切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (03) : 183 -188. doi: 10.3877/cma.j.issn.2095-1221.2023.03.009

综述

胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制
刘先勇()   
  1. 211100 南京医科大学附属江宁医院中西医结合科
  • 收稿日期:2023-05-11 出版日期:2023-06-01
  • 通信作者: 刘先勇
  • 基金资助:
    南京市卫生科技发展专项资金项目计划(YKK22225)

Molecular mechanisms of gastric Lgr5+ stem cells, Mist1+ stem cells and Cck2r+ stem cells in carcinogenesis

Xianyong Liu()   

  1. Department of Integrated Traditional Chinese and Western Medicine, Jiangning Hospital, Nanjing Medical University, Nanjing 211100, China
  • Received:2023-05-11 Published:2023-06-01
  • Corresponding author: Xianyong Liu
引用本文:

刘先勇. 胃Lgr5+干细胞、Mist1+干细胞和Cck2r+干细胞癌变的分子机制[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 183-188.

Xianyong Liu. Molecular mechanisms of gastric Lgr5+ stem cells, Mist1+ stem cells and Cck2r+ stem cells in carcinogenesis[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(03): 183-188.

胃干细胞(GSCs)在肠型胃癌(IGC)发生中发挥重要作用。GSCs主要包括富含亮氨酸重复序列的G蛋白偶联受体-5+干细胞(Lgr5+SCs),肌肉、小肠和胃表达因子1 (Mist1)+ SCs和胃窦胆囊收缩素2型受体(Cck2r)+SCs等。本文综述这三种GSCs癌变的分子机制,发现经典的Wnt信号通路(cWnt)-Notch动态平衡失调驱动IGC的发生。cWnt-磷脂酰肌醇3激酶/蛋白激酶B (PI3K/Akt)或cWnt-Ras信号通路被激活和Notch信号通路被抑制是这几个胃干细胞癌变的普遍特点;激活Notch/胶质瘤相关癌基因同源物(Gli)2/哺乳动物雷帕霉素靶蛋白(mTOR)下调cWnt是癌变的另外一种机制,深入研究这两种癌变分子机制或能为IGC治疗提供新思路。

Gastric stem cells (GSCs) play an important role in developing the intestinal gastric cancer (IGC) . GSCs mainly include leucine-rich repeat-containing G-protein coupled receptor 5+ stem cells (Lgr5+SCs) , muscle, intestine and stomach expression 1 (Mist1) + SCs, and antral cholecystokinin type 2 receptor (Cck2r) + stem cells, etc. This article reviews the molecular mechanisms of carcinogenesis of the three types of gastric stem cells. It is found that the canonical wnt signal pathway (cWnt) -Notch dynamic imbalance drives the occurrence of intestinal-type gastric cancer (IGC) . The activation of the cWnt-phosphatidylinositol 3-kinase and protein kinase B (PI3K/Akt) or cWnt-Ras signaling pathway and the inhibition of the Notch signaling pathway are common characteristics of gastric stem cell carcinogenesis in these cells; Activating Notch/Glioma-associated oncogene homolog (Gli) 2/mammalian target of rapamycin (mTOR) and downregulating cWnt is another mechanism of carcinogenesis. Furthermore, more researche on these two molecular mechanisms of carcinogenesis may provide new ideas for IGC treatment.

图1 肠腺体过渡放大细胞(TAC)区发生的主要分子机制注:淡玫瑰红区域代表肠Lgr5+SCs中Notch-cWnt动态平衡特点,在Ras/Mapk/pErk1/2作用下,肠Lgr5+SCs转换为成浅蓝TAC区域肠祖细胞,Notch/cWnt信号转导随之下调,pErk1/2表达上调
图2 胃Lgr5+SCs癌变的分子机制注:浅蓝-白色字母区域代表胃Lgr5+SCs中Notch/Gli2/mTORC1被异常激活,图上方白色字母区域表示mTORC1通过激活Mek1/Erk1/2、Bmp/Smad1,抑制Smad4表达,加之下调cWnt (淡玫瑰红区域)导致胃Lgr5+SCs癌变;红色字母区域代表Pten和Smad4双突变导致cWnt-Notch动态平衡失调,cWnt-PI3K/Akt信号通路被激活和Notch信号通路被抑制导致胃Lgr5+SCs癌变;-代表蛋白表达被抑制
图3 胃Mist1+SCs癌变的分子机制注:淡玫瑰红区域代表胃Mist1+SCs中Notch-cWnt动态平衡特点,在K-ras/Mapk/Erk1/2作用下,胃Mist1+SCs中Notch/cWnt/Bmp/Smad信号转导均下调,但pErk1/2高表达。深红区域代表APC缺失,cWnt被激活;激活K-ras协同Apc缺失导致cWnt-Ras信号通路被激活和Notch信号通路被抑制,驱动胃Mist1+SCs癌变(浅蓝区域);-代表蛋白表达被抑制
图4 胃Cck2r+SCs癌变的分子机制注:淡玫瑰红区域代表胃Cck2r+SCs中Notch-cWnt动态平衡特点,在Gas/Cck2r信号通路作用下,Notch/cWnt/Bmp/Smad信号转导均下调,但pErk1/2高表达。深红区域代表APC缺失,胃Mist1+SCs中高核β-catenin协同Numb共同上调p53表达,导致cWnt进一步激活被抑制和pErk1/2表达被下调;p53突变,cWnt-Ras信号通路被激活驱动胃Cck2r+SCs癌变(浅蓝区域);-代表蛋白表达被抑制,+代表蛋白表达
1
Businello G, Angerilli V, Parente P, et al. Molecular landscapes of gastric pre-neoplastic and pre-invasive lesions[J]. Int J Mol Sci, 2021, 22(18):9950.
2
Singh S, Bhat MY, Sathe G, et al. Proteomic signatures of diffuse and intestinal subtypes of gastric cancer[J]. Cancers (Basel). 2021, 13(23):5930.
3
Hirata A, Utikal J, Yamashita S, et al. Dose-dependent roles for canonical Wnt signalling in de novo crypt formation and cell cycle properties of the colonic epithelium[J]. Development, 2013, 140(1):66-75.
4
Acar A, Hidalgo-Sastre A, Leverentz MK, et al. Inhibition of Wnt signalling by Notch via two distinct mechanisms[J]. Sci Rep, 2021, 11(1):9096.
5
Sundaram MV. The love-hate relationship between Ras and Notch[J]. Genes Dev, 2005, 19(16):1825-1839.
6
Pond KW, Morris JM, Alkhimenok O, et al. Live-cell imaging in human colonic monolayers reveals ERK waves limit the stem cell compartment to maintain epithelial homeostasis[J]. Elife, 2022,11:e78837.
7
Kabiri Z, Greicius G, Zaribafzadeh H, et al. Wnt signaling suppresses MAPK-driven proliferation of intestinal stem cells[J]. J Clin Invest, 2018, 128(9):3806-3812.
8
Kotani T, Ihara N, Okamoto S, et al. Role of Ras in regulation of intestinal epithelial cell homeostasis and crosstalk with Wnt signaling[J]. PLoS One, 2021, 16(8):e0256774.
9
Zhan T, Ambrosi G, Wandmacher AM, et al. MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer[J]. Nat Commun, 2019, 10(1):2197.
10
Qi Z, Li Y, Zhao B, et al. BMP restricts stemness of intestinal Lgr5+ stem cells by directly suppressing their signature genes[J]. Nat Commun, 2017, 8:13824.
11
Hoffmann W. Self-renewal and cancers of the gastric epithelium: an update and the role of the lectin TFF1 as an antral tumor suppressor[J]. Int J Mol Sci, 2022, 23(10):5377.
12
Chang W,Wang H, Kim W, et al. Hormonal suppression of stem cells inhibits symmetric cell division and gastric tumorigenesis[J]. Cell Stem Cell, 2020, 26(5):739-754.
13
Flanagan DJ, Austin CR, Vincan E, et al. Wnt signalling in gastrointestinal epithelial stem cells[J]. Genes (Basel), 2018, 9(4):178.
14
Blassberg R, Patel H, Watson T, et al. Sox2 levels regulate the chromatin occupancy of WNT mediators in epiblast progenitors responsible for vertebrate body formation[J]. Nat Cell Biol, 2022, 24(5):633-644.
15
Ye L, Lou F, Yu F, et al. NUMB maintains bone mass by promoting degradation of PTEN and GLI1 via ubiquitination in osteoblasts[J]. Bone Res, 2018, 10(6):32.
16
Aguirre A, Rubio ME, Gallo V. Notch and EGFR pathway interaction regulates neural stem cell number and self-renewal[J]. Nature, 2010, 467(7313):323-327.
17
Ortega-Campos SM, García-Heredia JM. The multitasker protein: a look at the multiple capabilities of NUMB[J]. Cells, 2023, 12(2):333.
18
Kaur N, Lum MA, Lewis RE, et al. A novel antiproliferative PKCα-Ras-ERK signaling axis in intestinal epithelial cells[J]. J Biol Chem, 2022, 298(7):102121.
19
Duckworth CA. Identifying key regulators of the intestinal stem cell niche[J]. Biochem Soc Trans, 2021, 49(5):2163-2176.
20
Takahashi T, Shiraishi A. Stem cell signaling pathways in the small intestine[J]. Int. J. Mol. Sci, 2020, 21(6):2032.
21
Demitrack ES, Gifford GB, Keeley TM, et al. Notch signaling regulates gastric antral LGR5 stem cell function[J]. EMBO J, 2015, 34(20):2522-2536.
22
Syu LJ, Zhao X, Zhang Y, et al. Invasive mouse gastric adenocarcinomas arising from Lgr5+ stem cells are dependent on crosstalk between the Hedgehog/GLI2 and mTOR pathways[J]. Oncotarget, 2016,7(9):10255-10270.
23
刘先勇,王建宁. Hedgehog与胃腺体分化及Correa级联学说关系的研究进展[J].中国细胞生物学学报, 2015, 37(11):1572-1580.
24
McCarthy N, Manieri E, Storm EE, et al. Distinct mesenchymal cell populations generate the essential intestinal BMP signaling gradient[J]. Cell Stem Cell, 2020, 26(3):391-402.
25
Zinke J, Schneider FT, Harter PN, et al. β-Catenin-Gli1 interaction regulates proliferation and tumor growth in medulloblastoma[J]. Mol Cancer, 2015,14(1):17.
26
Li Y, Hibbs MA, Gard AL, et al. Genome-wide analysis of N1ICD/RBPJ targets in vivo reveals direct transcriptional regulation of Wnt, SHH, and hippo pathway effectors by Notch1[J]. Stem Cells, 2012, 30(4):741-752.
27
Xia R, Xu M, Yang J, et al. The role of Hedgehog and Notch signaling pathway in cancer. Mol Biomed, 2022, 3(1):44.
28
Yabut O, Pleasure S J,Yoon K. A Notch above Sonic Hedgehog[J]. Developmental Cell, 2015, 33(4):371-372.
29
Zhang J, Fan J, Zeng X, et al. Hedgehog signaling in gastrointestinal carcinogenesis and the gastrointestinal tumor microenvironment[J].Acta Pharm Sin B, 2021, 11(3):609-620.
30
Wall DS , Mears AJ , Mcneill B , et al. Progenitor cell proliferation in the retina is dependent on notch-independent sonic Hedgehog/Hes1 activity[J]. J Cell Biol, 2009, 184(1):101-112.
31
Das HK, Hontiveros SS. Inhibition of p-mTOR represses transcription of PS1 and Notch 1-signaling[J]. Front Biosci (Landmark Ed), 2020, 25(6):1172-1183.
32
Hibdon ES, Razumilava N, Keeley TM, et al. Notch and mTOR signaling pathways promote human gastric cancer cell proliferation[J]. Neoplasia, 2019, 21(7):702-712.
33
Vivien Koh, Jayati Chakrabarti, Meaghan Torvund, et al. Hedgehog transcriptional effector GLI mediates mTOR-Induced PD-L1 expression in gastric cancer organoids[J]. Cancer Lett, 2021, 518: 59-71.
34
Larsen LJ, Møller LB. Crosstalk of Hedgehog and mTORC1 pathways[J]. Cells, 2020, 9(10):2316.
35
Li K, Wu H, Wang A, et al. mTOR signaling regulates gastric epithelial progenitor homeostasis and gastric tumorigenesis via MEK1-ERKs and BMP-Smad1 pathways[J]. Cell reports, 2021, 35(5):109069.
36
Pantazi E, Gemenetzidis E, Teh MT, et al. GLI2 is a regulator of β-catenin and is associated with loss of E-Cadherin, cell invasiveness, and long-term epidermal regeneration[J]. J Invest Dermatol, 2017, 137(8):1719-1730.
37
Pelullo M, Zema S, Nardozza F, et al. Wnt, notch, and TGF-β pathways impinge on hedgehog signaling complexity: an open window on cancer[J]. Front Genet, 2019, 10:711.
38
Carballo GB, Honorato JR, de Lopes GPF, et al. A highlight on Sonic hedgehog pathway[J]. Cell Commun Signal, 2018, 16(1):11.
39
Suchors C, Kim J. Canonical Hedgehog pathway and noncanonical GLI transcription factor activation in cancer[J]. Cells, 2022, 11(16):2523.
40
Nguyen NM, Cho J. Hedgehog Pathway inhibitors as targeted cancer therapy and strategies to overcome drug resistance[J]. Int J Mol Sci, 2022, 23(3):1733.
41
Pietrobono S, Gagliardi S, Stecca B. Non-canonical Hedgehog signaling pathway in cancer: activation of GLI transcription factors beyond smoothened[J]. Front Genet, 2019, 10:556.
42
Yang J, Wang J, Zhang Y, et al. c-Jun phosphorylated by JNK is required for protecting Gli2 from proteasomal-ubiquitin degradation by PGE2-JNK signaling axis[J]. Biochim Biophys Acta Mol Cell Res, 2023, 1870(3):119418.
43
Stecca B, Mas C, Clement V, et al. Melanomas require HEDGEHOG-GLI signaling regulated by interactions between GLI1 and the RAS-MEK/AKT pathways[J]. Proc Natl Acad Sci U S A, 2007, 104(14): 5895-5900.
44
Tang Y, Yang G, Zhang J, et al. E-cadherin is required for the homeostasis of Lgr5+ gastric antral stem cells[J]. Int J Biol Sci, 2019, 15(1):34-43.
45
Li XB, Yang G, Zhu L, et al. Gastric Lgr5(+) stem cells are the cellular origin of invasive intestinal-type gastric cancer in mice[J].Cell Res, 2016, 26(7):838-849.
46
García-Heredia JM, Carnero A. NUMB and NUMBL differences in gene regulation[J]. Oncotarget, 2018, 9(10):9219-9234.
47
Beck SE, Carethers JM. BMP suppresses PTEN expression via RAS/ERK signaling[J]. Cancer Biol Ther, 2007, 6(8):1313-1317.
48
Chow JY, Quach KT, Cabrera BL, et al. RAS/ERK modulates TGFbeta-regulated PTEN expression in human pancreatic adenocarcinoma cells[J]. Carcinogenesis, 2007, 28(11):2321-2327.
49
Fedorova O, Parfenyev S, Daks A, et al. The Role of PTEN in epithelial-mesenchymal transition[J]. Cancers (Basel), 2022, 14(15):3786.
50
Koveitypour Z, Panahi F, Vakilian M, et al. Signaling pathways involved in colorectal cancer progression[J]. Cell Biosci, 2019, 9:97.
51
Han J, Lin K, Zhang X, et al. PTEN-mediated AKT/β-catenin signaling enhances the proliferation and expansion of Lgr5+ hepatocytes[J]. Int J Biol Sci, 2021, 17(3):861-868.
52
Eritja N, Felip I, Dosil MA, et al. A Smad3-PTEN regulatory loop controls proliferation and apoptotic responses to TGF-β in mouse endometrium[J]. Cell Death Differ, 2017, 24(8):1443-1458.
53
Lee MS, Jeong MH, Lee HW, et al. Author Correction: PI3K/AKT activation induces PTEN ubiquitination and destabilization accelerating tumourigenesis[J]. Nat Commun, 2020, 11(1):6236.
54
Vidotto T, Melo CM, Lautert-Dutra W, et al. Pan-cancer genomic analysis shows hemizygous PTEN loss tumors are associated with immune evasion and poor outcome[J]. Sci Rep, 2023, 13(1):5049.
55
Song L, Li ZY , Liu WP , et al. Crosstalk between Wnt/β-catenin and Hedgehog/Gli signaling pathways in colon cancer and implications for therapy[J]. Cancer Biol Ther, 2015, 16(1):1-7.
56
Sabol M, Trnski D, Musani V, et al. Role of GLI transcription factors in pathogenesis and their potential as new therapeutic targets[J]. Int J Mol Sci, 2018, 19(9):2562.
57
Fan L, Jin P, Qian Y, et al. Case report: prenatal diagnosis of postaxial polydactyly with bi-allelic variants in smoothened (SMO)[J]. Front Genet, 2022, 13:887082.
58
Maiti S, Mondal S, Satyavarapu EM, et al. mTORC2 regulates hedgehog pathway activity by promoting stability to Gli2 protein and its nuclear translocation[J]. Cell Death Dis, 2017, 8(7):e2926.
59
Angius A, Scanu AM, Arru C, et al. Portrait of cancer stem cells on colorectal cancer: molecular biomarkers, signaling pathways and miRNAome[J]. Int J Mol Sci, 2021, 22(4):1603.
60
Loh HY, Norman BP, Lai KS, et al. Post-transcriptional regulatory crosstalk between micrornas and canonical TGF-β/BMP signalling cascades on osteoblast lineage: a comprehensive review[J]. Int J Mol Sci, 2023, 24(7):6423.
61
Yao Y, Zhang Z, Kong F, et al. Smad4 induces cell death in HO-8910 and SKOV3 ovarian carcinoma cell lines via PI3K-mTOR involvement[J]. Exp Biol Med (Maywood), 2020, 245(9):777-784.
62
Puri P, Grimmett G, Faraj R, et al. Elevated protein kinase a activity in stomach mesenchyme disrupts mesenchymal-epithelial crosstalk and induces preneoplasia[J]. Cell Mol Gastroenterol Hepatol, 2022, 14(3):643-668.
63
Luo K. Signaling Cross Talk between TGF-β/Smad and other signaling pathways[J]. Cold Spring Harb Perspect Biol, 2017, 9(1):a022137.
64
Perumal E, So Youn K, Sun S, et al. PTEN inactivation induces epithelial-mesenchymal transition and metastasis by intranuclear translocation of β-catenin and snail/slug in non-small cell lung carcinoma cells[J]. Lung Cancer, 2019, 130:25-34.
65
Kostouros A, Koliarakis I, Natsis K, et al. Large intestine embryogenesis: molecular pathways and related disorders (Review) [J]. Int J Mol Med, 2020, 46(1):27-57.
66
Chhabra S, Liu L, Goh R, et al. Dissecting the dynamics of signaling events in the BMP, WNT, and NODAL cascade during self-organized fate patterning in human gastruloids[J]. PLoS Biol, 2019, 17(10):e3000498.
67
Perekatt AO, Shah PP, Cheung S, et al. SMAD4 suppresses WNT-driven dedifferentiation and oncogenesis in the differentiated gut epithelium[J]. Cancer Res, 2018, 78(17):4878-4890.
68
Wizenty J, Tacke F, Sigal M. Responses of gastric epithelial stem cells and their niche to Helicobacter pylori infection[J]. Ann Transl Med, 2020, 8(8):568.
69
Ye W, Takabayashi H, Yang Y, et al. Regulation of gastric Lgr5+ve cell homeostasis by bone morphogenetic protein (BMP) signaling and inflammatory stimuli[J]. Cell Mol Gastroenterol Hepatol, 2018, 5(4):523-538.
70
Hayakawa Y, Ariyama H, Stancikova J, et al. Mist1 expressing gastric stem cells maintain the normal and neoplastic gastric epithelium and are supported by a perivascular stem cell niche[J]. Cancer Cell, 2015, 28(6):800-814.
71
Wizenty J, Müllerke S, Kolesnichenko M, et al.Gastric stem cells promote inflammation and gland remodeling in response to Helicobacter pylori via Rspo3-Lgr4 axis[J]. EMBO J, 2022, 41(13):e109996.
72
Chung WC, Zhou Y, Atfi A, et al. Downregulation of notch signaling in kras-induced gastric metaplasia[J]. Neoplasia, 2019, 21(8):810-821.
73
De Vas MG, Kopp JL, Heliot C, et al. Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors[J]. Development, 2015, 142(5):871-882
74
Gere-Becker MB, Pommerenke C, Lingner T, et al. Retinoic acid-induced expression of Hnf1b and Fzd4 is required for pancreas development in Xenopus laevis[J]. Development. 2018, 145(12): dev161372.
75
Jiang M, Azevedo-Pouly AC, Deering TG, et al. MIST1 and PTF1 collaborate in feed-forward regulatory loops that maintain the pancreatic acinar phenotype in adult mice[J]. Mol Cell Biol, 2016, 36(23):2945-2955.
76
Duque M, Amorim JP, Bessa J. Ptf1a function and transcriptional cis-regulation, a cornerstone in vertebrate pancreas development[J]. FEBS J, 2022, 289(17):5121-5136.
77
Xie X, Zhou Z, Song Y, et al. Mist1 inhibits epithelial-mesenchymal transition in gastric adenocarcinoma via downregulating the Wnt/β-catenin Pathway[J]. J Cance, 2021, 12(15):4574-4584.
78
Trejo-Solis C, Escamilla-Ramirez A, Jimenez-Farfan D, et al. Crosstalk of the Wnt/β-catenin signaling pathway in the induction of apoptosis on cancer cells[J]. Pharmaceuticals (Basel), 2021,14(9):871.
79
Ghazvini M, Sonneveld P, Kremer A, et al. Cancer stemness in Apc- vs. Apc/KRAS-driven intestinal tumorigenesis[J]. PLoS One, 2013, 8(9):e73872.
80
SuJ, Morgani SM, David CJ, et al. TGF-β orchestrates fibrogenic and developmental EMTs via the RAS effector RREB1[J]. Nature, 2020, 577(7791):566-571.
81
Pak KH, Kim DH, Kim H, et al. Differences in TGF-β1 signaling and clinicopathologic characteristics of histologic subtypes of gastric cancer[J]. BMC Cancer, 2016,16:60.
82
Xu P, Lin X, Feng XH. Posttranslational regulation of smads[J]. Cold Spring Harb Perspect Biol, 2016, 8(12):a022087.
83
Tago K, Ohta S, Funakoshi-Tago M, et al. STAT3 and ERK pathways are involved in cell growth stimulation of the ST2/IL1RL1 promoter[J]. FEBS Open Bio, 2017,7(2):293-302.
84
Hu X, Li J, Fu M, et al. The JAK/STAT signaling pathway: from bench to clinic[J]. Signal Transduct Target Ther, 2021,6(1):402.
85
Jeong WJ , Ro EJ , Choi KY. Interaction between Wnt/β-catenin and RAS-ERK pathways and an anti-cancer strategy via degradations of β-catenin and RAS by targeting the Wnt/β-catenin pathway[J]. NPJ Precis Oncol, 2018, 2(1):5.
86
Ternet C, Kiel C. Signaling pathways in intestinal homeostasis and colorectal cancer: KRAS at centre stage[J]. Cell Commun Signal, 2021, 19(1):31.
87
Zhan T, Ambrosi G, Wandmacher AM, et al. MEK inhibitors activate Wnt signalling and induce stem cell plasticity in colorectal cancer[J]. Nat Commun, 2019, 10(1):2197.
88
Sheng W, Malagola E, Nienhüser H, et al. Hypergastrinemia expands gastric ECL cells through CCK2R+ progenitor cells via ERK activation[J]. Cell Mol Gastroenterol Hepatol, 2020, 10(2):434-449.
89
Li Z, Zhang YY, Zhang H, et al. Asymmetric cell division and tumor heterogeneity[J]. Front Cell Dev Biol, 2022,10:938685.
90
Wuputra K, Ku CC, Pan JB,et al. Stem cell biomarkers and tumorigenesis in gastric cancer[J]. J Pers Med, 2022, 12(6):929.
91
Ghatak D, Das Ghosh D, Roychoudhury S. Cancer stemness: p53 at the wheel[J]. Front Oncol, 2021, 10:604124.
92
Xiao Q, Werner J, Venkatachalam N, et al. Cross-Talk between p53 and Wnt signaling in cancer[J]. Biomolecules, 2022,12(3):453.
93
Li YH, Li YX, Li M, et al. The Ras-ERK1/2 signaling pathway regulates H3K9ac through PCAF to promote the development of pancreatic cancer[J]. Life Sci, 2020, 256:117936.
94
Kung CP, Weber JD. It's Getting complicated-a fresh look at p53-MDM2-ARF triangle in tumorigenesis and cancer therapy[J]. Front Cell Dev Biol, 2022, 10:818744.
[1] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[2] 张华, 孙宇, 乡世健, 李樱媚, 王小群. 循环肿瘤细胞预测晚期胃肠癌患者化疗药物敏感性的研究[J]. 中华普通外科学文献(电子版), 2023, 17(06): 422-425.
[3] 李越洲, 张孔玺, 李小红, 商中华. 基于生物信息学分析胃癌中PUM的预后意义[J]. 中华普通外科学文献(电子版), 2023, 17(06): 426-432.
[4] 张俊, 罗再, 段茗玉, 裘正军, 黄陈. 胃癌预后预测模型的研究进展[J]. 中华普通外科学文献(电子版), 2023, 17(06): 456-461.
[5] 张再博, 王冰雨, 焦志凯, 檀碧波. 胃癌术后下肢深静脉血栓危险因素的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 475-480.
[6] 钱龙, 陆晓峰, 王行舟, 杜峻峰, 沈晓菲, 管文贤. 神经系统调控胃肠道肿瘤免疫应答研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 86-89.
[7] 李凤仪, 李若凡, 高旭, 张超凡. 目标导向液体干预对老年胃肠道肿瘤患者术后血流动力学、胃肠功能恢复的影响[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 29-32.
[8] 逄世江, 黄艳艳, 朱冠烈. 改良π形吻合在腹腔镜全胃切除消化道重建中的安全性和有效性研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 66-69.
[9] 莫波, 王佩, 王恒, 何志军, 梁俊, 郝志楠. 腹腔镜胃癌根治术与改良胃癌根治术治疗早期胃癌的疗效[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 644-647.
[10] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[11] 牛朝, 李波, 张万福, 靳文帝, 王春晓, 李晓刚. 腹腔镜袖状胃切除联合胆囊切除治疗肥胖合并胆囊结石安全性和疗效[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 635-639.
[12] 黄泽辉, 梁杰贤, 曾伟. 右美托咪定联合艾司氯胺酮在小儿无痛胃镜检查中的应用研究[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 510-513.
[13] 董青, 丁飞, 郭浩, 李峰. Nesfatin-1/NUCB2在幽门螺杆菌感染相关早期胃癌患者中的表达及临床意义[J]. 中华临床医师杂志(电子版), 2023, 17(07): 783-789.
[14] 魏红涛, 普布仓决, 格桑央宗, 黎燕, 益西旺扎, 李鹏. 拉萨地区上消化道溃疡患者幽门螺杆菌感染及治疗分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 662-665.
[15] 孟科, 李燕, 闫婧爽, 闫斌. 胶囊内镜胃通过时间的影响因素分析[J]. 中华临床医师杂志(电子版), 2023, 17(06): 671-675.
阅读次数
全文


摘要