切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (03) : 189 -192. doi: 10.3877/cma.j.issn.2095-1221.2023.03.010

综述

毛囊间充质干细胞的基础研究及临床应用
袁久莉, 刘丹, 李林藜(), 刘晋宇()   
  1. 130021 长春,吉林大学第一医院净月分院筹备组
    130021 长春,吉林大学公共卫生学院
    130021 长春,吉林大学第一医院妇产科
  • 收稿日期:2023-04-07 出版日期:2023-06-01
  • 通信作者: 李林藜, 刘晋宇
  • 基金资助:
    国家自然科学基金项目(82073581); 吉林省科技发展计划项目(20190304044YY、20200801022GH)

Basic research and clinical application of hair follicle-derived mesenchymal stem cells

Jiuli Yuan, Dan Liu, Linli Li(), Jinyu Liu()   

  1. Jing Yue Branch Preparatory Group, the First Hospital of Jilin University, Changchun 130021, China
    College of Public Health of Jilin University, Changchun 130021, China
    Department of Gynecology and Obstetrics, the First Hospital of Jilin University, Changchun 130021, China
  • Received:2023-04-07 Published:2023-06-01
  • Corresponding author: Linli Li, Jinyu Liu
  • About author:

    Yuan Jiuli and Liu Dan are the first authors who contributed equally to the article

引用本文:

袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.

Jiuli Yuan, Dan Liu, Linli Li, Jinyu Liu. Basic research and clinical application of hair follicle-derived mesenchymal stem cells[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(03): 189-192.

以干细胞为核心的再生医学成为当今医学研究的热点。研究发现人毛囊中含有多种干细胞成份,包括但不限于角朊干细胞、黑色素干细胞、间充质干细胞(MSCs)和神经脊干细胞。这些干细胞在时空上相互作用,共同维持毛囊的稳态。其中毛囊间充质干细胞(HF-MSCs)不仅参与毛发的发生、生长和周期循环,而且还可以作为一种重要的自体干细胞来源,用于组织修复、器官重建和基因治疗。本文就HF-MSCs基础医学研究领域取得的进展以及在临床多种疾病治疗中的应用作一简要综述。

Stem cell-based regenerative medicine become the hotspot in current medical research. Accumulating studies showed that human hair follicles contain various stem cell components, including but not limited to keratinocyte stem cells, melanocyte stem cells, mesenchymal stem cells (MSCs) and neural crest cells. These hair follicle-derived stem cells interact in a coordinated temporal and spacial manner to maintain hair follicle homeostasis. Hair follicle-derived mesenchymal stem cells (HF-MSCs) participate in hair generation, hair growth and hair follicle cycle and can be used as an essential autologous stem cell source to participate in tissue repair, organ reconstruction and gene therapy. This review focuses on advances of HF-MSCs in the basic medical research and their application in the treatment of various clinical diseases.

1
Schneider MR, Schmidt-Ullrich R, Paus R. The hair follicle as a dynamic miniorgan[J]. Curr Biol, 2009, 19(3): R132-142.
2
Aamar E, Avigad Laron E, Asaad W, et al.Hair-follicle mesenchymal stem cell activity during homeostasis and wound healing[J]. J Invest Dermatol, 2021,141(12): 2797-2807.e6.
3
Sehic A, Utheim ØA, Ommundsen K, et al. Pre-clinical cell-based therapy for limbal stem cell deficiency[J]. J Funct Biomater, 2015, 6(3):863-888.
4
Wang B, Liu XM, Liu ZN, et al. Human hair follicle-derived mesenchymal stem cells: Isolation, expansion, and differentiation[J].World J Stem Cells, 2020,12(6):462-470.
5
Krampera M, Le Blanc K. Mesenchymal stromal cells: putative microenvironmental modulators become cell therapy[J]. Cell Stem Cell, 2021, 28(10):1708-1725.
6
Liu Z, Lu SJ, Lu Y, et al. Transdifferentiation of human hair follicle mesenchymal stem cells into red blood cells by OCT4[J]. Stem Cells Int, 2015:389628.
7
Lako M, Armstrong L, Cairns PM,et al. Hair follicle dermal cells repopulate the mouse haematopoietic system[J]. J Cell Sci, 2002, 115(Pt 20):3967-3974.
8
Li M, Liu JY, Wang S,et al. Multipotent neural crest stem cell-like cells from rat vibrissa dermal papilla induce neuronal differentiation of PC12 cells[J]. Biomed Res Int, 2014, 2014: 186239.
9
伍婧玥,李敏,王刚,等. 毛囊干细胞的应用领域[J/CD].中华细胞与干细胞杂志(电子版), 2020,10(6):356-363.
10
Wang Y, Liu J, Tan X, et al. Induced pluripotent stem cells from human hair follicle mesenchymal stem cells[J]. Stem Cell Rev Rep, 2013, 9(4):451-460.
11
Jiang Y, Liu F, Zou F, et al. PBX homeobox 1 enhances hair follicle mesenchymal stem cell proliferation and reprogramming through activation of the AKT/glycogen synthase kinase signaling pathway and suppression of apoptosis[J]. Stem Cell Res Ther, 2019, 10(1):268.
12
Shi X, Lv S, He X, et al. Differentiation of hepatocytes from induced pluripotent stem cells derived from human hair follicle mesenchymal stem cells[J]. Cell Tissue Res,2016, 366(1): 89-99.
13
Liu Q, Lv C, Huang Q, et al. ECM1 modified HF-MSCs targeting HSC attenuate liver cirrhosis by inhibiting the TGF-β/Smad signaling pathway[J]. Cell Death Discov, 2022, 8(1): 51.
14
Liu Q, Lv C, Jiang Y, et al. From hair to liver: emerging application of hair follicle mesenchymal stem cell transplantation reverses liver cirrhosis by blocking the TGF-β/Smad signaling pathway to inhibit pathological HSC activation[J]. Peer J,2022,10:e12872.
15
Nosrati H, Alizadeh Z, Nosrati A, et al. Stem cell-based therapeutic strategies for corneal epithelium regeneration[J]. Tissue Cell, 2021, 68:101470.
16
Blazejewska EA, Schlötzer-Schrehardt U, Zenkel M, et al. Corneal limbal microenvironment can induce transdifferentiation of hair follicle stem cells into corneal epithelial-like cells[J]. Stem Cells, 2009, 27(3):642-652.
17
Olszewski C, Thomson S, Pring K, et al. Mechanotransductive differentiation of hair follicle stem cells derived from aged eyelid skin into corneal endothelial-like cells[J]. Stem Cell Rev Rep, 2022, 18(5):1668-1685.
18
Hoffman RM. The hair follicle and its stem cells as drug delivery targets[J]. Expert Opin Drug Deliv, 2006, 3(3):437-443.
19
Wu C, Liu F, Li P, et al. Engineered hair follicle mesenchymal stem cells overexpressing controlled-release insulin reverse hyperglycemia in mice with type L diabetes[J]. Cell Transplant, 2015, 24(5):891-907.
20
Savkovic V, Li H, Obradovic D, et al. The angiogenic potential of mesenchymal stem cells from the hair follicle outer root sheath[J]. J Clin Med, 2021, 10(5):911.
21
Liu JY, Peng HF, Andreadis ST. Contractile smooth muscle cells derived from hair-follicle stem cells[J]. Cardiovasc Res, 2008, 79(1):24-33.
22
Liu JY, Peng HF, Gopinath S, et al. Derivation of functional smooth muscle cells from multipotent human hair follicle mesenchymal stem cells[J]. Tissue Eng Part A, 2010, 16(8): 2553-2564.
23
Peng HF, Liu JY, Andreadis ST, et al. Hair follicle-derived smooth muscle cells and small intestinal submucosa for engineering mechanically robust and vasoreactive vascular media[J]. Tissue Eng Part A, 2011, 17(7-8):981-990.
24
Gao Y, Liu F, Zhang L, et al. Acellular blood vessels combined human hair follicle mesenchymal stem cells for engineering of functional arterial grafts[J]. Ann Biomed Eng, 2014, 42(10):2177-2189.
25
Swain N, Thakur M, Pathak J, et al. SOX2, OCT4 and NANOG: The core embryonic stem cell pluripotency regulators in oral carcinogenesis[J]. J Oral Maxillofac Pathol, 2020, 24(2):368-373.
26
Han J, Mistriotis P, Lei P, et al. Nanog reverses the effects of organismal aging on mesenchymal stem cell proliferation and myogenic differentiation potential[J]. Stem Cells, 2012, 30(12):2746-2759.
27
Shahini A, Mistriotis P, Asmani M, et al. NANOG restores contractility of mesenchymal stem cell-based senescent microtissues[J]. Tissue Eng Part A, 2017, 23(11-12):535-545.
28
Mistriotis P, Bajpai VK, Wang X, et al. NANOG reverses the myogenic differentiation potential of senescent stem cells by restoring ACTIN filamentous organization and SRF-dependent gene expression[J]. Stem Cells, 2017, 35(1):207-221.
29
Lu Y, Qu H, Qi D, et al. OCT4 maintains self-renewal and reverses senescence in human hair follicle mesenchymal stem cells through the downregulation of p21 by DNA methyltransferases[J]. Stem Cell Res Ther, 2019, 10(1):28.
30
Li C, Wang J. Quantifying cell fate decisions for differentiation and reprogramming of a human stem cell network: landscape and biological paths[J]. PLoS Comput Biol, 2013,9(8): e1003165.
31
Liu F, Shi J, Zhang Y, et al. NANOG attenuates hair follicle-derived mesenchymal stem cell senescence by upregulating PBX1 and activating AKT Signaling[J]. Oxid Med Cell Longev, 2019, 2019:4286213.
32
Wang Y, Sui Y, Lian A, et al. PBX1 attenuates hair follicle-derived mesenchymal stem cell senescence and apoptosis by alleviating reactive oxygen species-mediated DNA damage instead of enhancing DNA damage repair[J]. Front Cell Dev Biol, 2021, 9:739868.
33
Wang Y, Sui Y, Niu Y, et al.PBX1-SIRT1 positive feedback loop attenuates ROS-mediated HF-MSC senescence and apoptosis[J].Stem Cell Rev Rep, 2023, 19(2):443-454.
34
林博杰,冷静,黄丹,等.促大鼠毛囊干细胞增殖的实验研究[J].中华实验外科杂志, 2022, 39(1):173.
35
Li P, Liu F, Wu C,et al. Feasibility of human hair follicle-derived mesenchymal stem cells/CultiSpher(®)-G constructs in regenerative medicine[J]. Cell Tissue Res,2015, 362(1):69-86.
36
Liu JY, Hafner J, Dragieva G, et al. Autologous cultured keratinocytes on porcine gelatin microbeads effectively heal chronic venous leg ulcers[J].Wound Repair Regen, 2004, 12(2):148-156.
[1] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[2] 王淑君, 张楚晗, 唐一阳, 赵雨桐, 李佳伦, 付佳乐. 自粘接树脂水门汀的临床应用及展望[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 276-286.
[3] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[4] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[5] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[6] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[7] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[8] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[9] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[10] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[11] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[12] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[13] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
[14] 戚泽雪, 赵连晖, 王广川, 张春清. 从国内专家共识推荐意见更新探讨经颈静脉肝内门体分流术的临床应用进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 193-196.
[15] 王睿浩, 姜云璐, 田艳君. Apelin/APJ系统生理病理作用的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 138-142.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?