切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 115 -120. doi: 10.3877/cma.j.issn.2095-1221.2022.02.009

综述

人诱导性多能干细胞向红系分化的研究进展
陈妙纯1, 吴高椿2, 刘韬1,()   
  1. 1. 515063 汕头,广东汕头大学医学院;518001 深圳市罗湖区人民医院 (深圳大学第三附属医院)肿瘤免疫科
    2. 518001 深圳市罗湖区人民医院 (深圳大学第三附属医院)肿瘤免疫科
  • 收稿日期:2021-12-08 出版日期:2022-04-01
  • 通信作者: 刘韬
  • 基金资助:
    深圳市科技创新委员会资助基础研究项目(JCYJ20170412155231633)

Research progress on erythroid differentiation of human induced pluripotent stem cells

Miaochun Chen1, Gaochun Wu2, Tao Liu1,()   

  1. 1. Shantou University Medical College, Shantou 515063, China; Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, the Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, China
    2. Department of Tumor Immunotherapy, Shenzhen Luohu People's Hospital, the Third Affiliated Hospital of Shenzhen University, Shenzhen 518001, China
  • Received:2021-12-08 Published:2022-04-01
  • Corresponding author: Tao Liu
引用本文:

陈妙纯, 吴高椿, 刘韬. 人诱导性多能干细胞向红系分化的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 115-120.

Miaochun Chen, Gaochun Wu, Tao Liu. Research progress on erythroid differentiation of human induced pluripotent stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(02): 115-120.

红细胞输注对于重症贫血等血液病患者来说是主要的治疗手段,可以降低发病率和死亡率。目前红细胞来源主要依靠无偿献血,但是存在血液资源紧张、血型相容性(ABO和Rh抗原)和感染风险增加等挑战。体外诱导干细胞分化为成熟红细胞有望解决上述难题。人诱导性多能干细胞(iPSCs)具有无限增殖和多向分化能力,在体外经过定向诱导分化可以获得大量的红细胞,满足临床对红细胞的大量需求。本文将对人iPSCs向红系分化的技术发展和临床应用进行综述。

Red blood cell transfusion is the main treatment for patients with severe anemia and other hematological diseases, which can reduce morbidity and mortality. At present, the source of red blood cells mainly relies on voluntary blood donation, but there are challenges such as shortage of blood resources, blood group compatibility (ABO and Rh antigens) and increased risk of infection. Differentiation of stem cells into mature erythrocytes in vitro is expected to solve the above problems. Human induced pluripotent stem cells (iPSCs) have unlimited proliferation and multi-directional differentiation ability, and can obtain a large number of erythrocytes after directional induction and differentiation in vitro, meeting the clinical demand for erythrocytes. This article will review the technical development and clinical application of erythroid differentiation of human iPSCs.

表1 红系分化iPSCs的来源
图1 iPSCs体外向红系分化过程[32]注:iPSCs为诱导性多能干细胞;HSCs为造血干细胞;BFU-E为红细胞爆式集落形成单位;CFU-E为红系集落形成单位;SCF为干细胞因子;IL-6为白细胞介素6;G-CSF为粒细胞集落刺激因子;VEGF为血管内皮生长因子;IL-3为白细胞介素3;EPO为促红细胞生成素;Flt3-l为FMS样酪氨酸激酶3配体;SCF为干细胞因子;TPO为血小板生成素;TGF-β为转化生长因子-β
1
Balvers K, van Dieren S, Baksaas-Aasen K, et al. Combined effect of therapeutic strategies for bleeding injury on early survival, transfusion needs and correction of coagulopathy[J]. Br J Surg, 2017, 104(3):222-229.
2
Iqbal N, Haider K, Sundaram V, et al. Red blood cell transfusion and outcome in cancer[J]. Transfus Apher Sci, 2017, 56(3):287-290.
3
Shah FT, Sayani F, Trompeter S, et al. Challenges of blood transfusions in β-thalassemia[J]. Blood Rev, 2019, 37:100588. doi:10.1016/j.blre.2019.100588.
4
Sparrow RL. Red blood cell components: time to revisit the sources of variability[J]. Blood Transfus, 2017, 15(2):116-125.
5
Zhang Y, Wang C, Wang L, et al. Large-scale ex vivo generation of human red blood cells from cord blood CD34(+) cells[J]. Stem Cells Transl Med, 2017, 6(8):1698-1709.
6
Lau SX, Leong YY, Ng WH, et al. Human mesenchymal stem cells promote CD34+ hematopoietic stem cell proliferation with preserved red blood cell differentiation capacity[J]. Cell Biol Int, 2017, 41(6):697-704.
7
Daud H, Browne S, Al-Majmaie R, et al. Metabolic profiling of hematopoietic stem and progenitor cells during proliferation and differentiation into red blood cells[J]. N Biotechnol, 2016, 33(1):179-186.
8
Xi J, Li Y, Wang R, et al. In vitro large scale production of human mature red blood cells from hematopoietic stem cells by coculturing with human fetal liver stromal cells[J]. Biomed Res Int, 2013, 2013:807863. doi:10.1155/2013/807863.
9
Douay L, Andreu G. Ex vivo production of human red blood cells from hematopoietic stem cells: what is the future in transfusion?[J]. Transfus Med Rev, 2007, 21(2):91-100.
10
Giarratana MC, Kobari L, Lapillonne H, et al. Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells[J]. Nat Biotechnol, 2005, 23(1):69-74.
11
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
12
Hansen M, von Lindern M, van den Akker E, et al. Human-induced pluripotent stem cell-derived blood products: state of the art and future directions[J]. FEBS lett, 2019, 593(23):3288-3303.
13
Sugimoto N, Eto K. Generation and manipulation of human iPSC-derived platelets[J]. Cell Mol Life Sci, 2021, 78(7):3385-3401.
14
Matsubara H, Niwa A, Nakahata T, et al. Induction of human pluripotent stem cell-derived natural killer cells for immunotherapy under chemically defined conditions[J]. Biochem Biophys Res Commun, 2019, 515(1):1-8.
15
Iriguchi S, Yasui Y, Kawai Y, et al. A clinically applicable and scalable method to regenerate T-cells from iPSCs for off-the-shelf T-cell immunotherapy[J]. Nat Commun, 2021, 12(1):430. doi:10.1038/s41467-020-20658-3.
16
Hou P, Li Y, Zhang X, et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds[J]. Science, 2013, 341(6146):651-654.
17
Nakagawa M, Koyanagi M, Tanabe K, et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts[J]. Nat Biotechnol, 2008, 26(1):101-106.
18
Xu J, Yu L, Guo J, et al. Generation of pig induced pluripotent stem cells using an extended pluripotent stem cell culture system[J]. Stem Cell Res Ther, 2019, 10(1):193. doi:10.1186/s13287-019-1303-0.
19
De Los Angeles A, Elsworth JD, Redmond DE Jr. ERK-independent African Green monkey pluripotent stem cells in a putative chimera-competent state[J]. Biochem Biophys Res Commun, 2019, 510(1):78-84.
20
Kim S, Lee SK, Kim H, et al. Exosomes secreted from induced pluripotent stem cell-derived mesenchymal stem cells accelerate skin cell proliferation[J]. Int J Mol Sci, 2018, 19(10):3119. doi:10.3390/ijms19103119.
21
Kim Y, Park N, Rim YA, et al. Establishment of a complex skin structure via layered co-culture of keratinocytes and fibroblasts derived from induced pluripotent stem cells[J]. Stem Cell Res Ther, 2018, 9(1):217.doi:10.1186/s13287-018-0958-2.
22
Sheykhhasan M, Wong JKL, Seifalian AM. Human adipose-derived stem cells with great therapeutic potential[J]. Curr Stem Cell Res Ther, 2019, 14(7):532-548.
23
Workman MJ, Mahe MM, Trisno S, et al. Engineered human pluripotent-stem-cell-derived intestinal tissues with a functional enteric nervous system[J]. Nature medicine, 2017, 23(1):49-59.
24
Simara P, Tesarova L, Rehakova D, et al. Reprogramming of adult peripheral blood cells into human induced pluripotent stem cells as a safe and accessible source of endothelial cells[J]. Stem Cells Dev, 2018, 27(1):10-22.
25
Yu J, Vodyanik MA, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858):1917-1920.
26
Li Y, Zhao H, Lan F, et al. Generation of human-induced pluripotent stem cells from gut mesentery-derived cells by ectopic expression of OCT4/SOX2/NANOG[J]. Cellular reprogram, 2010, 12(3):237-247.
27
Zhao HX, Li Y, Jin HF, et al. Rapid and efficient reprogramming of human amnion-derived cells into pluripotency by three factors OCT4/SOX2/NANOG[J]. Differentiation, 2010, 80(2-3):123-129.
28
Wada N, Wang B, Lin NH, et al. Induced pluripotent stem cell lines derived from human gingival fibroblasts and periodontal ligament fibroblasts[J]. J Periodontal Res, 2011, 46(4):438-447.
29
Haro-Mora JJ, Uchida N, Demirci S, et al. Biallelic correction of sickle cell disease-derived induced pluripotent stem cells(iPSCs) confirmed at the protein level through serum-free iPS-sac/erythroid differentiation[J]. Stem Cells Transl Med, 2020, 9(5):590-602.
30
Dorn I, Klich K, Arauzo-Bravo MJ, et al. Erythroid differentiation of human induced pluripotent stem cells is independent of donor cell type of origin[J]. Haematologica, 2015, 100(1):32-41.
31
Okumura T, Horie Y, Lai CY, et al. Robust and highly efficient hiPSC generation from patient non-mobilized peripheral blood-derived CD34(+) cells using the auto-erasable Sendai virus vector[J]. Stem Cell Res Ther, 2019, 10(1):185.
32
Ebrahimi M, Forouzesh M, Raoufi S, et al. Differentiation of human induced pluripotent stem cells into erythroid cells[J]. Stem Cell Res Ther, 2020, 11(1):483. doi:10.1186/s13287-020-01998-9.
33
Dzierzak E, Philipsen S. Erythropoiesis: development and differentiation[J]. Cold Spring Harb Perspect Med, 2013, 3(4):a011601. doi:10.1101/cshperspect.a011601.
34
Trakarnsanga K, Wilson MC, Heesom KJ, et al. Secretory factors from OP9 stromal cells delay differentiation and increase the expansion potential of adult erythroid cells in vitro[J]. Sci Rep, 2018, 8(1):1983.doi:10.1038/s41598-018-20491-1.
35
Choi KD, Yu J, Smuga-Otto K, et al. Hematopoietic and endothelial differentiation of human induced pluripotent stem cells[J]. Stem cells, 2009, 27(3):559-567.
36
Lapillonne H, Kobari L, Mazurier C, et al. Red blood cell generation from human induced pluripotent stem cells: perspectives for transfusion medicine[J]. Haematologica, 2010, 95(10):1651-1659.
37
Hitomi H, Kasahara T, Katagiri N, et al. Human pluripotent stem cell-derived erythropoietin-producing cells ameliorate renal anemia in mice[J]. Sci Transl Med, 2017, 9(409):eaaj2300. doi:10.1126/scitranslmed.aaj2300.
38
Olivier EN, Marenah L, McCahill A, et al. High-efficiency serum-free feeder-free erythroid differentiation of human pluripotent stem cells using small molecules[J]. Stem Cells Transl Med, 2016, 5(10):1394-1405.
39
Netsrithong R, Suwanpitak S, Boonkaew B, et al. Multilineage differentiation potential of hematoendothelial progenitors derived from human induced pluripotent stem cells[J]. Stem Cell Res Ther, 2020, 11(1):481. doi:10.1186/s13287-020-01997-w.
40
Wilkinson AC, Ryan DJ, Kucinski I, et al. Expanded potential stem cell media as a tool to study human developmental hematopoiesis in vitro[J]. Exp Hematol, 2019, 76:1-12.e15.
41
Ruiz JP, Chen G, Haro Mora JJ, et al. Robust generation of erythroid and multilineage hematopoietic progenitors from human iPSCs using a scalable monolayer culture system[J]. Stem Cell Res, 2019, 41:101600. doi:10.1016/j.scr.2019.101600.
42
Suzuki D, Flahou C, Yoshikawa N, et al. iPSC-derived platelets depleted of HLA class I are inert to anti-HLA class I and natural killer cell immunity[J]. Stem cell reports, 2020, 14(1):49-59.
43
Raya A, Rodríguez-Pizà I, Guenechea G, et al. Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells[J]. Nature, 2009, 460(7251):53-59.
44
Wattanapanitch M, Damkham N, Potirat P, et al. One-step genetic correction of hemoglobin E/beta-thalassemia patient-derived iPSCs by the CRISPR/Cas9 system[J]. Stem Cell Res Ther, 2018, 9(1):46. doi: 10.1186/s13287-018-0779-3.
45
Simpson CF and Kling JM. The mechanism of denucleation in circulating erythroblasts[J]. J Cell Biol, 1967, 35(1):237-245.
46
Krauss SW, Lo AJ, Short SA, et al. Nuclear substructure reorganization during late-stage erythropoiesis is selective and does not involve caspase cleavage of major nuclear substructural proteins[J]. Blood, 2005, 106(6):2200-2205.
47
Uddin S, Ah-Kang J, Ulaszek J, et al. Differentiation stage-specific activation of p38 mitogen-activated protein kinase isoforms in primary human erythroid cells[J]. Proc Natl Acad Sci U S A, 2004, 101(1):147-152.
48
Breton-Gorius J, Vuillet-Gaugler MH, Coulombel L, et al. Association between leukemic erythroid progenitors and bone marrow macrophages[J]. Blood cells, 1991, 17(1):127-142; discussion 142-146.
49
Hanspal M, Hanspal JS. The association of erythroblasts with macrophages promotes erythroid proliferation and maturation: a 30-kD heparin-binding protein is involved in this contact[J]. Blood, 1994, 84(10):3494-3504.
50
Hanspal M, Smockova Y, Uong Q. Molecular identification and functional characterization of a novel protein that mediates the attachment of erythroblasts to macrophages[J]. Blood, 1998, 92(8): 2940-2950.
51
Magor GW, Tallack MR, Gillinder KR, et al. KLF1-null neonates display hydrops fetalis and a deranged erythroid transcriptome[J]. Blood, 2015, 125(15):2405-2417.
52
Kobayashi I, Ubukawa K, Sugawara K, et al. Erythroblast enucleation is a dynein-dependent process[J]. Exp Hematol, 2016, 44(4):247-256.
53
Keerthivasan G, Liu H, Gump JM, et al. A novel role for survivin in erythroblast enucleation[J]. Haematologica, 2012, 97(10):1471-1479.
54
Moras M, Lefevre SD, Ostuni MA. From erythroblasts to mature red blood cells: organelle clearance in mammals[J]. Front Physiol, 2017, 8:1076. doi:10.3389/fphys.2017.01076.
55
Mei Y, Liu Y and Ji P. Understanding terminal erythropoiesis: An update on chromatin condensation, enucleation, and reticulocyte maturation[J]. Blood rev, 2021, 46:100740. doi: 10.1016/j.blre.2020.100740.
56
Wang P, Wang Z, Liu J. Role of HDACs in normal and malignant hematopoiesis[J]. Mol cancer, 2020, 19(1):5. doi: 10.1186/s12943-019-1127-7.
57
Nishizawa M, Chonabayashi K, Nomura M, et al. Epigenetic variation between human induced pluripotent stem cell lines is an indicator of differentiation capacity[J]. Cell stem cell, 2016, 19(3):341-354.
58
Bissels U, Bosio A, Wagner W. MicroRNAs are shaping the hematopoietic landscape[J]. Haematologica, 2012, 97(2):160-167.
59
Bruchova H, Yoon D, Agarwal AM, et al. Regulated expression of microRNAs in normal and polycythemia vera erythropoiesis[J]. Exp Hematol, 2007, 35(11):1657-1667.
60
Dore LC, Amigo JD, Dos Santos CO, et al. A GATA-1-regulated microRNA locus essential for erythropoiesis[J]. Proc Natl Acad Sci U S A, 2008, 105(9):3333-3338.
61
Felli N, Fontana L, Pelosi E, et al. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation[J]. Proc Natl Acad Sci U S A, 2005, 102(50):18081-18086.
62
Sun Z, Wang Y, Han X, et al. MiR-150 inhibits terminal erythroid proliferation and differentiation[J]. Oncotarget, 2015, 6(40):43033-43047.
63
Zhan M, Miller CP, Papayannopoulou T, et al. MicroRNA expression dynamics during murine and human erythroid differentiation[J]. Exp Hematol, 2007, 35(7):1015-1025.
64
Xu P, Palmer LE, Lechauve C, et al. Regulation of gene expression by miR-144/451 during mouse erythropoiesis[J]. Blood, 2019, 133(23):2518-2528.
65
Hu W, Yuan B, Flygare J, et al. Long noncoding RNA-mediated anti-apoptotic activity in murine erythroid terminal differentiation[J]. Genes Dev, 2011, 25(24):2573-2578.
66
Wahlster L, Daley GQ. Progress towards generation of human haematopoietic stem cells[J]. Nature cell biology, 2016, 18(11):1111-1117.
67
Marx-Blümel L, Marx C, Weise F, et al. Biomimetic reconstruction of the hematopoietic stem cell niche for in vitro amplification of human hematopoietic stem cells[J]. PloS one, 2020, 15(6):e0234638. doi: 10.1371/journal.pone.0234638.
68
Zhou D, Chen L, Ding J, et al. A 3D engineered scaffold for hematopoietic progenitor/stem cell co-culture in vitro[J]. Scientific reports, 2020, 10(1):11485. doi:10.1038/s41598-020-68250-5.
69
Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery[J]. Nat Rev Genet, 2019, 20(7):377-388.
70
Shen J, Zhu Y, Lyu C, et al. Sequential cellular niches control the generation of enucleated erythrocytes from human pluripotent stem cells[J]. Haematologica, 2020, 105(2):e48-e51.
71
Harding J, Mirochnitchenko O. Preclinical studies for induced pluripotent stem cell-based therapeutics[J]. J Biol Chem, 2014, 289(8):4585-4593.
72
Bayley R, Ahmed F, Glen K, et al. The productivity limit of manufacturing blood cell therapy in scalable stirred bioreactors[J]. J Tissue Eng Regen Med, 2018, 12(1):e368-e378.
[1] 广旸, 何文, 吴佳俊, 赵明昌, 张雨康, 万芳. 基于深度学习的甲状腺结节超声图像分割的临床应用[J]. 中华医学超声杂志(电子版), 2022, 19(03): 206-211.
[2] 黄泽, 张梓榆, 杨青宇, 赖声清, 李海燕. 乳腺腔镜手术临床应用现状及训练路径[J]. 中华乳腺病杂志(电子版), 2023, 17(02): 122-125.
[3] 周炼, 周航, 张东强, 徐海涛. 改良舌弓治疗下颌第一磨牙异位萌出的临床应用[J]. 中华口腔医学研究杂志(电子版), 2022, 16(02): 94-99.
[4] 叶啟发. 生物人工肝血液净化材料研究现状[J]. 中华移植杂志(电子版), 2023, 17(02): 0-.
[5] 朱矩琴, 刘媛珍. 牛肺磷脂注射液与猪肺磷脂注射液在新生儿呼吸窘迫综合征中的临床应用[J]. 中华肺部疾病杂志(电子版), 2022, 15(02): 258-260.
[6] 王洪武, 金发光. 硬质支气管镜临床应用专家共识[J]. 中华肺部疾病杂志(电子版), 2022, 15(01): 6-10.
[7] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[8] 乔梁, 杨向群. 脂肪干细胞在心肌损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 230-236.
[9] 毛宁, 朱勇. 胆汁酸性腹泻的发生机制与诊断[J]. 中华结直肠疾病电子杂志, 2022, 11(05): 425-428.
[10] 李怡廷, 吴桑嗓, 麻琦瑶, 倪敏. 阴部神经调节在肛门直肠疾病的应用及研究进展[J]. 中华结直肠疾病电子杂志, 2021, 10(05): 524-527.
[11] 王万里, 邓台燕, 樊文彬, 杜忠群. 痔上黏膜环形切除钉合术(PPH)再思考[J]. 中华结直肠疾病电子杂志, 2021, 10(05): 514-519.
[12] 佘重阳, 卢弘. Janus激酶抑制剂在幼年特发性关节炎相关葡萄膜炎治疗中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 104-108.
[13] 马嘉蹊, 米倩倩, 周义仁, 王丹. 阿达木单抗在眼科临床应用的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 377-381.
[14] 吴绍伟. 迷走神经电刺激术治疗神经系统疾病的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 180-184.
[15] 霍俊艳, 傅瑜. 卵圆孔未闭检测方法临床应用研究进展[J]. 中华脑血管病杂志(电子版), 2022, 16(05): 310-313.
阅读次数
全文


摘要