切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 110 -114. doi: 10.3877/cma.j.issn.2095-1221.2022.02.008

综述

干细胞在毛发再生中的作用研究
杨莹莹1, 刁波2,(), 刘跃平2, 杨前2, 张传成1, 王刚2   
  1. 1. 430000 武汉,湖北武汉科技大学医学院
    2. 430000 武汉,湖北武汉中国人民解放军中部战区总医院基础医学实验室
  • 收稿日期:2022-01-12 出版日期:2022-04-01
  • 通信作者: 刁波
  • 基金资助:
    湖北省卫生健康委员会面上项目(WJ2019M263)

The role of stem cells in hair regeneration

Yingying Yang1, Bo Diao2,(), Yueping Liu2, Qian Yang2, Chuancheng Zhang1, Gang Wang2   

  1. 1. School of Medicine, Wuhan University of Science and Technology, Wuhan 430000, China
    2. Basic Medical Laboratory of General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan 430000, China
  • Received:2022-01-12 Published:2022-04-01
  • Corresponding author: Bo Diao
引用本文:

杨莹莹, 刁波, 刘跃平, 杨前, 张传成, 王刚. 干细胞在毛发再生中的作用研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 110-114.

Yingying Yang, Bo Diao, Yueping Liu, Qian Yang, Chuancheng Zhang, Gang Wang. The role of stem cells in hair regeneration[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(02): 110-114.

现代生活节奏快、压力大等原因,使得越来越多的人受到病理性脱发困扰。目前脱发的治疗方法仍存在多种挑战,例如药物疗效、副作用、患者依从性和毛囊移植的不利结局等因素。再生医学和毛发组织工程领域的发展,为干细胞治疗脱发带来了新希望。现阶段干细胞治疗脱发可以分为三类:干细胞移植、干细胞条件培养基和干细胞外泌体的使用。本文综述了使用基于干细胞的方法进行脱发治疗的最新进展。

Owing to the fast-paced and stressful nature of modern life, an increasing number of people suffer from pathological hair loss. Throughout the current available therapies for hair loss, there are still multiple challenges, such as drug efficacy, side effects, patients' compliance, unfavorable outcomes of follicular transplantation and some unpredictable effects that may restrict its application. Recently, remarkable advances in the fields of regenerative medicine and hair tissue engineering have offered a new hope for hair loss therapies. To date, stem cell-based therapy approaches can be divided into three categories: stem cell transplantation, stem cell-derived conditioned medium and stem cell-derived exosomes. We focus on reviewing recent advances in alopecia treatment using stem cell-based approaches.

18
Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche[J]. Biochim Biophys Acta, 2014, 1840(8):2506-2519.
19
Garcin CL, Ansell D M. The battle of the bulge: re-evaluating hair follicle stem cells in wound repair[J]. Exp Dermatol, 2017, 26(2):101-104.
20
Yi R. Concise review: mechanisms of quiescent hair follicle stem cell regulation[J]. Stem Cells, 2017, 35(12):2323-2330.
21
Zhang YV, Cheong J, Ciapurin N, et al. Distinct self-renewal and differentiation phases in the niche of infrequently dividing hair follicle stem cells[J]. Cell stem cell, 2009, 5(3):267-278.
22
Gentile P. Autologous cellular method using micrografts of human adipose tissue derived follicle stem cells in androgenic alopecia[J]. Int J Mol Sci, 2019, 20(14):3446. doi: 10.3390/ijms20143446.
23
Elmaadawi IH, Mohamed BM, Ibrahim Z, et al. Stem cell therapy as a novel therapeutic intervention for resistant cases of alopecia areata and androgenetic alopecia[J]. J Dermatolog Treat, 2018, 29(5):431-440.
24
Zhang H, Zhao H, Qiao J, et al. Expansion of hair follicle stem cells sticking to isolated sebaceous glands to generate in vivo epidermal structures[J]. Cell Transplantation, 2016, 25(11):2071-2082.
25
Bai T, Liu F, Zou F, et al. Epidermal growth factor induces proliferation of hair follicle-derived mesenchymal stem cells through epidermal growth factor receptor-mediated activation of ERK and AKT signaling pathways associated with upregulation of cyclin D1 and downregulation of p16[J]. Stem Cells Dev, 2017, 26(2):113-122.
26
Li H, Masieri FF, Schneider M, et al. Autologous, non-invasively available mesenchymal stem cells from the outer root sheath of hair follicle are obtainable by migration from plucked hair follicles and expandable in scalable amounts[J]. Cells, 2020, 9(9):2069. doi: 10.3390/cells9092069.
27
Yashiro M, Mii S, Aki R, et al. From hair to heart: nestin-expressing hair-follicle-associated pluripotent (HAP) stem cells differentiate to beating cardiac muscle cells[J]. Cell Cycle, 2015, 14(14):2362-2366.
28
Liu Z, Lu SJ, Lu Y, et al. Transdifferentiation of human hair follicle mesenchymal stem cells into red blood cells by OCT4[J]. Stem Cells Int, 2015, 2015:389628. doi: 10.1155/2015/389628.
29
Wang Y, Sui Y, Lian A, et al. PBX1 attenuates hair follicle-derived mesenchymal stem cell senescence and apoptosis by alleviating reactive oxygen species-mediated DNA damage instead of enhancing DNA damage repair[J]. Front Cell Dev Biol, 2021, 9:739868. doi: 10.3389/fcell.2021.739868.
30
Li P, Liu F, Wu C, et al. Feasibility of human hair follicle-derived mesenchymal stem cells/CultiSpher((R))-G constructs in regenerative medicine[J]. Cell Tissue Res, 2015, 362(1):69-86.
31
Deng W, Zhang Y, Wang W, et al. Hair follicle-derived mesenchymal stem cells decrease alopecia areata mouse hair loss and reduce inflammation around the hair follicle[J]. Stem Cell Res Ther, 2021, 12(1):548. doi: 10.1186/s13287-021-02614-0.
32
Hong IS, Kang KS. The effects of Hedgehog on the RNA-binding protein Msi1 in the proliferation and apoptosis of mesenchymal stem cells[J]. PLoS One, 2013, 8(2):e56496. doi: 10.1371/journal.pone.0056496.
33
Bu ZY, Wu LM, Yu XH, et al. Isolation and characterization of in vitro culture of hair follicle cells differentiated from umbilical cord blood mesenchymal stem cells[J]. Exp Ther Med, 2017, 14(1):303-307.
34
Oh HA, Kwak J, Kim BJ, et al. Migration inhibitory factor in conditioned medium from human umbilical cord blood-derived mesenchymal stromal cells stimulates hair growth[J]. Cells, 2020, 9(6):1344. doi: 10.3390/cells9061344.
35
Bak DH, Lee E, Choi MJ, et al. Protective effects of human umbilical cord blood derived mesenchymal stem cells against dexamethasone induced apoptotic cell death in hair follicles[J]. Int J Mol Med, 2020, 45(2):556-568.
36
Zuk PA, Zhu M, Ashjian P, et al. Human adipose tissue is a source of multipotent stem cells[J]. Mol Biol Cell, 2002, 13(12):4279-4295.
37
María á, Yolanda M, Jesús O. CD271 as a marker to identify mesenchymal stem cells from diverse sources before culture[J]. World Journal of Stem Cells, 2015, 7(2):470-476.
38
Strioga M, Viswanathan S, Darinskas A, et al. Same or not the same? comparison of adipose tissue-derived versus bone marrow-derived mesenchymal stem and stromal cells[J]. Stem Cells Dev, 2012, 21(14):2724-2752.
39
Fukuoka H, Suga H. Hair regeneration treatment using adipose-derived stem cell conditioned medium: follow-up with trichograms[J]. Eplasty, 2015, 15:e10.
40
Xiong BJ, Tan QW, Chen YJ, et al. The effects of platelet-rich plasma and adipose-derived stem cells on neovascularization and fat graft survival[J]. Aesthetic Plast Surg, 2018, 42(1):1-8.
41
Anderi R, Makdissy N, Azar A, et al. Cellular therapy with human autologous adipose-derived adult cells of stromal vascular fraction for alopecia areata[J]. Stem Cell Res Ther, 2018, 9(1):141.doi: 10.1186/s13287-018-0889-y.
42
Li Y, Zhang J, Yue J, et al. Epidermal stem cells in skin wound healing[J]. Adv Wound Care (New Rochelle), 2017, 6(9):297-307.
43
Martinotti S, Marconato K, Bonsignore G, et al. Epidermal stem cells in regenerative medicine[J]. Adv Exp Med Biol, 2020, 1298:17-21.
44
Rangel-Huerta E, Maldonado E. Transit-amplifying cells in the fast lane from stem cells towards differentiation[J]. Stem Cells Int, 2017, 2017:7602951.doi: 10.1155/2017/7602951.
45
Blanpain C, Fuchs E. Epidermal homeostasis: a balancing act of stem cells in the skin[J]. Nat Rev Mol Cell Biol, 2009, 10(3):207-217.
46
Zhang M, Ye Y, Zhao P, et al. Preliminary studies of hair follicle regeneration by injections of epidermal stem cells and dermal papilla cells into nude mice[J]. Cell Tissue Bank, 2020,21(2):321-327.
47
Wang X, Wang X, Liu J, et al. Hair follicle and sebaceous gland de novo regeneration with cultured epidermal stem cells and skin-derived precursors[J]. Stem Cells Transl Med, 2016, 5(12):1695-1706.
48
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
49
Itoh M, Kiuru M, Cairo MS, et al. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells[J]. Proc Natl Acad Sci U S A, 2011, 108(21):8797-8802.
50
Belair DG, Whisler JA, Valdez J, et al. Human vascular tissue models formed from human induced pluripotent stem cell derived endothelial cells[J]. Stem Cell Rev Rep, 2015, 11(3):511-525.
1
Strazzulla LC, Wang E, Avila L, et al. Alopecia areata: Disease characteristics, clinical evaluation, and new perspectives on pathogenesis[J]. J Am Acad Dermatol, 2018, 78(1):1-12.
2
Owczarczyk-Saczonek A, Krajewska-Wlodarczyk M, Kruszewska A, et al. Therapeutic potential of stem cells in follicle regeneration[J]. Stem Cells Int, 2018, 2018:1049641. doi: 10.1155/2018/1049641.
3
Kanti V, Messenger A, Dobos G, et al. Evidence-based (S3) guideline for the treatment of androgenetic alopecia in women and in men-short version[J]. J Eur Acad Dermatol Venereol, 2018, 32(1):11-22.
4
Egger A, Tomic-Canic M, Tosti A. Advances in stem cell-based therapy for hair loss[J]. CellR4 Repair Replace Regen Reprogram, 2020, 8:e2894.
5
Mapar MA, Omidian M. Is topical minoxidil solution effective on androgenetic alopecia in routine daily practice?[J]. J Dermatolog Treat, 2007, 18(5):268-270.
6
Orentreich N. Autografts in alopecias and other selected dermatological conditions[J]. Ann N Y Acad Sci, 1959,83:463-479.
7
Miao Y, Qu Q, Jiang W, et al. Identification of functional patterns of androgenetic alopecia using transcriptome profiling in distinct locations of hair follicles[J]. J Invest Dermatol, 2018, 138(4):972-975.
8
Snippert HJ, Clevers H. Tracking adult stem cells[J]. EMBO Rep, 2011, 12(2):113-122.
9
Boddu S, Hashim PW, Nia JK, et al. Regenerative medicine in cosmetic dermatology[J]. Cutis, 2018, 101(1):33-36.
10
Kageyama T, Yan L, Shimizu A, et al. Preparation of hair beads and hair follicle germs for regenerative medicine[J]. Biomaterials, 2019, 212:55-63.
11
Toyoshima KE, Ogawa M, Tsuji T. Regeneration of a bioengineered 3D integumentary organ system from iPS cells[J]. Nat Protoc, 2019, 14(5):1323-1338.
12
Sasaki GH. Review of human hair follicle biology: dynamics of niches and stem cell regulation for possible therapeutic hair stimulation for plastic surgeons[J]. Aesthetic Plast Surg, 2019, 43(1): 253-266.
13
Bernard BA. The hair follicle enigma[J]. Exp Dermatol, 2017, 26(6):472-477.
14
Rompolas P, Greco V. Stem cell dynamics in the hair follicle niche[J]. Semin Cell Dev Biol, 2014, 25-26:34-42.
15
Legue E, Sequeira I, Nicolas JF. Hair follicle renewal: authentic morphogenesis that depends on a complex progression of stem cell lineages[J]. Development, 2010, 137(4):569-577.
16
Houschyar KS, Borrelli MR, Tapking C, et al. Molecular mechanisms of hair growth and regeneration: current understanding and novel paradigms[J]. Dermatology, 2020, 236(4):271-280.
17
Niiyama S, Ishimatsu-Tsuji Y, Nakazawa Y, et al. Gene expression profiling of the intact dermal sheath cup of human hair follicles[J]. Acta Derm Venereol, 2018, 98(7):694-698.
51
Yang R, Zheng Y, Burrows M, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells[J]. Nat Commun, 2014, 5:3071. doi: 10.1038/ncomms4071.
52
Takagi R, Ishimaru J, Sugawara A, et al. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model[J]. Sci Adv, 2016, 2(4):e1500887. doi: 10.1126/sciadv.1500887.
53
Fukuoka H, Suga H, Narita K, et al. The latest advance in hair regeneration therapy using proteins secreted by adipose-derived stem cells[J]. Am J Cosmet Surg, 2012, 29(4): 273-282.
54
Zhou L, Wang H, Jing J, et al. Regulation of hair follicle development by exosomes derived from dermal papilla cells[J]. Biochem Biophys Res Commun, 2018, 500(2):325-332.
[1] 庄蕙嘉, 岳志成, 钟坤岑, 朱慧莉. 乳腺癌患者生育力保存的研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(04): 238-242.
[2] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[3] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[4] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[5] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[6] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[7] 高雷, 李芳, 巴雅力嘎, 李全, 巴特. 干细胞源性外泌体在创伤修复中免疫作用的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 364-367.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[14] 陈婷婷, 江学良, 余佳丽, 柯剑林. 干细胞治疗炎症性肠病的安全性[J]. 中华消化病与影像杂志(电子版), 2023, 13(04): 193-198.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要