracell Vesicles, 2021, 10(14):e12144. doi: 10.1002/jev2.12144.
3
Cheng L, Hill AF. Therapeutically harnessing extracellular vesicles[J]. Nat Rev Drug Discov, 2022, 21(5):379-399.
4
Théry C, Witwer KW, Aikawa E, et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines[J]. J Extracell Vesicles, 2018, 7(1):1535750. doi: 10.1080/20013078.2018.1535750.
5
EL Andaloussi S, Mäger I, Breakefield XO, et al. Extracellular vesicles: biology and emerging therapeutic opportunities[J]. Nat Rev Drug Discov, 2013, 12(5):347-357.
6
He C, Zheng S, Luo Y, et al. Exosome theranostics: biology and translational medicine[J]. Theranostics, 2018, 8(1):237-255.
7
Tofiño-Vian M, Guillén MI, Pérez Del Caz MD, et al. Microvesicles from human adipose tissue-derived mesenchymal stem cells as a new protective strategy in osteoarthritic chondrocytes[J]. Cell Physiol Biochem, 2018, 47(1):11-25.
8
Li X, Liao J, Su X, et al. Human urine-derived stem cells protect against renal ischemia/reperfusion injury in a rat model via exosomal miR-146a-5p which targets IRAK1[J]. Theranostics, 2020, 10(21):9561-9578.
9
Ding M, Shen Y, Wang P, et al. Exosomes isolated from human umbilical cord mesenchymal stem cells alleviate neuroinflammation and reduce amyloid-beta deposition by modulating microglial activation in Alzheimer's disease[J]. Neurochem Res, 2018, 43(11):2165-2177.
10
Zhang C, Zhu Z, Gao J, et al. Plasma exosomal miR-375-3p regulates mitochondria-dependent keratinocyte apoptosis by targeting XIAP in severe drug-induced skin reactions[J]. Sci Transl Med, 2020, 12(574):eaaw6142. doi: 10.1126/scitranslmed.aaw6142.
11
Neviani P, Wise PM, Murtadha M, et al. Natural killer-derived exosomal miR-186 inhibits neuroblastoma growth and immune escape mechanisms[J]. Cancer Res, 2019, 79(6):1151-1164.
12
Luan X, Sansanaphongpricha K, Myers I, et al. Engineering exosomes as refined biological nanoplatforms for drug delivery[J]. Acta Pharmacol Sin, 2017, 38(6):754-763.
13
Toh WS, Lai RC, Hui J HP, et al. MSC exosome as a cell-free MSC therapy for cartilage regeneration: Implications for osteoarthritis treatment[J]. Semin Cell Dev Biol, 2017, 67:56-64.
14
Elsharkasy OM, Nordin JZ, Hagey DW, et al. Extracellular vesicles as drug delivery systems: Why and how?[J]. Adv Drug Deliv Rev, 2020, 159:332-343.
15
Lu Y, Mai Z, Cui L, et al. Engineering exosomes and biomaterial-assisted exosomes as therapeutic carriers for bone regeneration[J]. Stem Cell Res Ther, 2023, 14(1):55. doi: 10.1186/s13287-023-03275-x.
16
Prada I, Amin L, Furlan R, et al. A new approach to follow a single extracellular vesicle-cell interaction using optical tweezers[J]. Biotechniques, 2016, 60(1):35-41.
17
Kalluri R, Lebleu VS. The biology, function, and biomedical applications of exosomes[J]. Science, 2020, 367(6478):eaau6977. doi: 10.1126/science.aau6977.
18
Armstrong JP, Holme MN, Stevens MM. Re-engineering extracellular vesicles as smart nanoscale therapeutics[J]. ACS Nano, 2017, 11(1):69-83.
19
Moloudizargari M, Asghari MH, Goel A. The therapeutic triad of extracellular vesicles: As drug targets, as drugs, and as drug carriers[J]. Biochem Pharmacol, 2021, 192:114714. doi: 10.1016/j.bcp.2021.114714.
20
Pan Z, Sun W, Chen Y, et al. Extracellular vesicles in tissue engineering: biology and engineered strategy[J]. Adv Healthc Mater, 2022, 11(21):e2201384. doi: 10.1002/adhm.202201384.
21
Ni Z, Zhou S, Li S, et al. Exosomes: roles and therapeutic potential in osteoarthritis[J]. Bone Res, 2020, 8:25. doi: 10.1038/s41413-020-0100-9.
22
Smyth T, Kullberg M, Malik N, et al. Biodistribution and delivery efficiency of unmodified tumor-derived exosomes[J]. J Control Release, 2015, 199:145-155.
23
Li S, Stöckl S, Lukas C, et al. Curcumin-primed human BMSC-derived extracellular vesicles reverse IL-1β-induced catabolic responses of OA chondrocytes by upregulating miR-126-3p[J]. Stem Cell Res Ther, 2021, 12(1):252. doi: 10.1186/s13287-021-02317-6.
24
Liu Y, Zhang Z, Wang B, et al. Inflammation-stimulated MSC-derived small extracellular vesicle miR-27b-3p regulates macrophages by targeting CSF-1 to promote temporomandibular joint condylar regeneration[J]. Small, 2022, 18(16):e2107354. doi: 10.1002/smll.202107354.
25
Zhuang Y, Zhao Z, Cheng M, et al. HIF-1α regulates osteogenesis of periosteum-derived stem cells under hypoxia conditions via modulating POSTN expression[J]. Front Cell Dev Biol, 2022, 10:836285. doi: 10.3389/fcell.2022.836285.
26
Liu W, Rong Y, Wang J, et al. Exosome-shuttled miR-216a-5p from hypoxic preconditioned mesenchymal stem cells repair traumatic spinal cord injury by shifting microglial M1/M2 polarization[J]. J Neuroinflammation, 2020, 17(1):47. doi: 10.1186/s12974-020-1726-7.
27
Wan S, Bao D, Li J, et al. Extracellular vesicles from hypoxic pretreated urine-derived stem cells enhance the proliferation and migration of chondrocytes by delivering miR-26a-5p[J]. Cartilage, 2022, 13(2):19476035221077401. doi: 10.1177/19476035221077401.
28
Gao Y, Yuan Z, Yuan X, et al. Bioinspired porous microspheres for sustained hypoxic exosomes release and vascularized bone regeneration[J]. Bioact Mater, 2022, 14:377-388.
29
Shtam TA, Kovalev RA, Varfolomeeva EY, et al. Exosomes are natural carriers of exogenous siRNA to human cells in vitro[J]. Cell Commun Signal, 2013, 11:88. doi: 10.1186/1478-811X-11-88.
30
Liu Y, Zeng Y, Si HB, et al. Exosomes derived from human urine-derived stem cells overexpressing miR-140-5p alleviate knee osteoarthritis through downregulation of VEGFA in a rat model[J]. Am J Sports Med, 2022, 50(4):1088-1105.
31
Vader P, Mol EA, Pasterkamp G, et al. Extracellular vesicles for drug delivery[J]. Adv Drug Deliv Rev, 2016, 106(Pt A):148-156.
32
Fuhrmann G, Serio A, Mazo M, et al. Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins[J]. J Control Release, 2015, 205:35-44.
33
Li S, Liu J, Liu S, et al. Chitosan oligosaccharides packaged into rat adipose mesenchymal stem cells-derived extracellular vesicles facilitating cartilage injury repair and alleviating osteoarthritis[J]. J Nanobiotechnology, 2021, 19(1):343. doi: 10.1186/s12951-021-01086-x.
34
Pomatto MaC, Bussolati B, D'antico S, et al. Improved loading of plasma-derived extracellular vesicles to encapsulate antitumor miRNAs[J]. Mol Ther Methods Clin Dev, 2019, 13:133-144.
35
Guo S, Perets N, Betzer O, et al. Intranasal Delivery of Mesenchymal Stem Cell Derived Exosomes Loaded with Phosphatase and Tensin Homolog siRNA Repairs Complete Spinal Cord Injury[J]. ACS Nano, 2019, 13(9):10015-10028.
36
He R, Jiang Y, Shi Y, et al. Curcumin-laden exosomes target ischemic brain tissue and alleviate cerebral ischemia-reperfusion injury by inhibiting ROS-mediated mitochondrial apoptosis[J]. Mater Sci Eng C Mater Biol Appl, 2020, 117:111314. doi: 10.1016/j.msec.2020.111314.
37
Zhu Q, Ling X, Yang Y, et al. Embryonic stem cells-derived exosomes endowed with targeting properties as chemotherapeutics delivery vehicles for glioblastoma therapy[J]. Adv Sci (Weinh), 2019, 6(6): 1801899. doi: 10.1002/advs.201801899.
38
Yang Z, Xie J, Zhu J, et al. Functional exosome-mimic for delivery of siRNA to cancer: in vitro and in vivo evaluation[J]. J Control Release, 2016, 243:160-171.
39
Cheng J, Sun Y, Ma Y, et al. Engineering of MSC-derived exosomes: a promising cell-free therapy for osteoarthritis[J]. Membranes (Basel), 2022, 12(8):739. doi: 10.3390/membranes12080739.
40
Naseri Z, Oskuee RK, Jaafari MR, et al. Exosome-mediated delivery of functionally active miRNA-142-3p inhibitor reduces tumorigenicity of breast cancer in vitro and in vivo[J]. Int J Nanomedicine, 2018, 13:7727-7747.
41
Xu X, Liang Y, Li X, et al. Exosome-mediated delivery of kartogenin for chondrogenesis of synovial fluid-derived mesenchymal stem cells and cartilage regeneration[J]. Biomaterials, 2021, 269:120539. doi: 10.1016/j.biomaterials.2020.120539.
42
Hood JL, Scott MJ, Wickline SA. Maximizing exosome colloidal stability following electroporation[J]. Anal Biochem, 2014, 448:41-49.
43
Mishra A, Singh P, Qayoom I, et al. Current strategies in tailoring methods for engineered exosomes and future avenues in biomedical applications[J]. J Mater Chem B, 2021, 9(32):6281-6309.
44
Kim MS, Haney MJ, Zhao Y, et al. Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells[J]. Nanomedicine, 2016, 12(3):655-664.
45
Yang X, Xie B, Peng H, et al. Eradicating intracellular MRSA via targeted delivery of lysostaphin and vancomycin with mannose-modified exosomes[J]. J Control Release, 2021, 329:454-467.
46
Luo ZW, Li FX, Liu YW, et al. Aptamer-functionalized exosomes from bone marrow stromal cells target bone to promote bone regeneration[J]. Nanoscale, 2019, 11(43):20884-20892.
47
Hu Y, Li X, Zhang Q, et al. Exosome-guided bone targeted delivery of Antagomir-188 as an anabolic therapy for bone loss[J]. Bioact Mater, 2021, 6(9):2905-2913.
48
Tian T, Zhang HX, He CP, et al. Surface functionalized exosomes as targeted drug delivery vehicles for cerebral ischemia therapy[J]. Biomaterials, 2018, 150:137-149.
49
Feng K, Xie X, Yuan J, et al. Reversing the surface charge of MSC-derived small extracellular vesicles by εPL-PEG-DSPE for enhanced osteoarthritis treatment[J]. J Extracell Vesicles, 2021, 10(13):e12160. doi: 10.1002/jev2.12160.
50
Liang Y, Iqbal Z, Lu J, et al. Cell-derived nanovesicle-mediated drug delivery to the brain: Principles and strategies for vesicle engineering[J]. Mol Ther, 2023, 31(5):1207-1224.
51
Liu Y, Luo J, Chen X, et al. Cell membrane coating technology: a promising strategy for biomedical applications[J]. Nanomicro Lett, 2019, 11(1):100. doi: 10.1007/s40820-019-0330-9.
52
Han Q, Xie QR, Li F, et al. Targeted inhibition of SIRT6 via engineered exosomes impairs tumorigenesis and metastasis in prostate cancer[J]. Theranostics, 2021, 11(13):6526-6541.
53
Zhang J, Ji C, Zhang H, et al. Engineered neutrophil-derived exosome-like vesicles for targeted cancer therapy[J]. Sci Adv, 2022, 8(2):eabj8207. doi: 10.1126/sciadv.abj8207.
54
Hade MD, Suire CN, Suo Z. Mesenchymal stem cell-derived exosomes: applications in regenerative medicine[J]. Cells, 2021, 10(8):1959. doi: 10.3390/cells10081959.
55
Rehman FU, Liu Y, Zheng M, et al. Exosomes based strategies for brain drug delivery[J]. Biomaterials, 2023, 293:121949. doi: 10.1016/j.biomaterials.2022.121949.
56
Liang Y, Wu JH, Zhu JH, et al. Exosomes secreted by hypoxia-pre-conditioned adipose-derived mesenchymal stem cells reduce neuronal apoptosis in rats with spinal cord injury[J]. J Neurotrauma, 2022, 39(9-10):701-714.
57
Deng S, Cao H, Cui X, et al. Optimization of exosome-based cell-free strategies to enhance endogenous cell functions in tissue regeneration[J]. Acta Biomater, 2023, 171:68-84.
58
Cui Y, Hong S, Xia Y, et al. Melatonin engineering M2 macrophage-derived exosomes mediate endoplasmic reticulum stress and immune reprogramming for periodontitis therapy[J]. Adv Sci (Weinh), 2023, 10(27):e2302029. doi: 10.1002/advs.202302029.
59
Park J, Lee JH, Yoon BS, et al. Additive effect of bFGF and selenium on expansion and paracrine action of human amniotic fluid-derived mesenchymal stem cells[J]. Stem Cell Res Ther, 2018, 9(1):293. doi: 10.1186/s13287-018-1058-z.
60
Heo JS. Selenium-stimulated exosomes enhance wound healing by modulating inflammation and angiogenesis[J]. Int J Mol Sci, 2022, 23(19):11543. doi: 10.3390/ijms231911543.
61
Yao Y, Jiang Y, Song J, et al. Exosomes as potential functional nanomaterials for tissue engineering[J]. Adv Healthc Mater, 2023, 12(16):e2201989. doi: 10.1002/adhm.202201989.
62
Macher M, Platzman I, Spatz JP. Bottom-up assembly of bioinspired, fully synthetic extracellular vesicles[J]. Methods Mol Biol, 2023, 2654: 263-276.
[1] 朱晓红, 周诗梦, 朱晓霞, 邹美银. 壳聚糖修饰的聚乳酸-羟基乙酸共聚物纳米颗粒在控制释放抗人类免疫缺陷病毒药物传递中的应用[J]. 中华实验和临床感染病杂志(电子版), 2023, 17(02): 125-132.
[2] 张俊夫, 熊海云, 段剑礼, 李璐婧, 康洋, 庞俊. 基于苯丙氨酸的聚酯酰胺纳米递药系统制备及其体外抗前列腺癌的研究[J]. 中华腔镜泌尿外科杂志(电子版), 2019, 13(04): 221-224.
[3] 刘伟华, 赵宇, 刘仲凤, 吴焕童, 张广吉, 陈志国. 神经干细胞生物制剂治疗中枢神经系统恶性肿瘤的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(01): 59-62.
[4] 曹耿飞, 张海潇, 顾俊鹏, 朱帝文, 鲍应军, 阿斯哈尔·哈斯木, 任伟新. 载药微球栓塞联合索拉非尼治疗不可切除肝癌安全性和疗效[J]. 中华肝脏外科手术学电子杂志, 2021, 10(01): 43-47.
[5] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
[6] 蔡林秀, 解强, 张曦, 高俊, 孔泳. 抗骨质疏松药物不同给药途径研究进展[J]. 中华老年骨科与康复电子杂志, 2022, 08(01): 60-64.
[7] 曹耿飞, 任伟新, 张海潇, 顾俊鹏, 阿斯哈尔·哈斯木. 小粒径载药微球联合信迪利单抗及贝伐珠单抗治疗不可切除肝癌的安全性及疗效分析[J]. 中华介入放射学电子杂志, 2024, 12(01): 45-50.
[8] 曾嘉, 何东风. 介入栓塞材料在肝癌治疗中的研究进展[J]. 中华介入放射学电子杂志, 2023, 11(01): 62-67.
[9] 张晓婷, 张可, 郭镜培, 刘佳妮, 周斌. 搭载达沙替尼的巨噬细胞膜囊泡用于缺血性脑卒中的治疗研究[J]. 中华介入放射学电子杂志, 2022, 10(02): 145-151.
[10] 李臻, 纪坤, 王彩鸿, 宋丽杰, 李鑫, 詹鹏超, 石洋, 韩新巍. DEB-TACE治疗神经内分泌肿瘤肝转移的疗效初探[J]. 中华介入放射学电子杂志, 2021, 09(01): 25-30.
[11] 石钦, 周晨, 刘家成, 黄松江, 杨崇图, 熊斌. 载药栓塞材料在肝癌治疗中的应用[J]. 中华介入放射学电子杂志, 2020, 08(04): 364-369.
[12] 韩建军, 宋金龙, 谢印法, 刘景洲, 徐慧荣, 张昊, 孙元栋, 朱海涛. 载药微球治疗恶性肝脏肿瘤的全程管理[J]. 中华介入放射学电子杂志, 2019, 07(01): 7-16.
[13] 徐新建, 滕飞, 杜洪涛. 伊立替康载药微球治疗结肠癌肝转移瘤的系统评价[J]. 中华介入放射学电子杂志, 2017, 05(04): 273-281.
[14] 卜智斌, 叶萌, 洪丽杰, 姜鹏涛, 莫自楷. 超声介导的载药微泡对裸鼠卵巢癌皮下移植瘤的抑制作用[J]. 中华老年病研究电子杂志, 2021, 08(01): 20-24.
[15] 刘松, 李强, 于广计, 王庆东. CalliSpheres载药微球治疗老年肺鳞状细胞癌疗效分析[J]. 中华老年病研究电子杂志, 2020, 07(03): 12-16.
阅读次数
全文


摘要