切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (03) : 181 -185. doi: 10.3877/cma.j.issn.2095-1221.2024.03.009

综述

3D生物打印在肾脏再生领域的研究进展
郭煦妍1, 罗志嵘1, 薛琦1, 王林猛1, 吉运华1, 张波1,()   
  1. 1. 710032 西安,空军军医大学唐都医院泌尿外科
  • 收稿日期:2024-04-19 出版日期:2024-06-01
  • 通信作者: 张波

Advances in 3D bioprinting in the field of kidney regeneration

Xuyan Guo1, Zhirong Luo1, Qi Xue1, Linmeng Wang1, Yunhua Ji1, Bo Zhang1,()   

  1. 1. Department of Urology, Tangdu Hospital of Air Force Military Medical University, Xi'an 710032, China
  • Received:2024-04-19 Published:2024-06-01
  • Corresponding author: Bo Zhang
引用本文:

郭煦妍, 罗志嵘, 薛琦, 王林猛, 吉运华, 张波. 3D生物打印在肾脏再生领域的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 181-185.

Xuyan Guo, Zhirong Luo, Qi Xue, Linmeng Wang, Yunhua Ji, Bo Zhang. Advances in 3D bioprinting in the field of kidney regeneration[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(03): 181-185.

慢性肾脏病(CKD)的发病率在全球范围内持续上升,进一步可发展为终末期肾病(ESRD)。针对ESRD患者,透析或肾移植一直作为主要的临床治疗方法。然而,透析治疗可能会导致一系列并发症,同时会对患者的生活方式和社交活动造成限制。肾移植是ESRD另一种可行的治疗选择,但由于供体短缺和排斥反应等问题受到限制。因此,许多有关肾脏再生的策略正在研究中。3D生物打印作为一种组织工程技术,已在体外肾组织模型和类肾结构的制造方面取得了进展。它有望通过制造人造器官(组织)来解决器官供体短缺的问题。虽然该技术已适应各种细胞类型和生物材料,但目前仍然需要解决许多问题。例如细胞和生物材料的选择以及模拟血管网络。本文旨在综述3D生物打印在肾脏再生领域的最新进展,包括常用的3D生物打印技术和生物材料的选择、3D生物打印生成部分肾单位以及面临的挑战和未来发展方向。

The incidence of chronic kidney disease (CKD) continues to increase globally and progresses to end-stage renal disease (ESRD) . For patients with ESRD, dialysis or kidney transplantation has always been the leading clinical treatment. However, dialysis treatment is associated with several complications and limits a patient's lifestyle and social activities. Kidney transplantation is another viable treatment option for ESRD but is limited due to issues such as donor shortage and rejection. Therefore, many strategies for kidney regeneration are under investigation. As a tissue engineering technology, 3D bioprinting has made progress in fabricating in vitro kidney tissue models and kidney-like structures. It is expected to solve the problem of organ donor shortage by creating artificial organs/tissues. While the technology has been adapted to a variety of cell types and biomaterials, many issues still need to be addressed. Examples include cell and biomaterial selection and simulating vascular networks. This article aims to review the latest progress of 3D bioprinting in the field of kidney regeneration, including commonly used 3D bioprinting technologies and biomaterial selection, 3D bioprinting to generate partial nephrons, and challenges and future development directions.

表1 目前所开发的生物打印肾脏组织模型
1
Layton AT. Modeling transport and flow regulatory mechanisms of the kidney[J]. ISRN Biomath, 2012, 2012(2012):170594. doi:10.5402/2012/170594.
2
Jansen K, Schuurmans CCL, Jansen J, et al. Hydrogel-based cell therapies for kidney regeneration: current trends in biofabrication and in vivo repair[J]. Curr Pharm Des, 2017, 23(26):3845-3857.
3
Jansen J, Fedecostante M, Wilmer MJ, et al. Biotechnological challenges of bioartificial kidney engineering[J]. Biotechnol Adv, 2014, 32(7):1317-1327.
4
Mota C, Camarero-Espinosa S, Baker MB, et al. Bioprinting: from tissue and organ development to in vitro models[J]. Chem Rev, 2020, 120(19):10547-10607.
5
Wu Y, Qin M, Yang X. Organ bioprinting: progress, challenges and outlook[J]. J Mater Chem B, 2023, 11(43):10263-10287.
6
Mittal R, Woo FW, Castro CS, et al. Organ-on-chip models: implications in drug discovery and clinical applications[J]. J Cell Physiol, 2019, 234(6):8352-80.
7
Kačarević ŽP, Rider PM, Alkildani S, et al. An introduction to 3d bioprinting: possibilities, challengesand future aspects[J]. Materials (Basel), 2018, 11(11):2199. doi:10.3390/ma11112199.
8
Xu K, Han Y, Huang Y, et al. The application of 3d bioprinting in urological diseases[J]. Mater Today Bio, 2022, 16:100388. doi: 10.1016/j.mtbio.2022.100388.
9
Hu S, Yi Y, Ye C, et al. Advances in 3d printing techniques for cartilage regeneration of temporomandibular joint disc and mandibular condyle[J]. Int J Bioprint, 2023, 9(5):761. doi: 10.18063/ijb.761.
10
Lawlor KT, Vanslambrouck JM, Higgins JW, et al. Cellular extrusion bioprinting improves kidney organoid reproducibility and conformation[J]. Nat Mater, 2021, 20(2):260-271.
11
Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3d vascularized proximal tubule models[J]. Proc Natl Acad Sci U S A, 2019, 116(12):5399-5404.
12
Datta P, Barui A, Wu Y, et al. Essential steps in bioprinting: from pre-to post-bioprinting[J]. Biotechnol Adv, 2018, 36(5):1481-1504.
13
Graham AD, Olof SN, Burke MJ, et al. High-resolution patterned cellular constructs by droplet-based 3d printing[J]. Sci Rep, 2017, 7(1):7004. doi: 10.1038/s41598-017-06358-x.
14
Liang R, Gu Y, Wu Y, et al. Lithography-based 3d bioprinting and bioinks for bone repair and regeneration[J]. ACS Biomater Sci Eng, 2021, 7(3):806-816.
15
Gao J, Liu X, Cheng J, et al. Application of photocrosslinkable hydrogels based on photolithography 3d bioprinting technology in bone tissue engineering[J]. Regen Biomater, 2023, 10:rbad037. doi: 10.1093/rb/rbad037.
16
Xu F, Ren H, Zheng M, et al. Development of biodegradable bioactive glass ceramics by dlp printed containing epcs/bmscs for bone tissue engineering of rabbit mandible defects[J]. J Mech Behav Biomed Mater, 2020, 103:103532. doi: 10.1016/j.jmbbm.2019.103532.
17
Ma X, Yu C, Wang P, et al. Rapid 3d bioprinting of decellularized extracellular matrix with regionally varied mechanical properties and biomimetic microarchitecture[J]. Biomaterials, 2018, 185:310-321.
18
Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439):458-464.
19
Rosette KA, Lander SM, VanOpstall C, et al. Three-dimensional coculture provides an improved in vitro model for papillary renal cell carcinoma[J]. Am J Physiol Renal Physiol, 2021, 321(1):F33-F46.
20
Mota C, Camarero-Espinosa S, Baker MB, et al. Bioprinting: from tissue and organ development to in vitro models[J]. Chemical Reviews, 2020, 120(19):10547-10607.
21
Yoon J, Han H, Jang J. Nanomaterials-incorporated hydrogels for 3d bioprinting technology[J]. Nano Converg, 2023, 10(1):52. doi: 10.1186/s40580-023-00402-5.
22
Gadre M, Kasturi M, Agarwal P, et al. Decellularization and their significance for tissue regeneration in the era of 3d bioprinting[J]. ACS Omega, 2024, 9(7):7375-7392.
23
Ali M, Pr AK, Yoo JJ, et al. A photo-crosslinkable kidney ecm-derived bioink accelerates renal tissue formation[J]. Adv Healthc Mater, 2019, 8(7):e1800992. doi: 10.1002/adhm.201800992.
24
Singh NK, Han W, Nam SA, et al. Three-dimensional cell-printing of advanced renal tubular tissue analogue[J]. Biomaterials, 2020, 232:119734. doi: 10.1016/j.biomaterials.2019.119734.
25
Homaeigohar S, Tsai TY, Young TH, et al. An electroactive alginate hydrogel nanocomposite reinforced by functionalized graphite nanofilaments for neural tissue engineering[J]. Carbohydr Polym, 2019, 224:115112. doi: 10.1016/j.carbpol.2019.115112.
26
Gauvin R, Chen YC, Lee JW, et al. Microfabrication of complex porous tissue engineering scaffolds using 3d projection stereolithography[J]. Biomaterials, 2012, 33(15):3824-3834.
27
Pi Q, Maharjan S, Yan X, et al. Digitally tunable microfluidic bioprinting of multilayered cannular tissues[J]. Adv Mater, 2018, 30(43):e1706913. doi: 10.1002/adma.201706913.
28
Kim J H, Lee S, Kang SJ, et al. Establishment of three-dimensional bioprinted bladder cancer-on-a-chip with a microfluidic system using bacillus calmette-guérin[J]. Int J Mol Sci, 2021, 22(16):8887. doi: 10.3390/ijms22168887.
29
Kim MJ, Chi BH, Yoo JJ, et al. Structure establishment of three-dimensional (3d) cell culture printing model for bladder cancer[J]. PLoS One, 2019, 14(10):e0223689. doi: 10.1371/journal.pone.0223689.
30
Butler HM, Naseri E, MacDonald DS, et al. Investigation of rheology, printability, and biocompatibility of n,o-carboxymethyl chitosan and agarose bioinks for 3d bioprinting of neuron cells[J]. Materialia, 2021, 18:101169. doi: 10.1016/j.mtla.2021.101169.
31
Zarrintaj P, Manouchehri S, Ahmadi Z, et al. Agarose-based biomaterials for tissue engineering[J]. Carbohydrate Polymers, 2018, 187:66-84.
32
Tetsuka H, Shin SR. Materials and technical innovations in 3d printing in biomedical applications[J]. J Mater Chem B, 2020, 8(15):2930-2950.
33
Choudhury D, Anand S, Naing MW. The arrival of commercial bioprinters-towards 3d bioprinting revolution![J]. Int J Bioprint, 2018, 4(2):139. doi: 10.18063/IJB.v4i2.139.
34
Gao B, Yang Q, Zhao X, et al. 4D bioprinting for biomedical applications[J]. Trends in Biotechnology, 2016, 34(9):746-756.
35
Wang X, Jiang M, Zhou Z, et al. 3D printing of polymer matrix composites: a review and prospective[J]. Composites Part B: Engineering, 2017, 110:442-458.
36
Mironov V, Drake C, Wen X. Research project: charleston bioengineered kidney project[J]. Biotechnol J, 2006, 1(9):903-905.
37
Kolesky DB, Homan KA, Skylar-Scott MA, et al. Three-dimensional bioprinting of thick vascularized tissues[J]. Proc Natl Acad Sci U S A, 2016, 113(12):3179-3184.
38
Homan KA, Kolesky DB, Skylar-Scott MA, et al. Bioprinting of 3d convoluted renal proximal tubules on perfusable chips[J]. Sci Rep, 2016, 6:34845. doi: 10.1038/srep34845.
39
Jung JW, Lee JS, Cho DW. Computer-aided multiple-head 3d printing system for printing of heterogeneous organ/tissue constructs[J]. Sci Rep, 2016, 6:21685. doi: 10.1038/srep21685.
40
Sämfors S, Karlsson K, Sundberg J, et al. Biofabrication of bacterial nanocellulose scaffolds with complex vascular structure[J]. Biofabrication, 2019, 11(4):045010. doi: 10.1088/1758-5090/ab2b4f.
41
King SM, Higgins JW, Nino CR, et al. 3D proximal tubule tissues recapitulate key aspects of renal physiology to enable nephrotoxicity testing[J]. Front Physiol, 2017, 8:123. doi: 10.3389/fphys.2017.00123.
42
Kolesky DB, Homan KA, Skylar-Scott M, et al. In vitro human tissues via multi-material 3-D bioprinting[J]. Altern Lab Anim, 2018, 46(4):209-215.
43
Addario G, Djudjaj S, Farè S, et al. Microfluidic bioprinting towards a renal in vitro model[J]. Bioprinting, 2020, 20:e00108. doi: 10.3389/fphys.2022.1048738.
44
Czerniecki SM, Cruz NM, Harder JL, et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping[J]. Cell Stem Cell, 2018, 22(6):929-40.e4.
45
Huang G, Zhao Y, Chen D, et al. Applications, advancements, and challenges of 3d bioprinting in organ transplantation[J]. Biomater Sci, 2024, 12(6):1425-1448.
46
Yu Y, Li X, Li Y, et al. Derivation and characterization of endothelial cells from porcine induced pluripotent stem cells[J]. Int J Mol Sci, 2022, 23(13):7029. doi: 10.3390/ijms23137029.
47
Alizadeh S, Mahboobi L, Nasiri M, et al. Decellularized placental sponge seeded with human mesenchymal stem cells improves deep skin wound healing in the animal model[J]. ACS Appl Bio Mater, 2024, 7(4):2140-2152.
48
Zhu W, Ma X, Gou M, et al. 3D printing of functional biomaterials for tissue engineering[J]. Curr Opin Biotechnol, 2016, 40:103-112.
49
Balakhovsky YM, Ostrovskiy AY, Khesuani YD. Emerging business models toward commercialization of bioprinting technology[C]. Cham: Springer International Publishing, 2017: 1-22.
[1] 朱梅梅, 徐超丽, 田付丽, 王丹丹, 杨斌. 超声造影对Ⅰ型与Ⅱ型乳头状肾细胞癌的鉴别诊断[J]. 中华医学超声杂志(电子版), 2021, 18(09): 868-874.
[2] 赵丽, 蔡瑞明, 赵纪强, 林民专, 陈志勇, 彭娟. 肾移植术后新发泌尿系统恶性肿瘤二例并文献复习[J]. 中华移植杂志(电子版), 2024, 18(01): 35-39.
[3] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[4] 黄兴, 王蕾, 夏丹. 靶向免疫治疗时代下减瘤性肾切除术在转移性肾细胞癌治疗中的价值[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 208-213.
[5] 杨龙雨禾, 王跃强, 招云亮, 金溪, 卫娜, 杨智明, 张贵福. 人工智能辅助临床决策在泌尿系肿瘤的应用进展[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(02): 178-182.
[6] 邓新军, 李正明, 李文彬. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾原发恶性肿瘤并发于肺癌并脑转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 114-117.
[7] 加素尔·巴吐尔, 徐铭泽, 唐钵, 曾浩, 苏力坦·乌斯曼, 陈羽. 广东省医学会泌尿外科疑难病例多学科会诊(第14期)——左肾原发罕见恶性肿瘤并全身多处转移[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(01): 110-113.
[8] 张磊磊, 蒋方, 徐疾飞, 周真文, 郭志文, 毕满华. 乳头状肾细胞癌预后预测模型的构建及验证[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 343-350.
[9] 周硕明, 甘卫东. 2022版欧洲泌尿外科学会肾细胞癌诊疗指南更新要点解读[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(02): 100-104.
[10] 魏勇, 沈露明, 成向明, 苏健, 朱清毅. 机器人辅助单孔腹腔镜经腹膜后入路治疗马蹄肾合并肾癌一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(06): 571-573.
[11] 吕逸清, 谢华, 周立军, 陈艳, 汪亚平, 陈方. 儿童机器人辅助腹腔镜下Xp11.2易位/TFE3基因融合相关性肾癌根治术的初步探讨[J]. 中华腔镜泌尿外科杂志(电子版), 2022, 16(04): 325-330.
[12] 吴俊, 陈丽璇, 肖扬. 我国干细胞双备案研究项目分析[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(05): 304-309.
[13] 陈妙纯, 吴高椿, 刘韬. 人诱导性多能干细胞向红系分化的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 115-120.
[14] 肖贵宝, 尼玛卓玛, 王峰, 王晋龙. 高原地区单中心五年肾癌临床病理特点分析[J]. 中华临床医师杂志(电子版), 2022, 16(07): 647-651.
[15] 吕建志, 曹井贺, 刘欢, 王鑫哲, 石素素, 祝海洲. 胰岛素样生长因子结合蛋白2和细胞外调节蛋白激酶1/2在肾透明细胞癌中的表达及其临床意义[J]. 中华诊断学电子杂志, 2022, 10(01): 42-47.
阅读次数
全文


摘要