切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (05) : 303 -312. doi: 10.3877/cma.j.issn.2095-1221.2024.05.006

论著

Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析
王庭宇1, 邵联波1, 刘珊1, 沈振亚1,()   
  1. 1.215000 苏州,苏州大学附属第一医院心脏大血管外科 苏州大学心血管病研究所
  • 收稿日期:2024-07-10 出版日期:2024-10-01
  • 通信作者: 沈振亚

Construction of co-expression network and target analysis of Stanford type A aortic dissection associated gene KIF20A

Tingyu Wang1, Lianbo Shao1, Shan Liu1, Zhenya Shen1,()   

  1. 1.Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University & Institute for Cardiovascular Science, Soochow University, Suzhou 215000, China
  • Received:2024-07-10 Published:2024-10-01
  • Corresponding author: Zhenya Shen
引用本文:

王庭宇, 邵联波, 刘珊, 沈振亚. Stanford A 型主动脉夹层相关基因KIF20A 的共表达网络构建及作用靶点分析[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 303-312.

Tingyu Wang, Lianbo Shao, Shan Liu, Zhenya Shen. Construction of co-expression network and target analysis of Stanford type A aortic dissection associated gene KIF20A[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(05): 303-312.

目的

筛选Stanford A 型主动脉夹层中的差异表达基因并构建基因共表达网络,以深入解析该疾病的发病机制并筛选潜在的新型分子标志物。

方法

在GEO数据库获取Stanford A 型主动脉夹层相关的基因表达谱芯片,采用R 语言limma 包筛选差异表达的mRNA(P< 0.05、|log2FC|> 1),并选取主动脉夹层发病相关的关键差异基因进行深入研究,继而通过实时荧光定量PCR、Western blot 检测关键差异基因及其所编码蛋白在Stanford A 型主动脉夹层血管组织中的表达情况。利用生物信息学构建该基因的基因共表达网络,并应用R 语言ggplot2等包对共表达基因进行功能和通路富集分析,明确该共表达网络所参与的生物学功能。进一步通过对共表达基因进行蛋白-蛋白互作 (PPI)网络分析,筛选该关键差异基因的直接相互作用基因,并验证其相关性。最终建立主动脉夹层相关的基因互作图谱,探讨主动脉夹层发病的可能分子机制。两组间比较采用独立样本t 检验。

结果

通过WALD 检验筛选出969 个在Stanford A 型主动脉夹层中差异表达的基因。共表达网络分析发现KIF20A 可能作为关键基因在A 型主动脉夹层的发病过程中发挥作用,实时荧光定量PCR、Western blot 结果显示其在患者组织中表达上调。针对KIF20A 的基因共表达网络共纳入53 个基因,相关性分析显示其中20 个基因表达与KIF20A 呈正相关,33 个基因表达呈负相关。功能富集分析发现KIF20A 共表达网络基因主要富集在上皮、组织等极性的建立和调控、线粒体功能以及精氨酸和脯氨酸代谢等生物学过程。PPI 网络分析发现 CDK1 与KIF20A 相互作用,且2 个基因的表达量呈正相关 (r = 0.83,P< 0.001)。

结论

KIF20A 基因在Stanford A 型主动脉夹层组织中升高,可能通过与CDK1 相互作用调控一系列基因表达,影响上皮、组织等的极性建立和调控、线粒体功能等生物学进程,介导主动脉夹层的发生发展。

Objective

To further explore the pathogenesis of Stanford Type A aortic dissection and screen potential novel molecular biomarkers by identifying differentially expressed genes in Stanford Type A aortic dissection and constructing a gene co-expression network.

Methods

Gene expression arrays of Stanford Type A aortic dissection were obtained from the GEO database. The R limma package was used to screen differentially expressed mRNAs( P< 0.05,|log2FC|> 1). Key differentially expressed genes involved in the pathogenesis of aortic dissection were selected for comprehensive investigation. Subsequently, the expression of key differentially expressed genes and the coded protein were validated by quantitative real-time PCR and Western blot in vascular wall tissues from Stanford Type A aortic dissection patients and control group. The gene co-expression network of the selected gene was constructed by bioinformatic analysis; To clarify the biological functions of the co-expression network, the function and pathway enrichment analysis of the co-expressed genes were performed by ggplot2 package in R language. Further, a protein- protein interaction (PPI) network of these co-expressed genes was constructed to identify the genes interacting with the hub gene directly and validate their correlation. By integrating gene co-expression and PPI networks, we established the gene interaction mechanisms relevant to aortic dissection and explored the specific molecular mechanisms underlying its pathogenesis. Independent sample t test was used for comparison between the two groups.

Results

A total of 969 differentially expressed genes were identified in Stanford Type A aortic dissection through the application of the WALD test. Based on co-expression network analysis, we selected the upregulated gene KIF20A for further investigation in aortic dissection, and subsequently validated its elevated expression levels in clinical samples. There were 53 genes in the co-expression network of KIF20A, with 20 genes positively correlated and 33 negatively correlated with KIF20A expression. Functional enrichment analysis of this network was mainly enriched in biological processes such as polarity regulation of epithelial cells,mitochondrial function, and arginine and proline metabolism. Further analysis showed that CDK1 directly interacted with KIF20A, and the expression levels of the two genes were positively correlated(r = 0.83,P< 0.001).

Conclusion

KIF20A is significantly elevated in Stanford Type A aortic dissection tissues and potentially interacts with CDK1, regulating the expression of a series of genes affecting biological processes such as polarity establishment and regulation of epithelium and tissue,mitochondrial function, and thus mediating the occurrence and development of aortic dissection.

图1 研究流程图
表1 引物序列信息
表2 患者临床资料( ± sx
图2 转录组测序差异基因热图
图3 转录组测序差异基因火山图
图4 各样本KIF20A 的表达量
图5 GSE153434 主动脉夹层和对照组KIF20A 的表达量 注:与 A 型夹层组比较,aP < 0.05
图6 Stanford A 型夹层和对照组KIF20A 基因的表达量 注:与 A 型夹层组比较,aP < 0.05
图7 Stanford A 型夹层和对照组KIF20A 蛋白的表达量 注:与 A 型夹层组比较,aP < 0.05
图8 低表达组和高表达组KIF20A 的表达量 注:与 Low 比较,aP< 0.001
图9 KIF20A 相关基因表达量热图
图10 KIF20A 相关基因相关性热图
图11 KIF20A 相关基因GO 富集分析
图12 KIF20A 相关基因KEGG pathway 富集分析
图13 蛋白互作网络图
图14 hub 基因蛋白互作网络图
图15 KIF20A 与CDK1 相关性分析
1
Evangelista A, Isselbacher EM, Bossone E, et al. Insights from the international registry of acute aortic dissection: a 20-year experience of collaborative clinical research [J]. Circulation, 2018, 137(17):1846-1860.
2
Zhu Y, Lingala B, Baiocchi M, et al. Type A aortic dissectionexperience over 5 decades: JACC historical breakthroughs in perspective[J]. J Am Coll Cardiol, 2020, 76(14):1703-1713.
3
Nienaber CA, Clough RE, Sakalihasan N, et al. Aortic dissection[J].Nat Rev Dis Primers, 2016, 2:16053.
4
Hameed I, Cifu AS, Vallabhajosyula P. Management of thoracic aortic dissection [J]. JAMA, 2023, 329(9):756-757.
5
Nienaber CA, Clough RE. Management of acute aortic dissection[J].Lancet, 2015, 385(9970):800-811.
6
Uchida K, Karube N, Yasuda S, et al. Pathophysiology and surgical treatment of type A acute aortic dissection [J]. Ann Vasc Dis, 2016,9(3):160-167.
7
Verstraeten A, Fedoryshchenko I, Loeys B. The emerging role of endothelial cells in the pathogenesis of thoracic aortic aneurysm and dissection [J]. Eur Heart J, 2023, 44(14):1262-1264.
8
Yang X, Xu C, Yao F, et al. Targeting endothelial tight junctions to predict and protect thoracic aortic aneurysm and dissection[J]. Eur Heart J, 2023, 44(14):1248-1261.
9
van Dam S, Võsa U, van der Graaf A, et al. Gene co-expression analysis for functional classification and gene-disease predictions[J].Brief Bioinform, 2018, 19(4):575-592.
10
Wang T, He X, Liu X, et al. Weighted gene co-expression network analysis identifies FKBP11 as a key regulator in acute aortic dissection through a NF-κB dependent pathway[J]. Front Physiol, 2017, 8: 1010.
11
Szklarczyk D, Gable AL, Nastou KC, et al. The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[J]. Nucleic Acids Res, 2021, 49(D1):D605-D12.
12
Doncheva NT, Morris JH, Gorodkin J, et al. Cytoscape StringApp:network analysis and visualization of proteomics data[J]. J Proteome Res, 2019, 18(2):623-632.
13
Tang Z, Li C, Kang B, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses[J]. Nucleic Acids Res, 2017, 45(W1):W98-W102.
14
Goldfinger JZ, Halperin JL, Marin ML, et al. Thoracic aortic aneurysm and dissection[J]. J Am Coll Cardiol, 2014, 64(16):1725-1739.
15
Lee CY, Angelov SN, Zhu J, et al. Blockade of TGF-β (transforming growth factor beta) signaling by deletion of Tgfbr2 in smooth muscle cells of 11-month-old mice alters aortic structure and causes vasomotor dysfunction-brief report[J]. Arterioscler Thromb Vasc Biol, 2022,42(6):764-771.
16
Isselbacher EM, Lino Cardenas CL, Lindsay ME. Hereditary influence in thoracic aortic aneurysm and dissection[J]. Circulation, 2016,133(24):2516-2528.
17
Milleron O, Arnoult F, Delorme G, et al. Pathogenic FBN1 genetic variation and aortic dissection in patients with Marfan syndrome[J]. J Am Coll Cardiol, 2020, 75(8):843-853.
18
Corley SM, MacKenzie KL, Beverdam A, et al. Differentially expressed genes from RNA-Seq and functional enrichment results are affected by the choice of single-end versus paired-end reads and stranded versus non-stranded protocols[J]. BMC Genomics, 2017,18(1): 399.
19
Wu WD, Yu KW, Zhong N, et al. Roles and mechanisms of Kinesin-6 KIF20A in spindle organization during cell division[J]. Eur J Cell Biol,2019, 98(2-4):74-80.
20
Louw JJ, Nunes Bastos R, Chen X, et al. Compound heterozygous loss-of-function mutations in KIF20A are associated with a novel lethal congenital cardiomyopathy in two siblings[J]. PLoS Genet, 2018,14(1):e1007138.
21
Ma X, Wang X, Dong Q, et al. Inhibition of KIF20A by transcription factor IRF6 affects the progression of renal clear cell carcinoma[J].Cancer Cell Int, 2021, 21(1):246.
22
He H, Liang L, Huang J, et al. KIF20A is associated with clinical prognosis and synergistic effect of gemcitabine combined with ferroptosis inducer in lung adenocarcinoma[J]. Front Pharmacol, 2022,13:1007429.
23
Copello VA, Burnstein KL. The kinesin KIF20A promotes progression to castration-resistant prostate cancer through autocrine activation of the androgen receptor[J]. Oncogene, 2022, 41(20):2824-2832.
24
Li L, Xue Q, Zhang M, et al. Upregulation of the key biomarker kinesin family member 20A (KIF20A) is associated with pulmonary artery hypertension[J]. Genomics, 2023, 115(5):110705.
25
Zhang Y, Han E, Peng Y, et al. Rice co-expression network analysis identifies gene modules associated with agronomic traits[J]. Plant Physiol, 2022, 190(2):1526-1542.
26
Aubart M, Gazal S, Arnaud P, et al. Association of modifiers and other genetic factors explain Marfan syndrome clinical variability[J]. Eur J Hum Genet, 2018, 26(12):1759-1772.
27
Li Y, Lui KO, Zhou B. Reassessing endothelial-to-mesenchymal transition in cardiovascular diseases[J]. Nat Rev Cardiol, 2018, 15(8):445-456.
28
Kim YH, Choi J, Yang MJ, et al. A MST1-FOXO1 cascade establishes endothelial tip cell polarity and facilitates sprouting angiogenesis[J].Nat Commun, 2019, 10(1): 838.
29
Steinritz D, Schmidt A, Simons T, et al. Chlorambucil (nitrogen mustard) induced impairment of early vascular endothelial cell migration-effects of α-linolenic acid and N-acetylcysteine[J]. Chem Biol Interact, 2014, 219:143-150.
30
Gambardella J, Khondkar W, Morelli MB, et al. Arginine and endothelial function[J]. Biomedicines, 2020, 8(8):277.
31
Ceglowski J, Hoffman HK, Neumann AJ, et al. TTLL12 is required for primary ciliary axoneme formation in polarized epithelial cells[J].EMBO Rep, 2024, 25(1):198-227.
32
Ear PH, Booth MJ, Abd-Rabbo D, et al. Dissection of Cdk1-cyclin complexes in vivo[J]. Proc Natl Acad Sci U S A, 2013, 110(39):15716-15721.
33
Michowski W, Chick JM, Chu C, et al. Cdk1 controls global epigenetic landscape in embryonic stem cells[J]. Mol Cell, 2020, 78(3):459-476.e13.
34
Guan T, Li M, Song Y, et al. Phosphorylation of USP29 by CDK1 governs TWIST1 stability and oncogenic functions[J]. Adv Sci (Weinh),2023, 10(11): e2205873.
35
Ravindran Menon D, Luo Y, Arcaroli JJ, et al. CDK1 interacts with Sox2 and promotes tumor initiation in human melanoma[J]. Cancer Res, 2018, 78(23):6561-6574.
36
Han Z, Jia Q, Zhang J, et al. Deubiquitylase YOD1 regulates CDK1 stability and drives triple-negative breast cancer tumorigenesis[J]. J Exp Clin Cancer Res, 2023, 42(1):228.
37
Zhang Y, Jiang Z, Li L, et al. Geminin interference facilitates vascular smooth muscle cell proliferation by upregulation of CDK-1[J].Cardiovasc Drugs Ther, 2014, 28(5):407-414.
38
Ma Y, Gong X, Mo Y, et al. Polydatin inhibits the oxidative stressinduced proliferation of vascular smooth muscle cells by activating the eNOS/SIRT1 pathway[J]. Int J Mol Med, 2016, 37(6):1652-1660.
39
Mohamed TMA, Ang YS, Radzinsky E, et al. Regulation of cell cycle to stimulate adult cardiomyocyte proliferation and cardiac regeneration[J]. Cell, 2018, 173(1):104-116.e12.
40
Abouleisa RRE, Tang XL, Ou Q, et al. Gene therapy encoding cell cycle factors to treat chronic ischemic heart failure in rats[J].Cardiovasc Res, 2024, 120(2):152-163.
[1] 胡诤贇, 史建伟, 申建伟, 王冰, 蒋春苗, 刘冲. 基于机器学习鉴定早产儿支气管肺发育不良的关键基因[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 446-454.
[2] 杜娟, 宋波, 颜晓明, 牛佳鸣, 林元龙, 陈晓红, 李锦, 梁晗, 张铮, 李宇欧, 王福祥, 邵冰. 外周血单个核细胞内人类免疫缺陷病毒DNA和RNA定量对病毒转录活性的区分[J]. 中华实验和临床感染病杂志(电子版), 2022, 16(03): 165-171.
[3] 林杰胜, 安会敏, 邵琨, 周全, 王祥慧, 周佩军. 基于外周血基因表达谱特征的肾移植排斥反应风险评估模型[J]. 中华移植杂志(电子版), 2020, 14(05): 273-278.
[4] 孙睿, 梁辉, 张颖, 邓琼, 胡七一, 张圣平, 张建文, 王铸. 基因芯片分析孤儿核受体NURR1上调表达对前列腺癌LNCaP细胞基因表达谱的影响[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(01): 81-85.
[5] 王萍, 张增利, 马予洁, 路君, 赵虎, 王水良, 谭建明, 李冰燕. GMPS,PR,CD40和p21对卵巢癌预后的预测价值(Prognostic values of GMPS, PR CD40, and p21 in ovarian cancer全译)[J]. 中华细胞与干细胞杂志(电子版), 2019, 09(02): 92-101.
[6] 焦扬, 赵洪波, 刘平, 付旭锋, 陈国栋, 罗晓曦, 桑雄波, 郑冰蓉. 人脐带间充质干细胞神经向分化与去分化基因表达谱分析[J]. 中华细胞与干细胞杂志(电子版), 2017, 07(01): 29-34.
[7] 孙伟鹏, 聂常富. 长链非编码RNA在肝细胞癌中的研究进展[J]. 中华肝脏外科手术学电子杂志, 2015, 04(03): 193-194.
[8] 吕赤, 梁逸超, 闫兆鹏, 吴迪, 王大路, 王鹤令, 苏琪, 殷红专. 基于Oncomine和GEPIA数据库分析NFE2L3基因在结直肠癌中的表达及其临床意义[J]. 中华临床医师杂志(电子版), 2018, 12(12): 651-658.
[9] 华杨, 孙劲禹, 程晨, 邢子琳, 盛燕辉, 孔祥清, 孙伟. 肥厚型心肌病的关键基因:一项基于加权基因共表达网络的分析[J]. 中华心脏与心律电子杂志, 2023, 11(01): 32-38.
[10] 李世浩, 李子豪, 董博, 吴春莉, 吴彬, 盛银良, 齐宇. 胞质分裂蛋白调节因子1对肺腺癌细胞迁移、侵袭和增殖的影响[J]. 中华胸部外科电子杂志, 2023, 10(03): 164-175.
阅读次数
全文


摘要