切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (05) : 315 -320. doi: 10.3877/cma.j.issn.2095-1221.2023.05.009

综述

诱导多能干细胞在遗传性心肌病细胞模型中的研究进展
谢冰冰, 谢曼婷, 向秋玲()   
  1. 510080 广州,中山大学干细胞与组织工程研究中心 干细胞与组织工程教育部重点实验室
  • 收稿日期:2023-09-13 出版日期:2023-10-01
  • 通信作者: 向秋玲
  • 基金资助:
    国家自然科学基金面上项目(82272164); 广东省自然科学基金(2021A1515011648)

Research progress of induced pluripotent stem cells in cell models of hereditary cardiomyopathy

Bingbing Xie, Manting Xie, Qiuling Xiang()   

  1. Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou 510080, China
  • Received:2023-09-13 Published:2023-10-01
  • Corresponding author: Qiuling Xiang
引用本文:

谢冰冰, 谢曼婷, 向秋玲. 诱导多能干细胞在遗传性心肌病细胞模型中的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 315-320.

Bingbing Xie, Manting Xie, Qiuling Xiang. Research progress of induced pluripotent stem cells in cell models of hereditary cardiomyopathy[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(05): 315-320.

遗传性心肌病是一类由于基因突变而引起的心肌结构和功能异常的疾病,可导致心力衰竭、心律失常甚至猝死。诱导多能干细胞的发现推动了人类多种疾病的体外研究,诱导获得的心肌细胞(CMs)为遗传性心肌病的机制研究及药物开发提供了重要的疾病细胞模型,已在基础研究中广泛应用。本文总结了遗传性心肌病的种类、临床表现以及常见的致病突变基因,以诱导多能干细胞衍生的CMs为体外模型,模拟各类遗传性心肌病的表型,并进一步挖掘由于基因突变引发的致病机制,为遗传性心肌病的遗传、分子和细胞学发病机制提供了充足的种子细胞,也为疾病的药物开发提供了研究模型。

Hereditary cardiomyopathy is a group of diseases characterized by abnormalities in myocardial structure and function due to genetic mutations, which leads to heart failure, arrhythmias and even sudden death. The discovery of induced pluripotent stem cells has promoted the in vitro study of a variety of human diseases. The cardiomyocytes obtained by induction provide important disease cell models for the study of the mechanism of hereditary cardiomyopathies and drug development and have been widely used in basic research. This article summarizs the types, clinical manifestations and common pathogenic mutated genes of hereditary cardiomyopathy, used induced pluripotent stem cell-derived cardiomyocytes as in vitro models to simulate the phenotypes of various types of hereditary cardiomyopathy, and further explores the related pathogenic mechanisms caused by gene mutations, providing sufficient seed cells for the genetic, molecular and cytological pathogenesis of hereditary cardiomyopathy. It also provides a valuable research model for drug development of diseases.

图1 心肌病患者来源的iPSCs用于心肌病细胞模型的研究路线注:iPSCs为人诱导多能干细胞
表1 hiPSC在遗传性心肌病细胞模型中的应用
疾病名称 发表年份 亮点 参考文献
HCM 2013 探索MYH7基因(p.R663H)突变在HCM中的作用机制,基于hiPSC模型发现与对照组相比,HCM组具有细胞增大和收缩性心律失常及细胞内钙循环增多等表型。 [22]
2019 HCM患者hiPSC-CMs表现出舒张功能受损,表现为舒张时间延长、舒张率降低和舒张肌节长度缩短以及舒张期钙超载等表型。 [23]
2022 首次证明iPSC-CMs中存在功能性的MPO,且在HCM-CMs中上调,通过增加3-氯酪氨酸修饰的MYBPC3蛋白水平来降低MYBPC3磷酸化水平,进而损害HCM-CMs中的心肌细胞舒张动力学。 [24]
2018 PRKAG2突变的HCM hiPSC-CMs表现出结构和功能异常。利用CRISPR矫正后消除了电生理异常、糖原累积和心肌细胞肥大等异常表型。 [25]
DCM 2012 首次建立了携带TNNT2突变的DCM-hiPSC疾病模型。 [31]
2015 利用TNNT2突变患者的hiPSC-CMs表征了心肌细胞在体外分化和成熟过程中的特性,并发现β肾上腺素能信号通路传导功能在DCM hiPSC-CMs中被减弱。 [32]
2020 利用TNNT2突变的hiPSC系,揭示了基因突变后破坏了肌钙蛋白与其他肌节蛋白的相互作用。 [33]
LVNC 2023 利用KLHL26突变患者衍生出hiPSC-CMs,细胞表现出内质网扩张和线粒体畸形,以及收缩率降低、钙瞬变等异常表型。 [38]
2023 利用PLEKHM2突变患者衍生hiPSC-CMs,发现这些心肌细胞自噬活性水平较低。 [39]
2016 构建TBX20突变的LVNC患者的hiPSC-CMs,发现TBX20突变后TGFβ信号转导异位激活,最终损害了心肌多层致密结构的形成。利用CRISPR技术矫正后,降低了TGFβ信号转导活性。 [40]
ARVC 2020 利用OBSCN突变的ARVC-hiPSC生成心肌细胞,表现出明显的脂质积累、多形性增加、不规则的Z带和L型钙电流增加。 [44]
2020 利用PKP2-hiPSC-CMs模型再现了ARVC脂肪生成和细胞凋亡的表型,并发现加入睾酮后表型恶化,雌二醇处理后表型有所改善。 [45]
2013 利用PKP2突变的ARVC患者hiPSC诱导为具有异常JUP蛋白核易位的心肌细胞,且脂肪生成、细胞凋亡、活性氧产生和脂肪酸氧化通量等方面均显著增加,PPARγ拮抗剂可减少脂肪生成,添加活性氧清除剂可减少心肌细胞凋亡。 [46]
2018 利用DSG2突变的ARVC患者的hiPSC生成心肌细胞,表现出多离子通道功能障碍和异常的细胞电生理学,以及对肾上腺素能刺激的敏感性增强。 [47]
1
Fadl SA, Revels JW, Rezai Gharai L, et al. Cardiac MRI of hereditary cardiomyopathy[J]. Radiographics, 2022, 42(3):625-643.
2
Arbelo E, Protonotarios A, Gimeno JR, et al. ESC scientific document group. 2023 ESC Guidelines for the management of cardiomyopathies[J]. Eur Heart J, 2023, 44(37):3503-3626.
3
中华医学会医学遗传学分会遗传病临床实践指南撰写组. 遗传性心肌病的临床实践指南[J]. 中华医学遗传学杂志, 2020, 37(3):300-307.
4
McKenna WJ, Judge DP. Epidemiology of the inherited cardiomyopathies[J]. Nat Rev Cardiol, 2021, 18(1):22-36.
5
马阳光, 张雅永, 孟明耀, 等. 诱导多能干细胞在遗传性心脏疾病模型中的应用与机制[J]. 中国组织工程研究, 2024, 28(25):4072-4078.
6
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
7
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920.
8
胡敏洁,王思贤,王永煜.人诱导多能干细胞及其在血管相关疾病模型中的应用[J/OL].中华细胞与干细胞杂志(电子版), 2022, 12(3):167-175.
9
Zhao M, Nakada Y, Wei Y, et al. Cyclin D2 overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction[J]. Circulation, 2021, 144(3):210-228.
10
Ulmer BM, Eschenhagen T. Human pluripotent stem cell-derived cardiomyocytes for studying energy metabolism[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(3):118471.doi:10.1016/j.bbamcr.2019.04.001.
11
Lagomarsino VN, Pearse RV 2nd, Liu L, et al. Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors[J]. Neuron, 2021, 109(21):3402-3420.e9.
12
Mun SJ, Ryu JS, Lee MO, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids[J]. J Hepatol, 2019, 71(5):970-985.
13
Suezawa T, Kanagaki S, Moriguchi K, et al. Disease modeling of pulmonary fibrosis using human pluripotent stem cell-derived alveolar organoids[J]. Stem Cell Reports, 2021, 16(12):2973-2987.
14
Kondo T, Imamura K, Funayama M, et al. iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer's disease[J]. Cell Rep, 2017, 21(8):2304-2312.
15
Okamoto R, Takayama K, Akita N, et al. Human iPS cell-based liver-like tissue engineering at extrahepatic sites in mice as a new cell therapy for hemophilia B[J]. Cell Transplant, 2018, 27(2):299-309.
16
Zhu D, Xie M, Gademann F, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease[J]. Stem Cell Res Ther, 2020, 11(1):98. doi: 10.1186/s13287-020-01608-8.
17
Lorenzini M, Norrish G, Field E, et al. Penetrance of hypertrophic cardiomyopathy in sarcomere protein mutation carriers[J]. J Am Coll Cardiol, 2020, 76(5):550-559.
18
Velicki L, Jakovljevic DG, Preveden A, et al. Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy[J]. BMC Cardiovasc Disord, 2020, 20(1):516. doi: 10.1186/s12872-020-01807-4.
19
Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy[J]. Circ Res, 2017, 121(7):749-770.
20
Glavaški M, Velicki L, Vučinić N. Hypertrophic cardiomyopathy: genetic foundations, outcomes, interconnections, and their modifiers[J]. Medicina (Kaunas), 2023, 59(8):1424. doi:10.3390/medicina59081424.
21
Huang H, Chen Y, Jin J, et al. CSRP3, p.Arg122 is responsible for hypertrophic cardiomyopathy in a Chinese family[J]. J Gene Med, 2022, 24(1):e3390. doi: 10.1002/jgm.3390.
22
Lan F, Lee AS, Liang P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells[J]. Cell Stem Cell, 2013, 12(1):101-113.
23
Wu H, Yang H, Rhee JW, et al. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients[J]. Eur Heart J, 2019, 40(45):3685-3695.
24
Ramachandra CJA, Kp MMJ, Chua J, et al. Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes[J]. Cardiovasc Res, 2022, 118(2):517-530.
25
Ben Jehuda R, Eisen B, Shemer Y, et al. CRISPR correction of the PRKAG2 gene mutation in the patient's induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities[J]. Heart Rhythm, 2018, 15(2):267-276.
26
Finocchiaro G, Merlo M, Sheikh N, et al. The electrocardiogram in the diagnosis and management of patients with dilated cardiomyopathy[J]. Eur J Heart Fail, 2020, 22(7):1097-1107.
27
Peters S, Johnson R, Birch S, et al. Familial dilated cardiomyopathy[J]. Heart Lung Circ, 2020, 29(4):566-574.
28
Jordan E, Hershberger RE. Considering complexity in the genetic evaluation of dilated cardiomyopathy[J]. Heart, 2021, 107(2):106-112.
29
Ye L, Ni X, Zhao ZA, et al. The application of induced pluripotent stem cells in cardiac disease modeling and drug testing[J]. J Cardiovasc Transl Res, 2018, 11(5):366-374.
30
Wang Y, Lei W, Yang J, et al. The updated view on induced pluripotent stem cells for cardiovascular precision medicine[J]. Pflugers Arch, 2021, 473(7):1137-1149.
31
Sun N, Yazawa M, Liu J, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy[J]. Sci Transl Med, 2012, 4(130):130ra47. doi:10.1126/scitranslmed.3003552.
32
Wu H, Lee J, Vincent LG, et al. Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised β-adrenergic signaling in an iPSC model of dilated cardiomyopathy[J]. Cell Stem Cell, 2015, 17(1):89-100.
33
Dai Y, Amenov A, Ignatyeva N, et al. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients[J]. Sci Rep, 2020, 10(1):209. doi: 10.1038/s41598-019-56597-3.
34
Singh DP, Patel H. Left Ventricular noncompaction cardiomyopathy[M]. 2022 Jul 4. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan.
35
Hirono K, Hata Y, Miyao N, et al. Increased burden of ion channel gene variants is related to distinct phenotypes in pediatric patients with left ventricular noncompaction[J]. Circ Genom Precis Med, 2020, 13(4):e002940. doi: 10.1161/CIRCGEN.119.002940.
36
Hirono K, Ichida F. Left ventricular noncompaction: a disorder with genotypic and phenotypic heterogeneity-a narrative review[J]. Cardiovasc Diagn Ther, 2022, 12(4):495-515.
37
van Waning JI, Caliskan K, Michels M, et al. Cardiac phenotypes, genetics, and risks in familial noncompaction cardiomyopathy[J]. J Am Coll Cardiol, 2019, 73(13):1601-1611.
38
Thareja SK, Anfinson M, Cavanaugh M, et al. Altered contractility, Ca2+ transients, and cell morphology seen in a patient-specific iPSC-CM model of Ebstein's anomaly with left ventricular noncompaction[J]. Am J Physiol Heart Circ Physiol, 2023, 325(1):H149-H162.
39
Korover N, Etzion S, Cherniak A,et al. Functional defects in hiPSC-derived cardiomyocytes from patients with a PLEKHM2-mutation associated with dilated cardiomyopathy and left ventricular non-compaction[J]. Biol Res, 2023, 56(1):34. doi: 10.1186/s40659-023-00442-5.
40
Kodo K, Ong SG, Jahanbani F, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy[J]. Nat Cell Biol, 2016, 18(10):1031-1042.
41
Bluemke DA, James CA, Riele A. risk stratification in arrhythmogenic right ventricular cardiomyopathy: not a one-size-fits-all strategy [J]. J Am Coll Cardiol, 2020, 75(22): 2766-2768.
42
Cho Y. Arrhythmogenic right ventricular cardiomyopathy[J]. J Arrhythm, 2018, 34(4):356-368.
43
Murray B, James CA. Genotype-phenotype correlates in arrhythmogenic cardiomyopathies[J]. Curr Cardiol Rep, 2022, 24(11):1557-1565.
44
Chen P, Xiao Y, Wang Y, et al. Intracellular calcium current disorder and disease phenotype in OBSCN mutant iPSC-based cardiomyocytes in arrhythmogenic right ventricular cardiomyopathy[J]. Theranostics, 2020, 10(24):11215-11229.
45
Akdis D, Saguner AM, Shah K, et al. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome[J]. Eur Heart J, 2017, 38(19):1498-1508. .
46
Kim C, Wong J, Wen J, et al Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs[J]. Nature, 2013, 494(7435):105-110.
47
El-Battrawy I, Zhao Z, Lan H, et al. Electrical dysfunctions in human-induced pluripotent stem cell-derived cardiomyocytes from a patient with an arrhythmogenic right ventricular cardiomyopathy[J]. Europace, 2018, 20(FI1):f46-f56.
48
Zhuang Q, Guo F, Fu L, et al. 1-Deoxynojirimycin promotes cardiac function and rescues mitochondrial cristae in mitochondrial hypertrophic cardiomyopathy[J]. J Clin Invest, 2023, 133(14):e164660. doi: 10.1172/JCI164660.
49
Sanbe A, Nelson D, Gulick J, et al. In vivo analysis of an essential myosin light chain mutation linked to familial hypertrophic cardiomyopathy[J]. Circ Res, 2000, 87(4):296-302.
50
Giacomelli E, Meraviglia V, Campostrini G, et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease[J]. Cell Stem Cell, 2020, 26(6):862-879.e11.
51
Ito M, Nomura S, Morita H, et al. Trends and limitations in the assessment of the contractile properties of human induced pluripotent stem cell-derived cardiomyocytes from patients with dilated cardiomyopathy[J]. Front Cardiovasc Med, 2020, 7:154. doi: 10.3389/fcvm.2020.00154.
52
Li H, Huang M, Wang J, et al.A method for establishing the electrophysiological model of alcoholic cardiomyopathy[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2020, 45(4):386-394.
53
Nakamura K, Murry C. Function follows form-a review of cardiac cell therapy[J]. Circ J, 2019, 83(12):2399-2412.
54
高原, 盛伟, 黄国英. 多能干细胞在体外心脏模型构建研究中的应用[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(5):314-318.
55
武玉康, 康九红. 多能干细胞在心脏发育和疾病研究中的应用[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(6):378-382.
[1] 王岚, 徐斌胜, 谢乐. 肥厚型心肌病的经胸超声心动图诊断与心电图表现特征[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 593-596.
[2] 夏靖涵, 林凤娇, 王胰, 丁戈琦, 张清凤, 张红梅, 谢盛华, 李明星, 尹立雪, 李文华. 二尖瓣空间变化联合左心房应变对肥厚型心肌病合并左心室流出道梗阻的预测价值[J/OL]. 中华医学超声杂志(电子版), 2024, 21(06): 585-592.
[3] 张霞, 张瑞, 郑志波, 张勤. 紫草素调控乳酸化修饰和线粒体功能改善脓毒症心肌病小鼠的预后[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(04): 275-284.
[4] 柯晴潆, 沈延飞, 许强宏, 蔡国龙. 预测脓毒性心肌病患者院内死亡风险列线图模型的构建及验证[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(01): 10-18.
[5] 谭娟, 谭建新, 邵彬彬, 王艳, 许争峰. 胎儿单基因遗传病无创产前检测的研究现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(03): 245-250.
[6] 王晓亚, 王燕芸, 顾永忠. 产科快速反应团队成功救治心脏骤停孕产妇1例并文献复习[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 148-156.
[7] 王向丽, 吴涛, 毛东锋, 刘恒, 刘文慧, 周芮, 田红娟. 异基因造血干细胞移植治疗ANKRD26相关性血小板减少症1例并文献复习[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 236-238.
[8] 乔树叶, 以敏, 李理, 潘思琼, 陈苗玉. 骨肉瘤诱导多能干细胞模型的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 30-36.
[9] 张龙, 孙善柯, 徐伟, 李文柱, 李俊达, 池涌泉, 何广胜, 成峰, 王学浩, 饶建华. 腹腔镜脾切除治疗血液系统疾病的临床疗效分析[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 870-875.
[10] 蔡依依, 楼国春, 徐栋, 袁瑛. 遗传性大肠癌的筛查与随访策略优化[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(01): 14-20.
[11] 张智, 董志伟, 徐祖鑫, 姜莉鑫, 张玉辉, 顾国利. Peutz-Jeghers综合征基因型研究及临床诊治进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(01): 6-13.
[12] 陈园园, 颜宏利. 遗传性结直肠癌的基因阻断[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(01): 1-5.
[13] 贾玲玲, 滕飞, 常键, 黄福, 刘剑萍. 心肺康复在各种疾病中应用的研究进展[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 859-862.
[14] 魏冰倩, 蓝荣芳. 起搏诱导心肌病应对新策略:导线移除与希氏-浦肯野系统起搏升级[J/OL]. 中华心脏与心律电子杂志, 2024, 12(03): 155-160.
[15] 胡梦瑶, 宋怡沛, 龚良庚. 心肌应变成像在糖尿病心肌病评估中的研究进展[J/OL]. 中华心脏与心律电子杂志, 2024, 12(01): 32-35.
阅读次数
全文


摘要