1 |
Fadl SA, Revels JW, Rezai Gharai L, et al. Cardiac MRI of hereditary cardiomyopathy[J]. Radiographics, 2022, 42(3):625-643.
|
2 |
Arbelo E, Protonotarios A, Gimeno JR, et al. ESC scientific document group. 2023 ESC Guidelines for the management of cardiomyopathies[J]. Eur Heart J, 2023, 44(37):3503-3626.
|
3 |
中华医学会医学遗传学分会遗传病临床实践指南撰写组. 遗传性心肌病的临床实践指南[J]. 中华医学遗传学杂志, 2020, 37(3):300-307.
|
4 |
McKenna WJ, Judge DP. Epidemiology of the inherited cardiomyopathies[J]. Nat Rev Cardiol, 2021, 18(1):22-36.
|
5 |
马阳光, 张雅永, 孟明耀, 等. 诱导多能干细胞在遗传性心脏疾病模型中的应用与机制[J]. 中国组织工程研究, 2024, 28(25):4072-4078.
|
6 |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
|
7 |
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920.
|
8 |
胡敏洁,王思贤,王永煜.人诱导多能干细胞及其在血管相关疾病模型中的应用[J/OL].中华细胞与干细胞杂志(电子版), 2022, 12(3):167-175.
|
9 |
Zhao M, Nakada Y, Wei Y, et al. Cyclin D2 overexpression enhances the efficacy of human induced pluripotent stem cell-derived cardiomyocytes for myocardial repair in a swine model of myocardial infarction[J]. Circulation, 2021, 144(3):210-228.
|
10 |
Ulmer BM, Eschenhagen T. Human pluripotent stem cell-derived cardiomyocytes for studying energy metabolism[J]. Biochim Biophys Acta Mol Cell Res, 2020, 1867(3):118471.doi: 10.1016/j.bbamcr.2019.04.001.
|
11 |
Lagomarsino VN, Pearse RV 2nd, Liu L, et al. Stem cell-derived neurons reflect features of protein networks, neuropathology, and cognitive outcome of their aged human donors[J]. Neuron, 2021, 109(21):3402-3420.e9.
|
12 |
Mun SJ, Ryu JS, Lee MO, et al. Generation of expandable human pluripotent stem cell-derived hepatocyte-like liver organoids[J]. J Hepatol, 2019, 71(5):970-985.
|
13 |
Suezawa T, Kanagaki S, Moriguchi K, et al. Disease modeling of pulmonary fibrosis using human pluripotent stem cell-derived alveolar organoids[J]. Stem Cell Reports, 2021, 16(12):2973-2987.
|
14 |
Kondo T, Imamura K, Funayama M, et al. iPSC-based compound screening and in vitro trials identify a synergistic anti-amyloid β combination for Alzheimer's disease[J]. Cell Rep, 2017, 21(8):2304-2312.
|
15 |
Okamoto R, Takayama K, Akita N, et al. Human iPS cell-based liver-like tissue engineering at extrahepatic sites in mice as a new cell therapy for hemophilia B[J]. Cell Transplant, 2018, 27(2):299-309.
|
16 |
Zhu D, Xie M, Gademann F, et al. Protective effects of human iPS-derived retinal pigmented epithelial cells on retinal degenerative disease[J]. Stem Cell Res Ther, 2020, 11(1):98. doi: 10.1186/s13287-020-01608-8.
|
17 |
Lorenzini M, Norrish G, Field E, et al. Penetrance of hypertrophic cardiomyopathy in sarcomere protein mutation carriers[J]. J Am Coll Cardiol, 2020, 76(5):550-559.
|
18 |
Velicki L, Jakovljevic DG, Preveden A, et al. Genetic determinants of clinical phenotype in hypertrophic cardiomyopathy[J]. BMC Cardiovasc Disord, 2020, 20(1):516. doi: 10.1186/s12872-020-01807-4.
|
19 |
Marian AJ, Braunwald E. Hypertrophic cardiomyopathy: Genetics, pathogenesis, clinical manifestations, diagnosis, and therapy[J]. Circ Res, 2017, 121(7):749-770.
|
20 |
Glavaški M, Velicki L, Vučinić N. Hypertrophic cardiomyopathy: genetic foundations, outcomes, interconnections, and their modifiers[J]. Medicina (Kaunas), 2023, 59(8):1424. doi: 10.3390/medicina59081424.
|
21 |
Huang H, Chen Y, Jin J, et al. CSRP3, p.Arg122 is responsible for hypertrophic cardiomyopathy in a Chinese family[J]. J Gene Med, 2022, 24(1):e3390. doi: 10.1002/jgm.3390.
|
22 |
Lan F, Lee AS, Liang P, et al. Abnormal calcium handling properties underlie familial hypertrophic cardiomyopathy pathology in patient-specific induced pluripotent stem cells[J]. Cell Stem Cell, 2013, 12(1):101-113.
|
23 |
Wu H, Yang H, Rhee JW, et al. Modelling diastolic dysfunction in induced pluripotent stem cell-derived cardiomyocytes from hypertrophic cardiomyopathy patients[J]. Eur Heart J, 2019, 40(45):3685-3695.
|
24 |
Ramachandra CJA, Kp MMJ, Chua J, et al. Inhibiting cardiac myeloperoxidase alleviates the relaxation defect in hypertrophic cardiomyocytes[J]. Cardiovasc Res, 2022, 118(2):517-530.
|
25 |
Ben Jehuda R, Eisen B, Shemer Y, et al. CRISPR correction of the PRKAG2 gene mutation in the patient's induced pluripotent stem cell-derived cardiomyocytes eliminates electrophysiological and structural abnormalities[J]. Heart Rhythm, 2018, 15(2):267-276.
|
26 |
Finocchiaro G, Merlo M, Sheikh N, et al. The electrocardiogram in the diagnosis and management of patients with dilated cardiomyopathy[J]. Eur J Heart Fail, 2020, 22(7):1097-1107.
|
27 |
Peters S, Johnson R, Birch S, et al. Familial dilated cardiomyopathy[J]. Heart Lung Circ, 2020, 29(4):566-574.
|
28 |
Jordan E, Hershberger RE. Considering complexity in the genetic evaluation of dilated cardiomyopathy[J]. Heart, 2021, 107(2):106-112.
|
29 |
Ye L, Ni X, Zhao ZA, et al. The application of induced pluripotent stem cells in cardiac disease modeling and drug testing[J]. J Cardiovasc Transl Res, 2018, 11(5):366-374.
|
30 |
Wang Y, Lei W, Yang J, et al. The updated view on induced pluripotent stem cells for cardiovascular precision medicine[J]. Pflugers Arch, 2021, 473(7):1137-1149.
|
31 |
Sun N, Yazawa M, Liu J, et al. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy[J]. Sci Transl Med, 2012, 4(130):130ra47. doi: 10.1126/scitranslmed.3003552.
|
32 |
Wu H, Lee J, Vincent LG, et al. Epigenetic regulation of phosphodiesterases 2A and 3A underlies compromised β-adrenergic signaling in an iPSC model of dilated cardiomyopathy[J]. Cell Stem Cell, 2015, 17(1):89-100.
|
33 |
Dai Y, Amenov A, Ignatyeva N, et al. Troponin destabilization impairs sarcomere-cytoskeleton interactions in iPSC-derived cardiomyocytes from dilated cardiomyopathy patients[J]. Sci Rep, 2020, 10(1):209. doi: 10.1038/s41598-019-56597-3.
|
34 |
Singh DP, Patel H. Left Ventricular noncompaction cardiomyopathy[M]. 2022 Jul 4. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2023 Jan.
|
35 |
Hirono K, Hata Y, Miyao N, et al. Increased burden of ion channel gene variants is related to distinct phenotypes in pediatric patients with left ventricular noncompaction[J]. Circ Genom Precis Med, 2020, 13(4):e002940. doi: 10.1161/CIRCGEN.119.002940.
|
36 |
Hirono K, Ichida F. Left ventricular noncompaction: a disorder with genotypic and phenotypic heterogeneity-a narrative review[J]. Cardiovasc Diagn Ther, 2022, 12(4):495-515.
|
37 |
van Waning JI, Caliskan K, Michels M, et al. Cardiac phenotypes, genetics, and risks in familial noncompaction cardiomyopathy[J]. J Am Coll Cardiol, 2019, 73(13):1601-1611.
|
38 |
Thareja SK, Anfinson M, Cavanaugh M, et al. Altered contractility, Ca2+ transients, and cell morphology seen in a patient-specific iPSC-CM model of Ebstein's anomaly with left ventricular noncompaction[J]. Am J Physiol Heart Circ Physiol, 2023, 325(1):H149-H162.
|
39 |
Korover N, Etzion S, Cherniak A,et al. Functional defects in hiPSC-derived cardiomyocytes from patients with a PLEKHM2-mutation associated with dilated cardiomyopathy and left ventricular non-compaction[J]. Biol Res, 2023, 56(1):34. doi: 10.1186/s40659-023-00442-5.
|
40 |
Kodo K, Ong SG, Jahanbani F, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-β signalling in left ventricular non-compaction cardiomyopathy[J]. Nat Cell Biol, 2016, 18(10):1031-1042.
|
41 |
Bluemke DA, James CA, Riele A. risk stratification in arrhythmogenic right ventricular cardiomyopathy: not a one-size-fits-all strategy [J]. J Am Coll Cardiol, 2020, 75(22): 2766-2768.
|
42 |
Cho Y. Arrhythmogenic right ventricular cardiomyopathy[J]. J Arrhythm, 2018, 34(4):356-368.
|
43 |
Murray B, James CA. Genotype-phenotype correlates in arrhythmogenic cardiomyopathies[J]. Curr Cardiol Rep, 2022, 24(11):1557-1565.
|
44 |
Chen P, Xiao Y, Wang Y, et al. Intracellular calcium current disorder and disease phenotype in OBSCN mutant iPSC-based cardiomyocytes in arrhythmogenic right ventricular cardiomyopathy[J]. Theranostics, 2020, 10(24):11215-11229.
|
45 |
Akdis D, Saguner AM, Shah K, et al. Sex hormones affect outcome in arrhythmogenic right ventricular cardiomyopathy/dysplasia: from a stem cell derived cardiomyocyte-based model to clinical biomarkers of disease outcome[J]. Eur Heart J, 2017, 38(19):1498-1508. .
|
46 |
Kim C, Wong J, Wen J, et al Studying arrhythmogenic right ventricular dysplasia with patient-specific iPSCs[J]. Nature, 2013, 494(7435):105-110.
|
47 |
El-Battrawy I, Zhao Z, Lan H, et al. Electrical dysfunctions in human-induced pluripotent stem cell-derived cardiomyocytes from a patient with an arrhythmogenic right ventricular cardiomyopathy[J]. Europace, 2018, 20(FI1):f46-f56.
|
48 |
Zhuang Q, Guo F, Fu L, et al. 1-Deoxynojirimycin promotes cardiac function and rescues mitochondrial cristae in mitochondrial hypertrophic cardiomyopathy[J]. J Clin Invest, 2023, 133(14):e164660. doi: 10.1172/JCI164660.
|
49 |
Sanbe A, Nelson D, Gulick J, et al. In vivo analysis of an essential myosin light chain mutation linked to familial hypertrophic cardiomyopathy[J]. Circ Res, 2000, 87(4):296-302.
|
50 |
Giacomelli E, Meraviglia V, Campostrini G, et al. Human-iPSC-derived cardiac stromal cells enhance maturation in 3D cardiac microtissues and reveal non-cardiomyocyte contributions to heart disease[J]. Cell Stem Cell, 2020, 26(6):862-879.e11.
|
51 |
Ito M, Nomura S, Morita H, et al. Trends and limitations in the assessment of the contractile properties of human induced pluripotent stem cell-derived cardiomyocytes from patients with dilated cardiomyopathy[J]. Front Cardiovasc Med, 2020, 7:154. doi: 10.3389/fcvm.2020.00154.
|
52 |
Li H, Huang M, Wang J, et al.A method for establishing the electrophysiological model of alcoholic cardiomyopathy[J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2020, 45(4):386-394.
|
53 |
Nakamura K, Murry C. Function follows form-a review of cardiac cell therapy[J]. Circ J, 2019, 83(12):2399-2412.
|
54 |
高原, 盛伟, 黄国英. 多能干细胞在体外心脏模型构建研究中的应用[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(5):314-318.
|
55 |
武玉康, 康九红. 多能干细胞在心脏发育和疾病研究中的应用[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(6):378-382.
|