切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (06) : 355 -362. doi: 10.3877/cma.j.issn.2095-1221.2023.06.005

综述

干细胞衍生的胰岛素分泌细胞治疗糖尿病的研究进展
晏婷1, 梁瑶瑶1, 陈津1,()   
  1. 1. 570311 海口,海南医学院第二附属医院临床医学研究所
  • 收稿日期:2023-05-17 出版日期:2023-12-01
  • 通信作者: 陈津
  • 基金资助:
    国家自然科学基金(82260161); 福建省自然科学基金(2021J011266); 海南省自然科学基金(822MS179)

Current advances in stem cells derived insulin-producing cells for diabetes mellitus therapy

Ting Yan1, Yaoyao Liang1, Jin Chen1,()   

  1. 1. Institute of Clinical Medicine, the Second Affiliated Hospital of Hainan Medical University, Haikou 570311, China
  • Received:2023-05-17 Published:2023-12-01
  • Corresponding author: Jin Chen
引用本文:

晏婷, 梁瑶瑶, 陈津. 干细胞衍生的胰岛素分泌细胞治疗糖尿病的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(06): 355-362.

Ting Yan, Yaoyao Liang, Jin Chen. Current advances in stem cells derived insulin-producing cells for diabetes mellitus therapy[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(06): 355-362.

糖尿病是一种因胰岛素绝对或相对分泌不足引起高血糖的代谢性疾病,胰岛β细胞是体内唯一分泌胰岛素的细胞,β细胞替代或补充疗法是治疗糖尿病的根本途径。生物工程方法诱导干细胞分化成胰岛素分泌细胞(IPC)产生胰岛素可用于β细胞替代疗法,这种疗法可能为糖尿病治疗带来希望。但是现阶段干细胞分化为IPC治疗糖尿病的过程中,仍然存在干细胞来源的β细胞功能不成熟、治疗的生物安全性及可靠性问题和移植免疫排斥等问题。本文综述了不同来源干细胞诱导分化成IPC、不同的诱导方案、当前临床研究进展及存在的问题和解决方法,期望为研究者研究IPC治疗糖尿病的方法提供参考。

Diabetes mellitus is a metabolic disease caused by an absolute or relative deficiency in insulin secretion, resulting in high hyperglycemia. Pancreatic β cells are the only cells in the body that secrete insulin, and β cell replacement or supplementation therapy is the fundamental approach for treating diabetes. Inducing stem cell differentiation into insulin-secreting cells (IPCs) through biotechnology can produce insulin for β cell replacement therapy and bring hope for diabetes treatment. However, in stem cell differentiation into IPCs for diabetes treatment, there are still issues such as immature functionality of β cells derived from stem cells, biologic safety and reliability of treatment, and transplant rejection. This article summarizes different sources of stem- induced differentiation into IPCs, other induction protocols, current progress in clinical research, and the existing problems and solutions, with the hope of providing reference for researchers studying methods of IPCs therapy for diabetes.

图1 IPC的来源注:ESCs为胚胎干细胞;MSCs为间充质干细胞;IPC为胰岛素分泌细胞;iPSCs为诱导多能干细胞
图2 利用不同细胞因子和小分子化合物组合诱导干细胞分化成IPC的方案注:a图为胚胎干细胞和iPSC诱导成IPC方案;b图为成体干细胞诱导分化IPC方案。SC为干细胞;DE为内胚层;PGT为原肠管;PP为胰腺祖细胞;EP为胰腺前体细胞;PE为胰腺内胚层;MSC为间充质干细胞;DPSCs为牙髓干细胞;GSK3βi为GSK3β抑制剂;TGFβi为TGFβ抑制剂;ALK5i为间变性淋巴瘤激酶5抑制剂
表1 不同来源干细胞作为胰岛素分泌细胞来源的优缺点
表2 胰岛素分泌细胞临床试验研究情况
临床研究注册号 研究名称 研究类型 研究阶段 纳入标准 发起人
NCT04786262 VX-880在1型糖尿病参与者中的安全性、耐受性和有效性研究 是一种研究性同种异体干细胞衍生的、完全分化的、产生胰岛素的胰岛细胞疗法 1,2 持续时间> 5年的1型糖尿病临床病史;在入组前12个月内至少有两次记录的严重低血糖发作;稳定的糖尿病治疗;在筛查前至少3个月持续使用连续血糖监测仪(CGM),并愿意在研究期间使用CGM Vertex
NCT05791201 VX-264在1型糖尿病参与者中的安全性、耐受性和有效性研究 VX-264同种异体人类干细胞来源的胰岛 1,2 持续时间大于(>) 5年的1型糖尿病临床病史;参与者正在接受稳定的糖尿病治疗;在筛查前至少4周持续使用连续血糖监测(CGM),并愿意在研究期间使用CGM Vertex
NCT02239354 VC-01™联合产品在1型糖尿病患者中的安全性、耐受性和有效性研究 VC-01™组合产品生物制剂和设备 1,2 男性和女性(非怀孕和非生育能力);1型糖尿病诊断至少3年;稳定的糖尿病治疗;愿意使用连续血糖仪;可接受的植入候选者 ViaCyte
NCT03162926 VC-02™联合产品在1型糖尿病患者中的安全性和耐受性研究 VC-02组合产品:将PEC-01细胞加载到输送装置中 1 有无生育能力的男性和非孕妇;1型糖尿病诊断至少五(5)年;稳定的糖尿病治疗;愿意使用连续血糖仪;可接受的植入候选者 ViaCyte
NCT02939118 对先前植入VC-01™的受试者进行为期一年的随访安全性研究 观测 1 先前植入VC-01组合产物,随后所有VC-01™单元的植入 ViaCyte
NCT04678557 一项评估VC-01在1型糖尿病患者中的安全性、植入和有效性的研究 VC-01组合产品:PEC-01细胞加载到Encaptra药物递送系统中 1,2 男性和非孕妇;1型糖尿病诊断至少3年;稳定、优化的糖尿病治疗方案;植入和外植体手术的可接受候选者;愿意并能够遵守协议要求;满足每个实验方案的胰岛素剂量要求 ViaCyte
NCT03162926 VC-02™联合产品在1型糖尿病患者中的安全性和耐受性研究 组合产品:VC-02组合产品:将PEC-01细胞加载到输送装置中 1 有无生育能力的男性和非孕妇;1型糖尿病诊断至少五(5)年;稳定的糖尿病治疗;愿意使用连续血糖仪;可接受的植入候选者 ViaCyte
NCT03163511 VC-02™联合产品在1型糖尿病和低血糖无意识受试者中的安全性、耐受性和有效性研究 VC-02组合产品:将PEC-01细胞加载到输送装置中 1,2 男性和非孕妇;1型糖尿病诊断至少五(5)年;低血糖意识不清或显著血糖不稳定;稳定的糖尿病治疗;愿意使用连续血糖仪;可接受的植入候选者 ViaCyte
NCT05210530 一项开放标签的FIH研究,评估VCTX210A组合产品在1型糖尿病受试者中的安全性和耐受性 组合产品:VCTX210A单位CRISPR-Cas9转基因PEC210A细胞加载到递送装置中 1 1型糖尿病诊断至少5年;入组前至少3个月的稳定、优化的糖尿病治疗方案 ViaCyte
NCT05565248 一项开放标签的FIH研究,评估VCTX211联合产品在1型糖尿病受试者中的安全性、耐受性和有效性 组合产品:VCTX211将CRISPR-Cas9转基因PEC211细胞加载到递送装置中 1,2 1型糖尿病诊断至少5年;入组前至少3个月的稳定糖尿病治疗方案 ViaCyte
MR-12-23-017130 自体多能干细胞来源的胰岛样细胞移植治疗1型糖尿病的探索性临床研究 干预性研究 1,2 1型糖尿病(包括已接受肝、肾等器官移植)患者;激发C肽< 0.3ng/mL;近3个月,糖化血红蛋白(HbA1c)7%~ 10%;患者在纳入此项目前12个月内,至少发生过1次严重的低血糖症;能够参与强化血糖管理,依从性较好 天津市第一中心医院
1
Silva I B B, Kimura C H, Colantoni VP, et al. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges[J]. Stem Cell Research & Therapy, 2022, 13(1): 309.
2
Han EX, Wang J, Kural M, et al. Development of a bioartificial vascular pancreas[J]. J Tissue Eng, 2021, 12: 20417314211027714.doi:10.1177/20417314211027714.
3
Brusko TM, Russ HA, Stabler CL. Strategies for durable β cell replacement in type 1 diabetes[J]. Science, 2021, 373(6554): 516-522.
4
Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro[J]. Cell, 2014, 159(2): 428-439.
5
Rezania A, Bruin J E, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32(11): 1121-1133.
6
Ghazizadeh Z, Kao D-I, Amin S, et al. ROCKII inhibition promotes the maturation of human pancreatic beta-like cells[J]. Nat Commun, 2017, 8(1): 298. doi:10.1038/s41467-017-00129-y.
7
杨玉伟,李万里,陈继冰等. 间充质干细胞包裹人胰岛减轻即刻经血液介导的炎症反应的体外研究 [J]. 器官移植, 2023, 14 (4): 562-569.
8
Bourgeois S, Sawatani T, Van Mulders A, et al. Towards a functional cure for diabetes using stem cell-derived beta cells: are we there yet?[J]. Cells, 2021, 10(1): 191. doi:10.3390/cells10010191.
9
Ma X, Lu Y, Zhou Z, et al. Human expandable pancreatic progenitor-derived β cells ameliorate diabetes[J]. Sci Adv, 2022, 8(8): eabk1826.doi:10.1126/sciadv.abk1826.
10
Velazco-Cruz L, Song J, Maxwell KG, et al. Acquisition of dynamic function in human stem cell-derived β cells[J]. Stem Cell Reports, 2019, 12(2): 351-365.
11
Helman A, Cangelosi AL, Davis JC, et al. A nutrient-sensing transition at birth triggers glucose-responsive insulin secretion[J]. Cell Metab, 2020, 31(5): 1004-1016.e5.
12
Nair GG, Liu JS, Russ HA, et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells[J]. Nat Cell Biol, 2019, 21(2): 263-274.
13
Veres A, Faust AL, Bushnell HL, et al. Charting cellular identity during human in vitro β-cell differentiation[J]. Nature, 2019, 569(7756): 368-373.
14
Hogrebe NJ, Augsornworawat P, Maxwell KG, et al. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells[J]. Nat Biotechnol, 2020, 38(4): 460-470.
15
Augsornworawat P, Maxwell KG, Velazco-Cruz L, et al. Single-cell transcriptome profiling reveals β cell maturation in stem cell-derived islets after transplantation[J]. Cell Rep, 2020, 32(8): 108067. doi: 10.1016/j.celrep.2020.108067.
16
Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022, 605(7909): 325-331.
17
Du S, Li Y, Geng Z, et al. Engineering islets from stem cells: the optimal solution for the treatment of diabetes?[J]. Front Immunol, 2022, 13: 869514. doi: 10.3389/fimmu.2022.869514.
18
Yoshihara E, O'Connor C, Gasser E, et al. Immune-evasive human islet-like organoids ameliorate diabetes[J]. Nature, 2020, 586(7830): 606-611.
19
Liuyang S, Wang G, Wang Y, et al. Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming[J]. Cell Stem Cell, 2023, 30(4): 450-459.e9.
20
Hosseini SR, Hashemi-Najafabadi S, Bagheri F. Differentiation of the mesenchymal stem cells to pancreatic β-like cells in alginate/trimethyl chitosan/alginate microcapsules[J]. Prog Biomater, 2022, 11(3):273-280.
21
Kawada-Horitani E, Kita S, Okita T, et al. Human adipose-derived mesenchymal stem cells prevent type 1 diabetes induced by immune checkpoint blockade[J]. Diabetologia, 2022, 65(7): 1185-1197.
22
Dai P, Qi G, Xu H, et al. Reprogramming adipose mesenchymal stem cells into islet β-cells for the treatment of canine diabetes mellitus[J]. Stem Cell Research & Therapy, 2022, 13(1): 370.
23
Zhang Y, Gao S, Liang K, et al. Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs[J]. Sci Adv, 2021, 7(27): eabi4379. doi: 10.1126/sciadv.abi4379.
24
Xiang E, Han B, Zhang Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis[J]. Stem Cell Res Ther, 2020, 11(1): 336. doi: 10.1186/s13287-020-01852-y.
25
Park YM, Yang CM, Cho HY. Therapeutic effects of insulin-producing human umbilical cord-derived mesenchymal stem cells in a type 1 diabetes mouse model[J]. Int J Mol Sci, 2022, 23(13): 6877. doi: 10.3390/ijms23136877.
26
Aly RM, Aglan HA, Eldeen GN, et al. Efficient generation of functional pancreatic β cells from dental-derived stem cells via laminin-induced differentiation[J]. J Genet Eng Biotechnol 2022, 20(1): 85. doi: 10.1186/s43141-022-00369-6.
27
Mamidi A, Prawiro C, Seymour PA, et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors[J]. Nature, 2018, 564(7734): 114-118.
28
Maloy MH, Ferrer MA, Parashurama N. In vivo differentiation of stem cell-derived human pancreatic progenitors to treat type 1 diabetes[J]. Stem Cell Rev Rep, 2020, 16(6):1139-1155.
29
Qadir MMF, Álvarez-Cubela S, Klein D, et al. P2RY1/ALK3-expressing cells within the adult human exocrine pancreas are BMP- 7 expandable and exhibit progenitor-like characteristics[J]. Cell Rep, 2018, 22(9):2408-2420.
30
Lammert E, Cleaver O, Melton D. Role of endothelial cells in early pancreas and liver development[J]. Mech Dev, 2003, 120(1): 59-64.
31
Zaret KS. From endoderm to liver bud: paradigms of cell type specification and tissue morphogenesis[J]. Curr Top Dev Biol, 2016, 117: 647-669.
32
Michalopoulos GK. Hepatostat: Liver regeneration and normal liver tissue maintenance[J]. Hepatology, 2017, 65(4):1384-1392.
33
Sarkar S, Munshi C, Chatterjee S, et al. Vector-free in vivo trans-determination of adult hepatic stem cells to insulin-producing cells[J]. Mol Biol Rep, 2019, 46(5): 5501-5509.
34
Ma S, Yang M, Zhou W, et al. An efficient and footprint-free protocol for the transdifferentiation of hepatocytes into insulin-producing cells with IVT mRNAs[J]. Front Genet, 2020, 11: 575. doi: 10.3389/fgene.2020.00575.
35
Hojjat A, Mansour RN, Enderami SE, et al. The differentiation and generation of glucose-sensitive beta like-cells from menstrual blood-derived stem cells using an optimized differentiation medium with platelet-rich plasma (PRP)[J]. Acta Histochem, 2023, 125(3): 152025.doi: 10.1016/j.acthis.2023.152025.
36
Fontcuberta-PiSunyer M, García-Alamán A, Prades È, et al. Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors[J]. Commun Biol, 2023, 6(1): 256. doi: 10.1038/s42003-023-04627-2.
37
Yagihashi S. Gut as a source of new β-cells and Segi's cap[J]. J Diabetes Investig, 2023: jdi.14025.
38
Guo P, Zhang T, Lu A, et al. Specific reprogramming of alpha cells to insulin-producing cells by short glucagon promoter-driven Pdx1 and MafA[J]. Mol Ther Methods Clin Dev, 2023, 28: 355-365.
39
Huang X, Gu W, Zhang J, et al. Stomach-derived human insulin-secreting organoids restore glucose homeostasis[J]. Nat Cell Biol, 2023, 25:778-786.
40
Nijhoff MF, De Koning EJP. Artificial pancreas or novel beta-cell replacement therapies: a race for optimal glycemic control?[J]. Curr Diab Rep, 2018, 18(11): 110. doi: 10.1007/s11892-018-1073-6.
41
Han L, He H, Yang Y, et al. Distinctive clinical and pathologic features of immature teratomas arising from induced pluripotent stem cell-derived beta cell injection in a diabetes patient[J]. Stem Cells Dev, 2022, 31(5-6): 97-101.
42
Du Y, Liang Z, Wang S, et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates[J]. Nat Med, 2022, 28(2): 272-282.
43
Naji A, Eitoku M, Favier B, et al. Biological functions of mesenchymal stem cells and clinical implications[J]. Cell Mol Life Sci, 2019, 76(17): 3323-3348.
44
Gao S, Zhang Y, Liang K, et al. Mesenchymal stem cells (MSCs): a novel therapy for type 2 diabetes[J]. Stem Cells Int, 2022, 2022: 8637493. doi: 10.1155/2022/8637493.
45
Wruck W, Graffmann N, Spitzhorn L-S, et al. Human induced pluripotent stem cell-derived mesenchymal stem cells acquire rejuvenation and reduced heterogeneity[J]. Front Cell Dev Biol, 2021, 9: 717772.
46
高原,盛伟,黄国英.多能干细胞在体外心脏模型构建研究中的应用[J].中华细胞与干细胞杂志(电子版),2022,12(5):314-318.
47
Nihad M, Shenoy PS, Bose B. Cell therapy research for diabetes: pancreatic β cell differentiation from pluripotent stem cells[J]. Diabetes Res Clin Pract, 2021, 181: 109084. doi: 10.1016/j.diabres.2021.109084.
48
Balboa D, Barsby T, Lithovius V, et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells[J]. Nat Biotechnol, 2022, 40(7): 1042-1055.
49
Maxwell KG, Augsornworawat P, Velazco-Cruz L, et al. Gene-edited human stem cell–derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice[J]. Sci Transl Med, 2020, 12(540): eaax9106. doi: 10.1126/scitranslmed.aax9106.
50
Augsornworawat P, Velazco-Cruz L, Song J, et al. A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells[J]. Acta Biomater, 2019, 97: 272-280.
51
Schulz TC, Young HY, Agulnick AD, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells[J]. PLoS ONE, 2012, 7(5): e37004. doi: 10.1371/journal.pone.0037004.
52
Kharat A, Sanap A, Kheur S, et al. Insulin-producing cell clusters derived from human gingival mesenchymal stem cells as a model for diabetes research[J]. Mol Biol Rep, 2022, 49(12): 11973-11982.
53
Tao T, Wang Y, Chen W, et al. Engineering human islet organoids from iPSCs using an organ-on-chip platform[J]. Lab Chip, 2019, 19(6): 948-958.
54
Xu Y, Huang Y, Guo Y, et al. microRNA-690 regulates induced pluripotent stem cells (iPSCs) differentiation into insulin-producing cells by targeting Sox9[J]. Stem Cell Res Ther, 2019, 10(1): 59. doi: 10.1186/s13287-019-1154-8.
55
Li N, Jiang D, He Q, et al. microRNA-181c-5p promotes the formation of insulin-producing cells from human induced pluripotent stem cells by targeting smad7 and TGIF2[J]. Cell Death Dis, 2020, 11(6): 462. doi: 10.1038/s41419-020-2668-9.
56
Bai C, Li X, Gao Y, et al. Role of microRNA-21 in the formation of insulin-producing cells from pancreatic progenitor cells[J]. Biochim Biophys Acta, 2016, 1859(2): 280-293.
57
Bai C, Gao Y, Zhang X, et al. MicroRNA-34c acts as a bidirectional switch in the maturation of insulin-producing cells derived from mesenchymal stem cells[J]. Oncotarget, 2017, 8(63): 106844-106857.
58
Fernandes F, Kotharkar P, Chakravorty A, et al. Nanocarrier mediated siRNA delivery targeting stem cell differentiation[J]. Current Stem Cell Res Ther, 2020, 15(2): 155-172.
59
Choi J, Shin E, Lee J, et al. Light-stimulated insulin secretion from pancreatic islet-like organoids derived from human pluripotent stem cells[J]. Mol Ther, 2023, 31(5):1480-1495.
60
Xu H, Wang B, Ono M, et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility[J]. Cell Stem Cell, 2019, 24(4): 566-578.e7.
61
Doudna JA. The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578(7794): 229-236.
62
Svendsen B, Larsen O, Gabe MBN, et al. Insulin secretion depends on intra-islet glucagon signaling[J]. Cell Rep, 2018, 25(5): 1127-1134.e2.
63
Svendsen B, Holst JJ. Paracrine regulation of somatostatin secretion by insulin and glucagon in mouse pancreatic islets[J]. Diabetologia, 2021, 64(1): 142-151.
64
Bruin JE, Asadi A, Fox JK, et al. Accelerated maturation of human stem cell-derived pancreatic progenitor cells into insulin-secreting cells in immunodeficient rats relative to mice[J]. Stem Cell Reports, 2015, 5(6): 1081-1096.
65
Liang Z, Sun D, Lu S, et al. Implantation underneath the abdominal anterior rectus sheath enables effective and functional engraftment of stem-cell-derived islets[J]. Nat Metab, 2023, 5(1): 29-40.
66
Zhang Q, Gonelle-Gispert C, Li Y, et al. Islet encapsulation: new developments for the treatment of type 1 diabetes[J]. Front Immunol, 2022, 13: 869984.
67
Shilleh AH, Russ HA. Cell replacement therapy for type 1 diabetes patients: potential mechanisms leading to stem-cell-derived pancreatic β-cell loss upon transplant[J]. Cells, 2023, 12(5): 698.
68
Oshima M, Pechberty S, Bellini L, et al. Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity[J]. Diabetologia, 2020, 63(2): 395-409.
69
Qadir MMF, Álvarez-Cubela S, Belle K, et al. A double fail-safe approach to prevent tumorigenesis and select pancreatic β cells from human embryonic stem cells[J]. Stem Cell Rep, 2019, 12(3): 611-623.
70
Aghazadeh Y, Poon F, Sarangi F, et al. Microvessels support engraftment and functionality of human islets and hESC-derived pancreatic progenitors in diabetes models[J]. Cell Stem Cell, 2021, 28(11): 1936-1949.e8.
71
Powers AC, Brissova M. Microvessels enhance vascularization and function of transplanted insulin-producing cells[J]. Cell Metab, 2021, 33(11): 2103-2105.
72
Helman A, Melton DA. A stem cell approach to cure type 1 diabetes[J]. Cold Spring Harb Perspect Biol, 2021, 13(1): a035741.doi: 10.1101/cshperspect.a035741.
[1] 何金梅, 尹立雪, 谭静, 张文军, 王锐, 任梅, 廖明娇. 超声心肌做功技术对2型糖尿病患者潜在左心室心肌收缩功能损伤的评价[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1029-1035.
[2] 季超, 马艺程, 贾倩倩, 徐达圆, 纪世召, 肖仕初. 自体表皮细胞扩增体系创新与临床应用[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 92-92.
[3] 孙艺玮, 陈炜, 秦巍, 杜景辰, 孟昕, 周永军. 血管腔内介入治疗糖尿病足合并下肢动脉硬化闭塞症患者术后再狭窄与血清炎症因子的相关性[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 34-40.
[4] 廖晓霜, 曾李, 杨波. 脱细胞同种异体真皮联合自体皮修复糖尿病足创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 46-50.
[5] 冯蓉琴, 王鹏, 李煜, 陆翮, 白晓智, 韩军涛. 抗菌肽在糖尿病创面愈合中作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2024, 19(01): 78-82.
[6] 张健, 刘小龙, 查天建, 姚俊杰, 王傑. 富含血小板血浆联合异种脱细胞真皮基质修复糖尿病足缺血性创面的临床效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 503-506.
[7] 刘雨晴, 顾永春, 孟凡文, 张素萍. 人牙源干细胞数据独立采集蛋白质组学方法的建立[J]. 中华口腔医学研究杂志(电子版), 2024, 18(01): 12-21.
[8] 赵帅, 王伟, 李瑞奇, 周家杰, 王道荣. 3D腹腔镜下袖状胃切除术治疗肥胖合并2型糖尿病的临床疗效及影响因素分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 146-149.
[9] 刘盾, 潘晟. 不同入路腹腔镜袖状胃切除术用于肥胖症合并2型糖尿病的效果[J]. 中华普外科手术学杂志(电子版), 2024, 18(02): 150-154.
[10] 邓瑞锋, 程璐, 周宇林, 刘远灵, 江文聪, 江敏耀, 江福能, 习明. TGF-β1诱导骨髓间充质干细胞外泌体分泌miR-424-3p促进前列腺癌细胞增殖及转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 82-89.
[11] 汤天津, 于炎冰, 张黎. 周围神经电刺激的临床应用与研究进展[J]. 中华脑科疾病与康复杂志(电子版), 2024, 14(01): 51-55.
[12] 黄莉吉, 王婷, 朱鹏飞, 刘敬顺, 余江毅, 谢绍锋. 芪葵颗粒联合火把花根片对G3A3期糖尿病肾病的疗效及对血清miRNA-21的影响[J]. 中华临床医师杂志(电子版), 2023, 17(12): 1247-1252.
[13] 邬秋俊, 向茜. 甘油三酯-葡萄糖指数与2型糖尿病微血管并发症相关性的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(10): 1109-1112.
[14] 薛念余, 张盛敏, 吴凌恒, 沙蕾, 童揽月, 沈崔琴, 李朝军, 杜联芳. 研究血清胆红素对2型糖尿病患者心脏结构发生改变前心肌功能的影响[J]. 中华临床医师杂志(电子版), 2023, 17(09): 1004-1009.
[15] 黄晨, 庄炜钊, 刘合祝, 李永生, 王倩, 唐郁宽. 富血小板凝胶联合腔内血管成形术治疗缺血性糖尿病足的研究[J]. 中华介入放射学电子杂志, 2024, 12(01): 27-32.
阅读次数
全文


摘要