1 |
Zhou M, Wang H, Zeng X, et al. Mortality, morbidity, and risk factors in China and its provinces, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017[J]. Lancet,2019,394(10204):1145-1158.
|
2 |
Wang H, Chai K, Du M, et al. Prevalence and incidence of heart failure among urban patients in china: a national population-based analysis[J]. Circ Heart Fail, 2021, 14(10):e008406. doi: 10.1161/CIRCHEARTFAILURE.121.008406.
|
3 |
Lukomska B, Stanaszek L, Zuba-Surma E, et al. Challenges and controversies in human mesenchymal stem cell therapy[J]. Stem Cells Int, 2019, 2019:9628536. doi: 10.1155/2019/9628536.
|
4 |
Tao Z, Tan S, Chen W, et al. Stem cell homing: a potential therapeutic strategy unproven for treatment of myocardial injury[J]. J Cardiovasc Transl Res,2018,11(5):403-411.
|
5 |
Aicher A, Zeiher AM, Dimmeler S. Mobilizing endothelial progenitor cells[J]. Hypertension, 2005, 45(3):321-325.
|
6 |
Ripa RS, Haack-Sørensen M, Wang Y, et al. Bone marrow-derived mesenchymal cell mobilization by granulocyte-colony stimulating factor after acute myocardial infarction[J]. Circulation, 2007,116(11 Suppl):I24-30.
|
7 |
Iso Y, Yamaya S, Sato T, et al. Distinct mobilization of circulating CD271+ mesenchymal progenitors from hematopoietic progenitors during aging and after myocardial infarction[J]. Stem Cells Transl Med,2012,1(6):462-468.
|
8 |
Bartolucci J, Verdugo FJ, González PL, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure[J]. Circ Res,2017,121(10):1192-1204.
|
9 |
Mathiasen AB, Qayyum AA, Jørgensen E, et al. Bone marrow-derived mesenchymal stromal cell treatment in patients with ischaemic heart failure: final 4-year follow-up of the MSC-HF trial[J]. Eur J Heart Fail, 2020, 22(5):884-892.
|
10 |
Yan W, Lin C, Guo Y, et al. N-Cadherin overexpression mobilizes the protective effects of mesenchymal stromal cells against ischemic heart injury through a β-catenin-dependent manner[J]. Circ Res,2020,126(7):857-874.
|
11 |
Zhu L, Tian T, Wang J, et al. Hypoxia-elicited mesenchymal stem cell-derived exosomes facilitates cardiac repair through miR-125b-mediated prevention of cell death in myocardial infarction[J]. Theranostics, 2018, 8(22):6163-6177.
|
12 |
Wang WE, Yang D, Li L, et al. Prolyl hydroxylase domain protein 2 silencing enhances the survival and paracrine function of transplanted adipose-derived stem cells in infarcted myocardium[J]. Circ Res, 2013, 113(3):288-300.
|
13 |
Lu D, Liao Y, Zhu S, et al. Bone-derived nestin-positive mesenchymal stem cells improve cardiac function via recruiting cardiac endothelial cells after myocardial infarction[J]. Stem Cell Res Ther, 2019, 10(1):127.doi: 10.1186/s13287-019-1217-x.
|
14 |
Vagnozzi RJ, Maillet M, Sargent MA, et al. An acute immune response underlies the benefit of cardiac stem cell therapy[J]. Nature, 2020, 577(7790):405-409.
|
15 |
Sun S, Lai W, Jiang Y, et al. Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction[J]. Theranostics, 2021, 11(4):1641-1654.
|
16 |
Kosaric N, Srifa W, Bonham CA, et al. Macrophage subpopulation dynamics shift following intravenous infusion of mesenchymal stromal cells[J]. Mol Ther, 2020, 28(9):2007-2022.
|
17 |
Liao Y, Li G, Zhang X, et al. Cardiac nestin(+) mesenchymal stromal cells enhance healing of ischemic heart through periostin-mediated m2 macrophage polarization[J]. Mol Ther, 2020, 28(3):855-873.
|
18 |
Luger D, Lipinski MJ, Westman PC, et al.Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy[J]. Circ Res, 2017, 120(10):1598-1613.
|
19 |
Sun S, Lai W, Jiang Y, et al. Immunomodulation by systemic administration of human-induced pluripotent stem cell-derived mesenchymal stromal cells to enhance the therapeutic efficacy of cell-based therapy for treatment of myocardial infarction[J]. Theranostics,2021,11(4):1641-1654.
|
20 |
Gao LR, Chen Y, Zhang NK, et al. Intracoronary infusion of Wharton's jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial[J]. BMC Med, 2015, 13:162. doi: 10.1186/s12916-015-0399-z.
|
21 |
Patel AN, Mittal S, Turan G, et al. Revive trial: retrograde delivery of autologous bone marrow in patients with heart failure[J]. Stem Cells Transl Med,2015,4(9):1021-1027.
|
22 |
Hong SJ, Hou D, Brinton TJ, et al. Intracoronary and retrograde coronary venous myocardial delivery of adipose-derived stem cells in swine infarction lead to transient myocardial trapping with predominant pulmonary redistribution[J]. Catheter Cardiovasc Interv,2014,83(1):E17-E25.
|
23 |
Vagnozzi RJ, Sargent MA, Molkentin JD. Cardiac cell therapy rejuvenates the infarcted rodent heart via direct injection but not by vascular infusion[J]. Circulation,2020,141(12):1037-1039.
|
24 |
Liu Z, Mikrani R, Zubair HM, et al. Systemic and local delivery of mesenchymal stem cells for heart renovation: Challenges and innovations[J]. Eur J Pharmacol, 2020, 876:173049.doi: 10.1016/j.ejphar.2020.173049.
|
25 |
Bartolucci J, Verdugo FJ, González PL, et al. Safety and efficacy of the intravenous infusion of umbilical cord mesenchymal stem cells in patients with heart failure[J]. Circulation Research,2017,121(10):1192-1204.
|
26 |
Chullikana A, Majumdar AS, Gottipamula S, et al. Randomized, double-blind, phase I/II study of intravenous allogeneic mesenchymal stromal cells in acute myocardial infarction[J]. Cytotherapy,2015,17(3):250-261.
|
27 |
Hare J M, Traverse J H, Henry T D, et al. A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction[J].J Am Coll Cardiol,2009,54(24):2277-2286.
|
28 |
Ullah M, Liu DD, Thakor AS. Mesenchymal stromal cell homing: mechanisms and strategies for improvement[J]. iScience,2019, 15:421-438.
|
29 |
Sackstein R, Merzaban JS, Cain DW, et al. Ex vivo glycan engineering of CD44 programs human multipotent mesenchymal stromal cell trafficking to bone[J]. Nature Medicine, 2008, 14(2):181-187.
|
30 |
Lau TT, Wang D. Stromal cell-derived factor-1 (SDF-1): homing factor for engineered regenerative medicine[J]. Expert Opin Biol Ther, 2011, 11(2):189-197.
|
31 |
Cheng Z, Ou L, Zhou X, et al. Targeted migration of mesenchymal stem cells modified with CXCR4 gene to infarcted myocardium improves cardiac performance[J]. Molecular Therapy,2008,16(3):571-579.
|
32 |
Cui L, Nitzsche F, Pryazhnikov E, et al. Integrin α4 overexpression on rat mesenchymal stem cells enhances transmigration and reduces cerebral embolism after intracarotid injection[J]. Stroke,2017,48(10):2895-2900.
|
33 |
Ip JE, Wu Y, Huang J,et al. Mesenchymal stem cells use integrin beta1 not CXC chemokine receptor 4 for myocardial migration and engraftment[J]. Mol Biol Cell,2007, 18(8):2873-2882.
|
34 |
Steingen C, Brenig F, Baumgartner L, et al. Characterization of key mechanisms in transmigration and invasion of mesenchymal stem cells[J]. J Mol Cell Cardiol,2008,44(6):1072-1084.
|
35 |
Haider HK, Jiang S, Idris NM, et al. IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1α/CXCR4 signaling to promote myocardial repair[J]. Circulation Research,2008,103(11):1300-1308.
|
36 |
Tang J, Wang J, Zhang L, et al. VEGF/SDF-1 promotes cardiac stem cell mobilization and myocardial repair in the infarcted heart[J]. Cardiovascular Research,2011,91(3):402-411.
|
37 |
Chen B, Frangogiannis NG. Chemokines in myocardial infarction[J]. J Cardiovasc Transl Res,2021,14(1):35-52.
|
38 |
Wu Y, Zhao RCH. The role of chemokines in mesenchymal stem cell homing to myocardium[J]. Stem Cell Rev Rep,2012,8(1):243-250.
|
39 |
Tang YL, Zhu W, Cheng M, et al. Hypoxic preconditioning enhances the benefit of cardiac progenitor cell therapy for treatment of myocardial infarction by inducing CXCR4 expression[J]. Circulation Research,2009,104(10):1209-1216.
|
40 |
Schenk S, Mal N, Finan A, et al. Monocyte chemotactic protein-3 is a myocardial mesenchymal stem cell homing factor[J]. Stem Cells, 2007, 25(1):245-251.
|
41 |
Huang J, Zhang Z, Guo J, et al. Genetic modification of mesenchymal stem cells overexpressing ccr1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium[J]. Circulation Research,2010,106(11):1753-1762.
|
42 |
Bonaros N, Sondermejer H, Schuster M, et al. CCR3- and CXCR4-mediated interactions regulate migration of CD34+ human bone marrow progenitors to ischemic myocardium and subsequent tissue repair[J]. J Thorac Cardiovasc Surg,2008,136(4):1044-1053.
|
43 |
Nakamura Y, Kita S, Tanaka Y, et al. Adiponectin stimulates exosome release to enhance mesenchymal stem-cell-driven therapy of heart failure in mice[J]. Molecular Therapy, 2020, 28(10):2203-2219.
|
44 |
Yao J, Huang K, Zhu D, et al. A minimally invasive exosome spray repairs heart after myocardial infarction[J]. ACS Nano,2021,15(7):11099-11111.
|
45 |
Lee RH, Pulin AA, Seo MJ, et al. Intravenous hMSCs improve myocardial infarction in mice because cells embolized in lung are activated to secrete the anti-inflammatory protein TSG-6[J]. Cell Stem Cell,2009,5(1):54-63.
|
46 |
Luger D, Lipinski MJ, Westman PC, et al. Intravenously delivered mesenchymal stem cells: systemic anti-inflammatory effects improve left ventricular dysfunction in acute myocardial infarction and ischemic cardiomyopathy[J]. Circulation Research,2017,120(10):1598-1613.
|
47 |
Hu X, Wei L, Taylor TM, et al. Hypoxic preconditioning enhances bone marrow mesenchymal stem cell migration via Kv2.1 channel and FAK activation[J]. Am J Physiol Cell Physiol,2011,301(2):C362-C372.
|
48 |
Elmadbouh I, Ashraf M. Tadalafil, a long acting phosphodiesterase inhibitor, promotes bone marrow stem cell survival and their homing into ischemic myocardium for cardiac repair[J]. Physiological reports, 2017, 5(21):e13480.doi: 10.14814/phy2.13480.
|
49 |
He Y, Guo Y, Xia Y,et al. Resistin promotes cardiac homing of mesenchymal stem cells and functional recovery after myocardial ischemia-reperfusion via the ERK1/2-MMP-9 pathway[J]. Am J Physiol Heart Circ Physiol,2019,316(1):H233-H244.
|
50 |
Ghanem A, Steingen C, Brenig F, et al. Focused ultrasound-induced stimulation of microbubbles augments site-targeted engraftment of mesenchymal stem cells after acute myocardial infarction[J]. J Mol Cell Cardiol, 2009, 47(3):411-418.
|
51 |
Ling Z, Shu S, Zhong S, et al. Ultrasound targeted microbubble destruction promotes angiogenesis and heart function by inducing myocardial microenvironment change[J]. Ultrasound Med Biol,2013,39(11):2001-2010.
|
52 |
Sun Z, Xie Y, Lee RJ, et al. Myocardium-targeted transplantation of PHD2 shRNA-modified bone mesenchymal stem cells through ultrasound-targeted microbubble destruction protects the heart from acute myocardial infarction[J]. Theranostics, 2020, 10(11):4967-4982.
|
53 |
Xiao W, Green TIP, Liang X, et al. Designer artificial membrane binding proteins to direct stem cells to the myocardium[J]. Chemical Science, 2019, 10(32):7610-7618.
|