切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (02) : 105 -109. doi: 10.3877/cma.j.issn.2095-1221.2022.02.007

综述

静脉输注间充质干细胞治疗缺血性心脏病的研究进展
齐婷婷1, 许晓明1, 夏云龙1, 郭永珍1, 樊苗苗1, 贺媛1, 陈迈1, 陶凌1, 闫文俊1, 范延红1,()   
  1. 1. 710032 西安,空军军医大学西京医院心血管内科
  • 收稿日期:2021-09-09 出版日期:2022-04-01
  • 通信作者: 范延红
  • 基金资助:
    国家重点研发计划(2018YFA0107400); 国家自然科学基金优秀青年科学基金(82022004); 国家自然科学基金面上项目(81970212); 国家自然科学基金青年项目(81900241、82100362)

Research progress of intravenous infusion of mesenchymal stromal cells in the treatment of ischemic heart disease

Tingting Qi1, Xiaoming Xu1, Yunlong Xia1, Yongzhen Guo1, Miaomiao Fan1, Yuan He1, Mai Chen1, Ling Tao1, Wenjun Yan1, Yanhong Fan1,()   

  1. 1. Department of Cardiology, Xijing Hospital of Air Force Military Medical University, Xi'an 710032, China
  • Received:2021-09-09 Published:2022-04-01
  • Corresponding author: Yanhong Fan
引用本文:

齐婷婷, 许晓明, 夏云龙, 郭永珍, 樊苗苗, 贺媛, 陈迈, 陶凌, 闫文俊, 范延红. 静脉输注间充质干细胞治疗缺血性心脏病的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(02): 105-109.

Tingting Qi, Xiaoming Xu, Yunlong Xia, Yongzhen Guo, Miaomiao Fan, Yuan He, Mai Chen, Ling Tao, Wenjun Yan, Yanhong Fan. Research progress of intravenous infusion of mesenchymal stromal cells in the treatment of ischemic heart disease[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(02): 105-109.

缺血性心脏病(IHD)是一种高危凶险的疾病。近年来,间充质干细胞(MSCs)因具有心肌保护作用和低免疫原性,在IHD治疗中的潜力越来越受到人们关注。MSCs治疗IHD的移植途径包括心肌内注射、冠状血管注射和静脉注射,其中静脉注射侵入性最低,可多次注射,但存在心肌靶向归巢率低的问题,导致心肌保护作用不佳。如何提高静脉注射MSCs的心肌靶向归巢率是提高MSCs心肌保护的关键问题,也是目前研究的热点。本文总结了MSCs在IHD治疗中的现状,静脉注射MSCs心肌靶向归巢的研究进展,并探讨静脉注射MSCs在临床应用中的前景。

Ischemic heart disease (IHD) is one of the dangerous and severe disease. Recently, mesenchymal stromal cells (MSCs) have been more popular in the treatment of IHD due to their cardioprotective effect and low immunogenicity. The routes of MSCs transplantation for IHD therapy include intramyocardial injection, coronary artery/vein injection, and intravenous injection. Intravenous delivery is the least invasive and can be done multiple times. However, the problem of low homing rate of targeted myocardium may lead to poor myocardial protection. How to improve the targeted cardiac homing of intravenously injected MSCs is the key problem to improve the cardioprotection of MSCs, and it becomes more popular at present. The paper summarizes the status quo of MSCs in IHD treatment, research progress of the myocardial homing of intravenous MSCs, and the clinical application of intravenously injected MSCs for IHD.

图1 MSCs向缺血心肌靶向归巢的5个步骤注:Galectin为半乳糖凝集素;P-selectin为P-选择素;CCR2为趋化因子C-C-基元受体2;CXCR4、7为C-X-C趋化因子受体4、7;MCP1、3为单核细胞趋化蛋白1、3;SDF-1为基质细胞衍生因子-1;VCAM-1为血管细胞黏附分子-1;ICAM-1为细胞间黏附分子1;VLA4为迟现抗原4;TIMP2、3为组织金属蛋白酶抑制因子2、3;MMP2、9为基质金属蛋白酶2、9;MT1-MMP为膜型基质金属蛋白酶;PDGF-AB为血小板衍化生长因子-AB;IGF-1为胰岛素样生长因子1;RANTES又称CCL5,趋化因子C-C基元配体5
1
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet,2019,394(10204):1145-1158.
2
Wang H, Chai K, Du M, et al. Prevalence and incidence of heart failure among urban patients in china: a national population-based analysis[J]. Circ Heart Fail,2021,14(10):e008406. doi: 10.1161/CIRCHEARTFAILURE.121.008406.
3
Lukomska B, Stanaszek L, Zuba-Surma E, et al. Challenges and controversies in human mesenchymal stem cell therapy[J]. Stem Cells Int,2019,2019:9628536. doi: 10.1155/2019/9628536.
4
Tao Z, Tan S, Chen W, et al. Stem cell homing: a potential therapeutic strategy unproven for treatment of myocardial injury[J]. J Cardiovasc Transl Res,2018,11(5):403-411.
5
Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells[J]. Hypertension, 2005, 45(3):321-325.
6
Ripa RS, Haack-Sørensen M, Wang Y, et al. Bone marrow-derived mesenchymal cell mobilization by granulocyte-colony stimulating factor after acute myocardial infarction[J]. Circulation, 2007,116(11 Suppl):I24-30.
7
Iso Y, Yamaya S, Sato T, et al. Distinct mobilization of circulating CD271+ mesenchymal progenitors from hematopoietic progenitors during aging and after myocardial infarction[J]. Stem Cells Transl Med,2012,1(6):462-468.
8
Bartolucci J, Verdugo FJ, González PL, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure[J]. Circ Res,2017,121(10):1192-1204.
9
Mathiasen AB, Qayyum AA, Jørgensen E, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with ischaemic heart failure: final 4-year follow-up of the MSC-HF trial[J]. Eur J Heart Fail, 2020, 22(5):884-892.
10
Yan W, Lin C, Guo Y, et al. N-Cadherin overexpression mobilizes the protective effects of mesenchymal stromal cells against ischemic heart injury through a β-catenin-dependent manner[J]. Circ Res,2020,126(7):857-874.
11
Zhu L, Tian T, Wang J, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction[J]. Theranostics, 2018, 8(22):6163-6177.
12
Wang WE, Yang D, Li L, et al. Prolyl hydroxylase domain protein 2 silencing enhances the survival and paracrine function of transplanted adipose-derived stem cells in infarcted myocardium[J]. Circ Res, 2013, 113(3):288-300.
13
Lu D, Liao Y, Zhu S, et al. Bone-derived nestin-positive mesenchymal stem cells improve cardiac function via recruiting cardiac endothelial cells after myocardial infarction[J]. Stem Cell Res Ther, 2019, 10(1):127.doi: 10.1186/s13287-019-1217-x.
14
Vagnozzi RJ, Maillet M, Sargent MA, et al. An acute immune response underlies the benefit of cardiac stem cell therapy[J]. Nature, 2020, 577(7790):405-409.
15
Sun S, Lai W, Jiang Y, et al. Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction[J]. Theranostics, 2021, 11(4):1641-1654.
16
Kosaric N, Srifa W, Bonham CA, et al. Macrophage subpopulation dynamics shift following intravenous infusion of mesenchymal stromal cells[J]. Mol Ther, 2020, 28(9):2007-2022.
17
Liao Y, Li G, Zhang X, et al. Cardiac nestin(+) mesenchymal stromal cells enhance healing of ischemic heart through periostin-mediated m2 macrophage polarization[J]. Mol Ther, 2020, 28(3):855-873.
18
Luger D, Lipinski MJ, Westman PC, et al.Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy[J]. Circ Res, 2017, 120(10):1598-1613.
19
Sun S, Lai W, Jiang Y, et al. Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction[J]. Theranostics,2021,11(4):1641-1654.
20
Gao LR, Chen Y, Zhang NK, et al. Intracoronary infusion of Wharton's jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial[J]. BMC Med,2015,13:162. doi: 10.1186/s12916-015-0399-z.
21
Patel AN, Mittal S, Turan G, et al. Revive trial: retrograde delivery of autologous bone marrow in patients with heart failure[J]. Stem Cells Transl Med,2015,4(9):1021-1027.
22
Hong SJ, Hou D, Brinton TJ, et al. Intracoronary and retrograde coronary venous myocardial delivery of adipose-derived stem cells in swine infarction lead to transient myocardial trapping with predominant pulmonary redistribution[J]. Catheter Cardiovasc Interv,2014,83(1):E17-E25.
23
Vagnozzi RJ, Sargent MA, Molkentin JD. Cardiac cell therapy rejuvenates the infarcted rodent heart via direct injection but not by vascular infusion[J]. Circulation,2020,141(12):1037-1039.
24
Liu Z, Mikrani R, Zubair HM, et al. Systemic and local delivery of mesenchymal stem cells for heart renovation: Challenges and innovations[J]. Eur J Pharmacol,2020,876:173049.doi: 10.1016/j.ejphar.2020.173049.
25
Bartolucci J, Verdugo FJ, González PL, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure[J]. Circulation Research,2017,121(10):1192-1204.
26
Chullikana A, Majumdar AS, Gottipamula S, et al. Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction[J]. Cytotherapy,2015,17(3):250-261.
27
Hare J M, Traverse J H, Henry T D, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction[J].J Am Coll Cardiol,2009,54(24):2277-2286.
28
Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: mechanisms and strategies for improvement[J]. iScience,2019, 15:421-438.
29
Sackstein R, Merzaban JS, Cain DW, et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone[J]. Nature Medicine, 2008, 14(2):181-187.
30
Lau TT, Wang D. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine[J]. Expert Opin Biol Ther, 2011, 11(2):189-197.
31
Cheng Z, Ou L, Zhou X, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance[J]. Molecular Therapy,2008,16(3):571-579.
32
Cui L, Nitzsche F, Pryazhnikov E, et al. Integrin α4 overexpression on rat mesenchymal stem cells enhances transmigration and reduces cerebral embolism after intracarotid injection[J]. Stroke,2017,48(10):2895-2900.
33
Ip JE, Wu Y, Huang J,et al. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment[J]. Mol Biol Cell,2007, 18(8):2873-2882.
34
Steingen C, Brenig F, Baumgartner L, et al. Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells[J]. J Mol Cell Cardiol,2008,44(6):1072-1084.
35
Haider HK, Jiang S, Idris NM, et al. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair[J]. Circulation Research,2008,103(11):1300-1308.
36
Tang J, Wang J, Zhang L, et al. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart[J]. Cardiovascular Research,2011,91(3):402-411.
37
Chen B, Frangogiannis NG. Chemokines in myocardial infarction[J]. J Cardiovasc Transl Res,2021,14(1):35-52.
38
Wu Y, Zhao RCH. The role of chemokines in mesenchymal stem cell homing to myocardium[J]. Stem Cell Rev Rep,2012,8(1):243-250.
39
Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression[J]. Circulation Research,2009,104(10):1209-1216.
40
Schenk S, Mal N, Finan A, et al. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor[J]. Stem Cells, 2007, 25(1):245-251.
41
Huang J, Zhang Z, Guo J, et al. Genetic modification of mesenchymal stem cells overexpressing ccr1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium[J]. Circulation Research,2010,106(11):1753-1762.
42
Bonaros N, Sondermejer H, Schuster M, et al. CCR3- and CXCR4-mediated interactions regulate migration of CD34+ human bone marrow progenitors to ischemic myocardium and subsequent tissue repair[J]. J Thorac Cardiovasc Surg,2008,136(4):1044-1053.
43
Nakamura Y, Kita S, Tanaka Y, et al. Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice[J]. Molecular Therapy, 2020, 28(10):2203-2219.
44
Yao J, Huang K, Zhu D, et al. A minimally invasive exosome spray repairs heart after myocardial infarction[J]. ACS Nano,2021,15(7):11099-11111.
45
Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6[J]. Cell Stem Cell,2009,5(1):54-63.
46
Luger D, Lipinski MJ, Westman PC, et al. Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy[J]. Circulation Research,2017,120(10):1598-1613.
47
Hu X, Wei L, Taylor TM, et al. Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation[J]. Am J Physiol Cell Physiol,2011,301(2):C362-C372.
48
Elmadbouh I, Ashraf M. Tadalafil, a long acting phosphodiesterase inhibitor, promotes bone marrow stem cell survival and their homing into ischemic myocardium for cardiac repair[J]. Physiological reports,2017,5(21):e13480.doi: 10.14814/phy2.13480.
49
He Y, Guo Y, Xia Y,et al. Resistin promotes cardiac homing of mesenchymal stem cells and functional recovery after myocardial ischemia-reperfusion via the ERK1/2-MMP-9 pathway[J]. Am J Physiol Heart Circ Physiol,2019,316(1):H233-H244.
50
Ghanem A, Steingen C, Brenig F, et al. Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction[J]. J Mol Cell Cardiol, 2009, 47(3):411-418.
51
Ling Z, Shu S, Zhong S, et al. Ultrasound targeted microbubble destruction promotes angiogenesis and heart function by inducing myocardial microenvironment change[J]. Ultrasound Med Biol,2013,39(11):2001-2010.
52
Sun Z, Xie Y, Lee RJ, et al. Myocardium-targeted transplantation of PHD2 shRNA-modified bone mesenchymal stem cells through ultrasound-targeted microbubble destruction protects the heart from acute myocardial infarction[J]. Theranostics, 2020, 10(11):4967-4982.
53
Xiao W, Green TIP, Liang X, et al. Designer artificial membrane binding proteins to direct stem cells to the myocardium[J]. Chemical Science, 2019, 10(32):7610-7618.
[1] 杨琳, 尹如铁. 外阴白色病变病因研究及治疗现状[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(02): 157-165.
[2] 曹胜军, 李全, 符雪, 邵天喜, 周延华. 人脂肪间充质干细胞多层膜片对促进裸鼠皮肤缺损愈合的效果观察[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(04): 341-347.
[3] 郑宝英, 黄小兰, 贾楠, 朱春梅. 儿童难治性肺炎支原体肺炎早期预警指标[J/OL]. 中华实验和临床感染病杂志(电子版), 2024, 18(04): 215-221.
[4] 傅红兴, 王植楷, 谢贵林, 蔡娟娟, 杨威, 严盛. 间充质干细胞促进胰岛移植效果的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 351-360.
[5] 王大伟, 陆雅斐, 皇甫少华, 陈玉婷, 陈澳, 江滨. 间充质干细胞通过调控免疫机制促进创面愈合的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 361-366.
[6] 袁园园, 岳乐淇, 张华兴, 武艳, 李全海. 间充质干细胞在呼吸系统疾病模型中肺组织分布及治疗机制的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 374-381.
[7] 王俊楠, 刘晔, 李若涵, 叶青松. 间充质干细胞调控肠脑轴治疗神经系统疾病的潜力[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(05): 313-319.
[8] 陈俊秋, 邬绿莹, 马予洁, 林娜, 刘飞, 陈津. 基于lncRNA微阵列芯片技术探索间充质干细胞外泌体增强小鼠胰岛β细胞抗低氧损伤的潜在机制[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 129-136.
[9] 杨阳, 王琤, 周文土, 周冰. Caveolae/Caveolin-1与膜胆固醇共同调控小鼠BMSCs成骨分化[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 137-142.
[10] 孙海燕, 周士燕, 张杉杉, 张研, 张茜. 间充质干细胞及其外泌体在高原肺水肿中的潜在治疗机制研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(03): 186-190.
[11] 凌淑洵, 涂玥, 刘思逸. 间充质干细胞在慢性肾脏病研究领域现状和趋势的知识图谱可视化分析[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(02): 73-82.
[12] 陆雅斐, 皇甫少华, 马传学, 江滨. 间充质干细胞治疗肛瘘手术方式的研究进展[J/OL]. 中华结直肠疾病电子杂志, 2024, 13(03): 242-249.
[13] 史敬萱, 焦圆圆, 田景玮, 卓莉. 间充质干细胞来源外泌体治疗动物糖尿病肾脏病的效果:Meta分析[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 79-86.
[14] 付章宁, 耿晓东, 张永军, 陆宇平, 孙冠南, 张益帆, 蔡广研, 陈香美, 洪权. 间充质干细胞促进肾脏损伤修复机制研究进展[J/OL]. 中华肾病研究电子杂志, 2024, 13(02): 87-91.
[15] 汪鹏飞, 程莹莹, 赵海康. 骨髓间充质干细胞改善神经病理性疼痛的机制探讨[J/OL]. 中华脑科疾病与康复杂志(电子版), 2024, 14(04): 230-234.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?