1 |
Silva I B B, Kimura C H, Colantoni VP, et al. Stem cells differentiation into insulin-producing cells (IPCs): recent advances and current challenges[J]. Stem Cell Research & Therapy, 2022, 13(1): 309.
|
2 |
Han EX, Wang J, Kural M, et al. Development of a bioartificial vascular pancreas[J]. J Tissue Eng, 2021, 12: 20417314211027714.doi: 10.1177/20417314211027714.
|
3 |
Brusko TM, Russ HA, Stabler CL. Strategies for durable β cell replacement in type 1 diabetes[J]. Science, 2021, 373(6554): 516-522.
|
4 |
Pagliuca FW, Millman JR, Gürtler M, et al. Generation of functional human pancreatic β cells in vitro[J]. Cell, 2014, 159(2): 428-439.
|
5 |
Rezania A, Bruin J E, Arora P, et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells[J]. Nat Biotechnol, 2014, 32(11): 1121-1133.
|
6 |
Ghazizadeh Z, Kao D-I, Amin S, et al. ROCKII inhibition promotes the maturation of human pancreatic beta-like cells[J]. Nat Commun, 2017, 8(1): 298. doi: 10.1038/s41467-017-00129-y.
|
7 |
杨玉伟,李万里,陈继冰等. 间充质干细胞包裹人胰岛减轻即刻经血液介导的炎症反应的体外研究 [J]. 器官移植, 2023, 14 (4): 562-569.
|
8 |
Bourgeois S, Sawatani T, Van Mulders A, et al. Towards a functional cure for diabetes using stem cell-derived beta cells: are we there yet?[J]. Cells, 2021, 10(1): 191. doi: 10.3390/cells10010191.
|
9 |
Ma X, Lu Y, Zhou Z, et al. Human expandable pancreatic progenitor-derived β cells ameliorate diabetes[J]. Sci Adv, 2022, 8(8): eabk1826.doi: 10.1126/sciadv.abk1826.
|
10 |
Velazco-Cruz L, Song J, Maxwell KG, et al. Acquisition of dynamic function in human stem cell-derived β cells[J]. Stem Cell Reports, 2019, 12(2): 351-365.
|
11 |
Helman A, Cangelosi AL, Davis JC, et al. A nutrient-sensing transition at birth triggers glucose-responsive insulin secretion[J]. Cell Metab, 2020, 31(5): 1004-1016.e5.
|
12 |
Nair GG, Liu JS, Russ HA, et al. Recapitulating endocrine cell clustering in culture promotes maturation of human stem-cell-derived β cells[J]. Nat Cell Biol, 2019, 21(2): 263-274.
|
13 |
Veres A, Faust AL, Bushnell HL, et al. Charting cellular identity during human in vitro β-cell differentiation[J]. Nature, 2019, 569(7756): 368-373.
|
14 |
Hogrebe NJ, Augsornworawat P, Maxwell KG, et al. Targeting the cytoskeleton to direct pancreatic differentiation of human pluripotent stem cells[J]. Nat Biotechnol, 2020, 38(4): 460-470.
|
15 |
Augsornworawat P, Maxwell KG, Velazco-Cruz L, et al. Single-cell transcriptome profiling reveals β cell maturation in stem cell-derived islets after transplantation[J]. Cell Rep, 2020, 32(8): 108067. doi: 10.1016/j.celrep.2020.108067.
|
16 |
Guan J, Wang G, Wang J, et al. Chemical reprogramming of human somatic cells to pluripotent stem cells[J]. Nature, 2022, 605(7909): 325-331.
|
17 |
Du S, Li Y, Geng Z, et al. Engineering islets from stem cells: the optimal solution for the treatment of diabetes?[J]. Front Immunol, 2022, 13: 869514. doi: 10.3389/fimmu.2022.869514.
|
18 |
Yoshihara E, O'Connor C, Gasser E, et al. Immune-evasive human islet-like organoids ameliorate diabetes[J]. Nature, 2020, 586(7830): 606-611.
|
19 |
Liuyang S, Wang G, Wang Y, et al. Highly efficient and rapid generation of human pluripotent stem cells by chemical reprogramming[J]. Cell Stem Cell, 2023, 30(4): 450-459.e9.
|
20 |
Hosseini SR, Hashemi-Najafabadi S, Bagheri F. Differentiation of the mesenchymal stem cells to pancreatic β-like cells in alginate/trimethyl chitosan/alginate microcapsules[J]. Prog Biomater, 2022, 11(3):273-280.
|
21 |
Kawada-Horitani E, Kita S, Okita T, et al. Human adipose-derived mesenchymal stem cells prevent type 1 diabetes induced by immune checkpoint blockade[J]. Diabetologia, 2022, 65(7): 1185-1197.
|
22 |
Dai P, Qi G, Xu H, et al. Reprogramming adipose mesenchymal stem cells into islet β-cells for the treatment of canine diabetes mellitus[J]. Stem Cell Research & Therapy, 2022, 13(1): 370.
|
23 |
Zhang Y, Gao S, Liang K, et al. Exendin-4 gene modification and microscaffold encapsulation promote self-persistence and antidiabetic activity of MSCs[J]. Sci Adv, 2021, 7(27): eabi4379. doi: 10.1126/sciadv.abi4379.
|
24 |
Xiang E, Han B, Zhang Q, et al. Human umbilical cord-derived mesenchymal stem cells prevent the progression of early diabetic nephropathy through inhibiting inflammation and fibrosis[J]. Stem Cell Res Ther, 2020, 11(1): 336. doi: 10.1186/s13287-020-01852-y.
|
25 |
Park YM, Yang CM, Cho HY. Therapeutic effects of insulin-producing human umbilical cord-derived mesenchymal stem cells in a type 1 diabetes mouse model[J]. Int J Mol Sci, 2022, 23(13): 6877. doi: 10.3390/ijms23136877.
|
26 |
Aly RM, Aglan HA, Eldeen GN, et al. Efficient generation of functional pancreatic β cells from dental-derived stem cells via laminin-induced differentiation[J]. J Genet Eng Biotechnol 2022, 20(1): 85. doi: 10.1186/s43141-022-00369-6.
|
27 |
Mamidi A, Prawiro C, Seymour PA, et al. Mechanosignalling via integrins directs fate decisions of pancreatic progenitors[J]. Nature, 2018, 564(7734): 114-118.
|
28 |
Maloy MH, Ferrer MA, Parashurama N. In vivo differentiation of stem cell-derived human pancreatic progenitors to treat type 1 diabetes[J]. Stem Cell Rev Rep, 2020, 16(6):1139-1155.
|
29 |
Qadir MMF, Álvarez-Cubela S, Klein D, et al. P2RY1/ALK3-expressing cells within the adult human exocrine pancreas are BMP- 7 expandable and exhibit progenitor-like characteristics[J]. Cell Rep, 2018, 22(9):2408-2420.
|
30 |
Lammert E, Cleaver O, Melton D. Role of endothelial cells in early pancreas and liver development[J]. Mech Dev, 2003, 120(1): 59-64.
|
31 |
Zaret KS. From endoderm to liver bud: paradigms of cell type specification and tissue morphogenesis[J]. Curr Top Dev Biol, 2016, 117: 647-669.
|
32 |
Michalopoulos GK. Hepatostat: Liver regeneration and normal liver tissue maintenance[J]. Hepatology, 2017, 65(4):1384-1392.
|
33 |
Sarkar S, Munshi C, Chatterjee S, et al. Vector-free in vivo trans-determination of adult hepatic stem cells to insulin-producing cells[J]. Mol Biol Rep, 2019, 46(5): 5501-5509.
|
34 |
Ma S, Yang M, Zhou W, et al. An efficient and footprint-free protocol for the transdifferentiation of hepatocytes into insulin-producing cells with IVT mRNAs[J]. Front Genet, 2020, 11: 575. doi: 10.3389/fgene.2020.00575.
|
35 |
Hojjat A, Mansour RN, Enderami SE, et al. The differentiation and generation of glucose-sensitive beta like-cells from menstrual blood-derived stem cells using an optimized differentiation medium with platelet-rich plasma (PRP)[J]. Acta Histochem, 2023, 125(3): 152025.doi: 10.1016/j.acthis.2023.152025.
|
36 |
Fontcuberta-PiSunyer M, García-Alamán A, Prades È, et al. Direct reprogramming of human fibroblasts into insulin-producing cells using transcription factors[J]. Commun Biol, 2023, 6(1): 256. doi: 10.1038/s42003-023-04627-2.
|
37 |
Yagihashi S. Gut as a source of new β-cells and Segi's cap[J]. J Diabetes Investig, 2023: jdi.14025.
|
38 |
Guo P, Zhang T, Lu A, et al. Specific reprogramming of alpha cells to insulin-producing cells by short glucagon promoter-driven Pdx1 and MafA[J]. Mol Ther Methods Clin Dev, 2023, 28: 355-365.
|
39 |
Huang X, Gu W, Zhang J, et al. Stomach-derived human insulin-secreting organoids restore glucose homeostasis[J]. Nat Cell Biol, 2023, 25:778-786.
|
40 |
Nijhoff MF, De Koning EJP. Artificial pancreas or novel beta-cell replacement therapies: a race for optimal glycemic control?[J]. Curr Diab Rep, 2018, 18(11): 110. doi: 10.1007/s11892-018-1073-6.
|
41 |
Han L, He H, Yang Y, et al. Distinctive clinical and pathologic features of immature teratomas arising from induced pluripotent stem cell-derived beta cell injection in a diabetes patient[J]. Stem Cells Dev, 2022, 31(5-6): 97-101.
|
42 |
Du Y, Liang Z, Wang S, et al. Human pluripotent stem-cell-derived islets ameliorate diabetes in non-human primates[J]. Nat Med, 2022, 28(2): 272-282.
|
43 |
Naji A, Eitoku M, Favier B, et al. Biological functions of mesenchymal stem cells and clinical implications[J]. Cell Mol Life Sci, 2019, 76(17): 3323-3348.
|
44 |
Gao S, Zhang Y, Liang K, et al. Mesenchymal stem cells (MSCs): a novel therapy for type 2 diabetes[J]. Stem Cells Int, 2022, 2022: 8637493. doi: 10.1155/2022/8637493.
|
45 |
Wruck W, Graffmann N, Spitzhorn L-S, et al. Human induced pluripotent stem cell-derived mesenchymal stem cells acquire rejuvenation and reduced heterogeneity[J]. Front Cell Dev Biol, 2021, 9: 717772.
|
46 |
高原,盛伟,黄国英.多能干细胞在体外心脏模型构建研究中的应用[J].中华细胞与干细胞杂志(电子版),2022,12(5):314-318.
|
47 |
Nihad M, Shenoy PS, Bose B. Cell therapy research for diabetes: pancreatic β cell differentiation from pluripotent stem cells[J]. Diabetes Res Clin Pract, 2021, 181: 109084. doi: 10.1016/j.diabres.2021.109084.
|
48 |
Balboa D, Barsby T, Lithovius V, et al. Functional, metabolic and transcriptional maturation of human pancreatic islets derived from stem cells[J]. Nat Biotechnol, 2022, 40(7): 1042-1055.
|
49 |
Maxwell KG, Augsornworawat P, Velazco-Cruz L, et al. Gene-edited human stem cell–derived β cells from a patient with monogenic diabetes reverse preexisting diabetes in mice[J]. Sci Transl Med, 2020, 12(540): eaax9106. doi: 10.1126/scitranslmed.aax9106.
|
50 |
Augsornworawat P, Velazco-Cruz L, Song J, et al. A hydrogel platform for in vitro three dimensional assembly of human stem cell-derived islet cells and endothelial cells[J]. Acta Biomater, 2019, 97: 272-280.
|
51 |
Schulz TC, Young HY, Agulnick AD, et al. A scalable system for production of functional pancreatic progenitors from human embryonic stem cells[J]. PLoS ONE, 2012, 7(5): e37004. doi: 10.1371/journal.pone.0037004.
|
52 |
Kharat A, Sanap A, Kheur S, et al. Insulin-producing cell clusters derived from human gingival mesenchymal stem cells as a model for diabetes research[J]. Mol Biol Rep, 2022, 49(12): 11973-11982.
|
53 |
Tao T, Wang Y, Chen W, et al. Engineering human islet organoids from iPSCs using an organ-on-chip platform[J]. Lab Chip, 2019, 19(6): 948-958.
|
54 |
Xu Y, Huang Y, Guo Y, et al. microRNA-690 regulates induced pluripotent stem cells (iPSCs) differentiation into insulin-producing cells by targeting Sox9[J]. Stem Cell Res Ther, 2019, 10(1): 59. doi: 10.1186/s13287-019-1154-8.
|
55 |
Li N, Jiang D, He Q, et al. microRNA-181c-5p promotes the formation of insulin-producing cells from human induced pluripotent stem cells by targeting smad7 and TGIF2[J]. Cell Death Dis, 2020, 11(6): 462. doi: 10.1038/s41419-020-2668-9.
|
56 |
Bai C, Li X, Gao Y, et al. Role of microRNA-21 in the formation of insulin-producing cells from pancreatic progenitor cells[J]. Biochim Biophys Acta, 2016, 1859(2): 280-293.
|
57 |
Bai C, Gao Y, Zhang X, et al. MicroRNA-34c acts as a bidirectional switch in the maturation of insulin-producing cells derived from mesenchymal stem cells[J]. Oncotarget, 2017, 8(63): 106844-106857.
|
58 |
Fernandes F, Kotharkar P, Chakravorty A, et al. Nanocarrier mediated siRNA delivery targeting stem cell differentiation[J]. Current Stem Cell Res Ther, 2020, 15(2): 155-172.
|
59 |
Choi J, Shin E, Lee J, et al. Light-stimulated insulin secretion from pancreatic islet-like organoids derived from human pluripotent stem cells[J]. Mol Ther, 2023, 31(5):1480-1495.
|
60 |
Xu H, Wang B, Ono M, et al. Targeted disruption of HLA genes via CRISPR-Cas9 generates iPSCs with enhanced immune compatibility[J]. Cell Stem Cell, 2019, 24(4): 566-578.e7.
|
61 |
Doudna JA. The promise and challenge of therapeutic genome editing[J]. Nature, 2020, 578(7794): 229-236.
|
62 |
Svendsen B, Larsen O, Gabe MBN, et al. Insulin secretion depends on intra-islet glucagon signaling[J]. Cell Rep, 2018, 25(5): 1127-1134.e2.
|
63 |
Svendsen B, Holst JJ. Paracrine regulation of somatostatin secretion by insulin and glucagon in mouse pancreatic islets[J]. Diabetologia, 2021, 64(1): 142-151.
|
64 |
Bruin JE, Asadi A, Fox JK, et al. Accelerated maturation of human stem cell-derived pancreatic progenitor cells into insulin-secreting cells in immunodeficient rats relative to mice[J]. Stem Cell Reports, 2015, 5(6): 1081-1096.
|
65 |
Liang Z, Sun D, Lu S, et al. Implantation underneath the abdominal anterior rectus sheath enables effective and functional engraftment of stem-cell-derived islets[J]. Nat Metab, 2023, 5(1): 29-40.
|
66 |
Zhang Q, Gonelle-Gispert C, Li Y, et al. Islet encapsulation: new developments for the treatment of type 1 diabetes[J]. Front Immunol, 2022, 13: 869984.
|
67 |
Shilleh AH, Russ HA. Cell replacement therapy for type 1 diabetes patients: potential mechanisms leading to stem-cell-derived pancreatic β-cell loss upon transplant[J]. Cells, 2023, 12(5): 698.
|
68 |
Oshima M, Pechberty S, Bellini L, et al. Stearoyl CoA desaturase is a gatekeeper that protects human beta cells against lipotoxicity and maintains their identity[J]. Diabetologia, 2020, 63(2): 395-409.
|
69 |
Qadir MMF, Álvarez-Cubela S, Belle K, et al. A double fail-safe approach to prevent tumorigenesis and select pancreatic β cells from human embryonic stem cells[J]. Stem Cell Rep, 2019, 12(3): 611-623.
|
70 |
Aghazadeh Y, Poon F, Sarangi F, et al. Microvessels support engraftment and functionality of human islets and hESC-derived pancreatic progenitors in diabetes models[J]. Cell Stem Cell, 2021, 28(11): 1936-1949.e8.
|
71 |
Powers AC, Brissova M. Microvessels enhance vascularization and function of transplanted insulin-producing cells[J]. Cell Metab, 2021, 33(11): 2103-2105.
|
72 |
Helman A, Melton DA. A stem cell approach to cure type 1 diabetes[J]. Cold Spring Harb Perspect Biol, 2021, 13(1): a035741.doi: 10.1101/cshperspect.a035741.
|