切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (04) : 204 -211. doi: 10.3877/cma.j.issn.2095-1221.2024.04.002

论著

AHNAK基因高表达与老年急性髓系白血病患者预后不良相关
杜鑫1, 刘霞霞2, 张恬波1, 张夏林3, 杨林花4, 张睿娟1,()   
  1. 1. 030032 太原,山西医科大学第三医院 (山西白求恩医院 山西医学科学院 同济山西医院)血液内科
    2. 041000 临汾,山西省临汾市中心医院血液内科
    3. 030032 太原,山西白求恩医院 (山西医学科学院 同济山西医院),山西医科大学第三医院血液内科
    4. 030001 太原,山西医科大学第二医院血液内科
  • 收稿日期:2024-02-12 出版日期:2024-08-01
  • 通信作者: 张睿娟
  • 基金资助:
    山西白求恩人才引进基金(2021RC017)

The association between high AHNAK gene expression and poor prognosis in elderly AML patients

Xin Du1, XiaXia Liu2, Tianbo Zhang1, Xialin Zhang3, Linhua Yang4, Ruijuan Zhang1,()   

  1. 1. Department of Hematology, Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032, China
    2. Department of Hematology, Linfen Central Hospital, Linfen 041000, China
    3. Department of Hematology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China
    4. Department of Hematology, Second Hospital of Shanxi Medical University, Taiyuan 030001, China
  • Received:2024-02-12 Published:2024-08-01
  • Corresponding author: Ruijuan Zhang
引用本文:

杜鑫, 刘霞霞, 张恬波, 张夏林, 杨林花, 张睿娟. AHNAK基因高表达与老年急性髓系白血病患者预后不良相关[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 204-211.

Xin Du, XiaXia Liu, Tianbo Zhang, Xialin Zhang, Linhua Yang, Ruijuan Zhang. The association between high AHNAK gene expression and poor prognosis in elderly AML patients[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(04): 204-211.

目的

基于单细胞RNA测序(scRNA-seq)筛选老年急性髓系白血病(AML)造血干细胞(HSCs)中的关键基因,分析其对预后的影响。

方法

对3例初诊老年AML患者骨髓细胞进行scRNA-seq,采用统一流形逼近与投影(UMAP)算法聚类确定骨髓细胞类型。进一步根据拷贝数变异(CNV)分析、干性分析、拟时序分析、差异表达基因分析和富集分析揭示HSCs亚群的特点,筛选差异表达基因。通过癌症基因组图谱计划(TCGA)数据库/基因型-组织表达(GTEx)数据库以及实时荧光定量聚合酶链反应(RT-qPCR)对收集的老年AML患者、年轻AML患者和健康人骨髓样本检测,对筛选出的关键基因表达进行验证。采用单因素方差分析和Dunnett-t检验进行比较,生存分析用Log-rank检验。

结果

3例老年AML患者的骨髓细胞UMAP聚类分为11类细胞,其中HSCs比例差异较大;重新UMAP聚类HSCs,得到5个HSCs亚群。HSCs_2和4在细胞命运2 (Fate2)分支,CNV评分较高,且富集通路类似,因此归为一组,HSCs_1、3和5归为另一组;差异表达基因分析结果显示肺腺癌转移相关转录本1 (MALAT1)、AHNAK核蛋白(AHNAK)、Dmx like蛋白2 (DMXL2)和磷脂转运ATP酶8B4 (ATP8B4)基因差异显著。TCGA数据库/GTEx数据库分析结果显示,与健康人比较,MALAT1AHNAKATP8B4基因在AML患者中高表达(P < 0.05),DMXL2基因表达在AML患者和健康人中比较差异无统计学意义。RT-qPCR结果显示AHNAKATP8B4 mRNA水平在老年AML患者中高于年轻AML患者和健康人(P < 0.05)[AHNAK mRNA:(0.74 ± 0.14)比(4.28 ± 1.06),(1.05 ± 0.11)比(4.28 ± 1.06),ATP8B4 mRNA:(0.03 ± 0.01)比(0.64 ± 0.14),(0.07 ± 0.02)比(0.64 ± 0.14)]。MALAT1 mRNA水平在老年AML患者中高于年轻AML患者[(0.45 ± 0.16)比(1.27 ±0.23)](P < 0.05),但与健康人的差异无统计学意义。DMXL2 mRNA水平在老年AML患者中与年轻AML患者、健康人比较差异无统计学意义。生存分析显示AHNAK基因高表达与老年AML患者生存负相关。

结论

AHNAK基因在老年AML患者HSCs中高表达,且与预后不良相关。

Objective

To screen the key genes in hematopoietic stem cells (HSCs) from elderly acute myeloid leukemia (AML) patients using single-cell RNA sequencing (scRNA-seq) and analyze their prognostic impact.

Methods

Bone marrow cells from three newly diagnosed elderly AML patients were subjected to scRNA-seq. Cell types were classified by uniform manifold approximation and projection (UMAP) clustering algorithm. Copy number variation (CNV) analysis, stemness analysis, pseudotime analysis, differential gene expression analysis, and enrichment analysis was used to identify characteristic genes of HSCs subgroups. The expression of selected key genes was validated using The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, as well as real-time quantitative polymerase chain reaction (RT-qPCR) on collected bone marrow samples from elderly AML patients, young AML patients, and healthy individuals.Univariate ANOVA and Dunnett-t test were used for comparison the differences among groups. Survival analysis was analysed by Log-rank test.

Results

Eleven cell types were identified in three elderly AML patients, with significant differences in the proportion of HSCs. Five subsets of HSCs were identified after reclustering. HSCs_2 and HSCs_4 showed higher CNV scores and similar enrichment pathways, which were in the branch of cell fate 2 (Fate2), thus being grouped into a separate category from subsets HSCs_1, HSCs_3, and HSCs_5. Differential expression gene analysis highlighted that metastasis associated in lung denocarcinoma transcript 1 (MALAT1), AHNAK nucleoprotein (AHNAK), Dmx like 2 (DMXL2) and ATPase phospholipid transporting 8B4 (ATP8B4) genes were significantly differentially expressed. Analysis of TCGA and GTEx databases confirmed high expression levels of MALAT1, AHNAK, and ATP8B4 genes in AML patients, which significantly different from healthy individuals (P < 0.05), but without significant difference in the expression of DMXL2. RT-qPCR results showed that AHNAK and ATP8B4 mRNA expressions were significantly higher in elderly AML patients compared to young AML patients and healthy individuals [AHNAK mRNA: (0.74 ± 0.14) vs (4.28 ± 1.06), (1.05 ± 0.1) vs (4.28 ± 1.06), ATP8B4 mRNA: (0.03 ± 0.01) vs (0.64 ±0.14), (0.07 ± 0.02) vs (0.64 ± 0.14) ] (P < 0.05), while MALAT1 mRNA levels in elderly AML patients were significantly higher compared to young AML patients [ (0.45 ± 0.16) vs (1.27 ±0.23) ] (P < 0.05), but no significant difference compared to healthy individuals. No significant difference was observed in the expression of DMXL2 mRNA. Survival analysis showed that elderly AML patients with high AHNAK expression had poor prognosis.

Conclusions

AHNAK was highly expressed in HSCs of elderly AML patients and was associated with poor prognosis.

表1 3例老年AML患者临床特点
表2 基因MALAT1AHNAKDMXL2ATP8B4的引物序列
图1 3例老年AML患者骨髓细胞scRNA-seq分析注:a图为3例老年AML患者骨髓细胞UMAP聚类分布情况,不同颜色代表不同的细胞类型;b图为热图展示各类型细胞的特异性高表达基因;c图为3例老年AML患者骨髓中不同细胞占比
图2 老年AML患者骨髓HSCs scRNA-seq分析注:a图为3例老年AML患者骨髓HSCs UMAP聚类分布情况,不同颜色代表不同HSCs亚群;b图为HSCs亚群CNV分析;c图为HSCs亚群干性分析;d、e图为HSCs拟时序分析,颜色越深代表衍化轨迹起点;HSCs各亚群拟时序分析,不同颜色代表不同的亚群细胞分化轨迹;f图为HSCs亚群RNA速率,不同颜色代表不同的HSCs亚群,箭头代表细胞分化方向;g图为HSCs亚群GSVA富集分析
图3 HSCs亚群差异基因表达分析注:a图为火山图展示HSCs _2、4和HSCs_1、3、5的差异基因表达,红点代表上调基因,蓝点代表下调基因;b图为差异表达基因KEGG富集通路
图4 差异表达基因MALAT1、AHNAK、DMXL2ATP8B4的临床验证注:a~d为TCGA/GTEx数据库分析MALAT1、AHNAK、ATP8B4DMXL2基因在AML患者和健康人中的表达,*为P<0.05,ns为P>0.05
图5 AHNAK基因在老年AML患者中的生存分析
表3 MALAT1、AHNAK、DMXL2ATP8B4基因表达量( ± s
1
Dinardo CD, Erba HP, Freeman SD, et al. Acute myeloid leukaemia[J]. Lancet, 2023, 401(10393):2073-2086.
2
Hokland P, Fernández, Ii, Freeman SD, et al. AML in the elderly-A global view[J]. Br J Haematol, 2023, 203(5):760-773.
3
Wang BH, Guan W, Lv N, et al. Genetic features and efficacy of decitabine-based chemotherapy in elderly patients with acute myeloid leukemia[J]. Hematology, 2021, 26(1):371-379.
4
Stetson LC, Balasubramanian D, Ribeiro SP, et al. Single cell RNA sequencing of AML initiating cells reveals RNA-based evolution during disease progression[J]. Leukemia, 2021, 35(10):2799-2812.
5
Chen DW, Fan JM, Schrey JM, et al. Inflammatory recruitment of healthy hematopoietic stem and progenitor cells in the acute myeloid leukemia niche[J]. Leukemia, 2024, 38(4):741-750.
6
Zhang ZY, Deng C, Zhu P, et al. Single-cell RNA-seq reveals a microenvironment and an exhaustion state of T/NK cells in acute myeloid leukemia[J]. Cancer Sci, 2023, 114(10):3873-3883.
7
Arber D, Orazi A, Hasserjian R, et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia[J]. Blood, 2016, 127(20):2391-2405.
8
Isobe T, Kucinski I, Barile M, et al. Preleukemic single-cell landscapes reveal mutation-specific mechanisms and gene programs predictive of AML patient outcomes[J]. Cell Genom, 2023, 3(12):100426. doi: 10.1016/j.xgen.2023.100426.
9
Moore JA, Mistry JJ, Hellmich C, et al. LC3-associated phagocytosis in bone marrow macrophages suppresses acute myeloid leukemia progression through STING activation[J]. J Clin Invest, 2022, 132(5):e153157. doi: 10.1172/JCI153157.
10
Chan CP, Kok KH, Jin DY. Human T-Cell leukemia virus type 1 infection and adult T-cell leukemia[J]. Adv Exp Med Biol, 2017, 1018:147-166.
11
Barbier V, Erbani J, Fiveash C, et al. Endothelial E-selectin inhibition improves acute myeloid leukaemia therapy by disrupting vascular niche-mediated chemoresistance[J]. Nat Commun, 2020, 11(1):2042. doi: 10.1038/s41467-020-15817-5.
12
Chen X, Zhu H, Qiao C, et al. Next-generation sequencing reveals gene mutations landscape and clonal evolution in patients with acute myeloid leukemia[J]. Hematology, 2021, 26(1):111-122.
13
Song MZ, Zhang T, Yang DD, et al. Chromosomal aberrations and prognostic analysis of secondary acute myeloid leukemia-a retrospective study[J]. PeerJ, 2023, 11:e15333. doi: 10.7717/peerj.15333.
14
Pastore F, Pastore A, Rothenberg-Thurley M, et al. Molecular profiling of patients with cytogenetically normal acute myeloid leukemia and hyperleukocytosis[J]. Cancer, 2022, 128(24):4213-4222.
15
Cheng PL, Hsiao TH, Chen CH, et al. Chemoresistance in acute myeloid leukemia:an alternative single-cell RNA sequencing approach[J]. Hematol Oncol, 2023, 41(3):499-509.
16
Zeng AGX, Bansal S, Jin LQ, et al. A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia[J]. Nat Med, 2022, 28(6):1212-1223.
17
Kolodziejczyk AA, Kim JK, Svensson V, et al. The technology and biology of single-cell RNA sequencing[J]. Mol Cell, 2015, 58(4):610-620.
18
Su YJ, Zhang XQ, Liang YC, et al. Integrated analysis of single-cell RNA-seq and bulk RNA-seq to unravel the molecular mechanisms underlying the immune microenvironment in the development of intestinal-type gastric cancer[J]. Biochim Biophys Acta Mol Basis Dis, 2024, 1870(1):166849. doi: 10.1016/j.bbadis.2023.166849.
19
Goyal B, Yadav SRM, Awasthee N, et al. Diagnostic, prognostic, and therapeutic significance of long non-coding RNA MALAT1 in cancer[J]. Biochim Biophys Acta Rev Cancer, 2021, 1875(2):188502. doi: 10.1016/j.bbcan.2021.188502.
20
Sheng XF, Hong LL, Li H, et al. Long non-coding RNA MALAT1 modulate cell migration, proliferation and apoptosis by sponging microRNA-146a to regulate CXCR4 expression in acute myeloid leukemia[J]. Hematology, 2021, 26(1):43-52.
21
Ni IB, Ching NC, Meng CK, et al. Translocation t(11;14) (q13;q32) and genomic imbalances in multi-ethnic multiple myeloma patients: a Malaysian study[J]. Hematol Rep, 2012, 4(3):e19. doi: 10.4081/hr.2012.e19.
22
Zhang SS, Cai ZG, Li H. AHNAKs roles in physiology and malignant tumors[J]. Front Oncol, 2023, 13:1258951. doi: 10.3389/fonc.2023.1258951.
23
Xu M, Wen JL, Xu QD, et al. AHNAK2 promotes the progression of differentiated thyroid cancer through PI3K/AKT signaling pathway[J]. Curr Cancer Drug Targets, 2024, 24(2):220-229.
24
Lee IH, Sohn M, Lim HJ, et al. Ahnak functions as a tumor suppressor via modulation of TGFβ/Smad signaling pathway[J]. Oncogene, 2014, 33(38):4675-4684.
25
Sohn M, Shin S, Yoo JY, et al. Ahnak promotes tumor metastasis through transforming growth factor-β-mediated epithelial-mesenchymal transition[J]. Sci Rep, 2018, 8(1):14379. doi: 10.1038/s41598-018-32796-2.
26
Dumitru CA, Bankfalvi A, Gu X, et al. AHNAK and inflammatory markers predict poor survival in laryngeal carcinoma[J]. PLoS One, 2013, 8(2):e56420. doi: 10.1371/journal.pone.0056420.
27
Xie ZY, Lun Y, Li X, et al. Bioinformatics analysis of the clinical value and potential mechanisms of AHNAK2 in papillary thyroid carcinoma[J]. Aging, 2020, 12(18):18163-18180.
28
Leong S, Nunez AC, Lin MZ, et al. iTRAQ-based proteomic profiling of breast cancer cell response to doxorubicin and TRAIL[J]. J Proteome Res, 2012, 11(7):3561-3572.
29
Guo RQ, MD, Cao FJ, et al. Single-cell map of diverse immune phenotypes in the acute myeloid leukemia microenvironment[J]. Biomark Res, 2021, 9(1):15. doi: 10.1186/s40364-021-00265-0.
[1] 江梦钰, 陈志文, 胡云浩, 凡一诺, 方汉军, 刘予豪, 王海彬, 何伟, 陈镇秋, 周驰. 根据股骨头负重区判断非创伤性股骨头坏死带塌陷生存[J]. 中华关节外科杂志(电子版), 2024, 18(03): 307-313.
[2] 丁丁, 杨云川, 马翔, 马中正, 霍俊一, 周磊. 术前C-反应蛋白-白蛋白-淋巴细胞比值在肝细胞癌预后中的价值评估[J]. 中华普通外科学文献(电子版), 2024, 18(04): 261-265.
[3] 李怡泉, 谢宇斌, 胡宏, 张燕茹, 陈图锋. 基于生物信息学分析HDAC8在结肠癌中的临床意义及其与免疫浸润的关系[J]. 中华普通外科学文献(电子版), 2024, 18(04): 275-281.
[4] 孙建娜, 孔令军, 任崇禧, 穆坤, 王晓蕊. 266例首诊Ⅳ期乳腺癌手术患者预后分析[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 502-505.
[5] 袁庆港, 刘理想, 张亮, 周世振, 高波, 丁超, 管文贤. 尿素-肌酐比值(UCR)可预测结直肠癌患者术后的长期预后[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 506-509.
[6] 黄福, 王黔, 金相任, 唐云川. VEGFR2、miR-27a-5p在胃癌组织中的表达与临床病理参数及预后的关系研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(05): 558-561.
[7] 蔡大明, 陆晓峰, 王行舟, 王萌, 刘颂, 夏雪峰, 沈晓菲, 杜峻峰, 管文贤. 三级淋巴结构在胃神经内分泌瘤中的预后价值及预后预测模型构建[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 401-405.
[8] 达热拜·热达提, 刘林, 赵为民, 孟涛, 雷程, 金博, 毕建军, 李新宇, 王海江. 中低位直肠癌新辅助放化疗后侧方淋巴结清扫术的临床观察[J]. 中华普外科手术学杂志(电子版), 2024, 18(04): 415-418.
[9] 李勇, 彭天明, 王倩倩, 陈育纯, 蒲小勇, 刘久敏. 基于失巢凋亡相关基因的膀胱癌预后模型构建及分析[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 331-339.
[10] 钱承博, 殷虎明, 邱峰, 侯建全, 黄玉华, 魏雪栋. 高龄患者行腹腔镜膀胱根治W形回肠新膀胱术的临床价值与风险评估[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 346-352.
[11] 张斌, 孙代宇, 胡昕, 韩菲, 李久明, 李功雨, 吴伟力, 冯宝富, 彭国辉. 评分系统预测不同经验手术者输尿管软镜术后结石清除率准确性的比较研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 353-360.
[12] 刘中文, 刘畅, 高洋, 刘东, 林世庆, 杨建华, 赵福义. 尿液microRNA-326与腹腔镜根治性膀胱切除术治疗膀胱癌患者预后的相关性研究[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(04): 386-391.
[13] 周慧宇, 吕定阳, 双卫兵. 联合系统性免疫炎症指数和预后营养指数预测腹腔镜肾切除术后肾癌患者的预后[J]. 中华腔镜泌尿外科杂志(电子版), 2024, 18(03): 225-231.
[14] 杨秀君, 崔梦莹, 刘水, 盛基尧, 张丹. 基于SEER数据库胰头部胰腺神经内分泌癌患者预后列线图构建与验证[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 520-525.
[15] 陈先志, 许磊, 冯其柱, 王琦. 布地奈德联合复方异丙托溴铵雾化吸入在老年患者腹腔镜围手术期中的应用[J]. 中华肝脏外科手术学电子杂志, 2024, 13(04): 531-536.
阅读次数
全文


摘要