切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2024, Vol. 14 ›› Issue (04) : 212 -219. doi: 10.3877/cma.j.issn.2095-1221.2024.04.003

论著

CD4+CD25+foxp3+调节性T细胞通过NKG2D增强急性髓性白血病中NK细胞毒性
薛春娥1,(), 赵娟娟1, 刘韦成1, 张义亮1, 马毓晗1, 李迎巧1   
  1. 1. 065000 廊坊,河北廊坊市中医医院血液病科
  • 收稿日期:2024-03-19 出版日期:2024-08-01
  • 通信作者: 薛春娥

CD4+CD25+foxp3+ regulatory T cells promote NK cytotoxicity in acute myeloid leukemia via NKG2D

Chun'e Xue1,(), Juanjuan Zhao1, Weicheng Liu1, Yiliang Zhang1, Yuhan Ma1, Yingqiao Li1   

  1. 1. Department of Hematology, Langfang Traditional Chinese Medicine Hospital, Langfang 065000 Hebei, China
  • Received:2024-03-19 Published:2024-08-01
  • Corresponding author: Chun'e Xue
引用本文:

薛春娥, 赵娟娟, 刘韦成, 张义亮, 马毓晗, 李迎巧. CD4+CD25+foxp3+调节性T细胞通过NKG2D增强急性髓性白血病中NK细胞毒性[J]. 中华细胞与干细胞杂志(电子版), 2024, 14(04): 212-219.

Chun'e Xue, Juanjuan Zhao, Weicheng Liu, Yiliang Zhang, Yuhan Ma, Yingqiao Li. CD4+CD25+foxp3+ regulatory T cells promote NK cytotoxicity in acute myeloid leukemia via NKG2D[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2024, 14(04): 212-219.

目的

CD4+CD25+foxp3+调节性T细胞在急性髓性白血病中调控NKG2D介导NK细胞毒性的研究。

方法

免疫磁珠法分离急性髓性白血病(AML)和健康对照外周血NK细胞和CD4+CD25+细胞,分析foxp3与NKG2D表达,CD4+CD25+foxp3+细胞的比例与NK细胞的细胞毒作用相关性。Spearman法分析CD4+CD25+foxp3+细胞比例与NK细胞的细胞毒性和NGK2D相关性。foxp3过表达处理AML外周血淋巴细胞后,流式细胞术检测NKG2D,IFN-γ和CD107a表达,LDH法检测NK细胞毒性。GEPIA2数据库分析AML患者NKG2D和foxp3基因表达相关性,TCGA数据库分析AML转录组数据中与NKG2D表达高相关性基因。IL-2 (10 μg/mL) ,IL-15 (10 μg/mL)处理NK细胞24 h后,流式细胞术检测NKG2D和CD107a表达,酶联免疫反应法检测NK细胞分泌的IFN-γ,LDH法检测NK细胞毒性。采用t检验等方法统计分析组间差异及变量相关性。

结果

与对照比较,AML组NK细胞中NKG2D表达(平均荧光强度MFI:942.25 ± 117.17比3245.28 ± 367.43)降低(P < 0.001)。foxp3表达与NKG2D呈正相关性(r = 0.590,P < 0.001),NKG2D表达百分数与外周血淋巴细胞中CD4+CD25+foxp3+细胞的比例呈正相关(r = 0.708,P = 0.002),AML患者外周血NK细胞活力也与CD4+CD25+foxp3+细胞的比例呈正相关(r = 0.655,P = 0.006)。与OE-NC比较,OE-foxp3组细胞中NKG2D的表达水平(MFI:2115.37 ± 269.53比914.28 ± 103.36)、杀伤能力(58.24 % ± 3.17%比24.18 % ± 2.35%)、NK细胞毒性评估指标CD107a (45.43% ± 1.28%比18.24% ± 1.49%)和IFN-γ水平(24.16 % ± 1.17%比16.28 % ± 0.95%)升高(P均< 0.001)。TCGA数据分析发现,NKG2D表达与CD3G、IL-3、IL-2、CD3E、IL-10、IL-17、IL-7R、IL-15、EZH2等基因相关性较高,流式细胞术检测发现,与对照比较,IL-2和IL-15处理后NK细胞的表面受体NKG2D和CD107a表达、IFN-γ水平、NK细胞毒性均升高。

结论

AML外周血中,NK细胞表面受体NKG2D低于正常对照,其中CD4+CD25+foxp3+调节性T细胞通过IL-2和IL-15影响NKG2D表达进而调控NK细胞毒性。

Objective

Exploring the effects and mechanisms of CD4+CD25+foxp3+ regulatory T cells in regulating NK cytotoxicity through NKG2D in acute myeloid leukemia.

Methods

Immunomagnetic bead method was used to isolate peripheral blood NK cells and CD4+CD25+ cells from acute myeloid leukemia (AML) and healthy controls. The expression of foxp3 and NKG2D, and the relationship between the proportion of CD4+CD25+foxp3+ cells and the cytotoxicity of NK cells were analyzed. Spearman method was used to analyze the correlation between CD4+CD25+foxp3+ cell ratio and NK cell cytotoxicity as well as NGK2D. After overexpressed foxp3 in AML peripheral blood lymphocytes, flow cytometry was used to detect the expression of NKG2D, IFN-γ and CD107a, LDH assay was used to detect the toxicity of NK cell. The correlation between NKG2D and foxp3 gene expression in AML patients was analyzed by GEPIA2 database, while the genes with high correlation of NKG2D expression in AML transcriptome data was analyzed by TCGA database. After treating NK cells with IL-2 (10 μg/mL) and IL-15 (10 μg/mL) for 24 hours, 24 hours after treated with IL-2 (10 μg/mL) and IL-15 (10 μg/mL) in NK cells, flow cytometry was used to detect the expression of NKG2D and CD107a, enzyme-linked immunosorbent assay was used to detect the secretion of IFN-γ by NK cells, LDH assay to detect NK cell toxicity. Statistical analysis of inter group differences and variable correlations using t-tests and other methods.

Results

Compared to the control group, the expression of NKG2D in NK cells in the AML group was significantly reduced (MFI: 942.25 ± 117.17 vs 3245.28 ± 367.43, P < 0.001). The expression of foxp3 is positively correlated with NKG2D (r = 0.590, P < 0.001), and the percentage of NKG2D expression is positively correlated with the proportion of CD4+CD25+foxp3+ cells in peripheral blood lymphocytes (r = 0.708, P = 0.002). The activity of peripheral blood NK cells in AML patients is also positively correlated with the proportion of CD4+CD25+foxp3+ cells (r = 0.655, P = 0.006). Compared to the OE-NC group, the expression level of NKG2D (MFI: 2115.37 ± 269.53 vs 914.28 ± 103.36), the cell killing ability (58.24 % ± 3.17 %vs 24.18 % ± 2.35 %), the NK cell toxicity evaluation indicators CD107a and the level of IFN-γ in the OE-foxp3 group cells were significantly increased (45.43 % ± 1.28 %vs 18.24 % ± 1.49%), (24.16 % ± 1.17 %vs 16.28 % ± 0.95 %) (all P < 0.001). TCGA data analysis found that the expression of NKG2D was highly correlated with genes such as CD3G, IL-3, IL-2, CD3E, IL-10, IL-17, IL-7R, IL-15, EZH2, etc. Flow cytometry analysis showed that after treatment with IL-2 and IL-15, the expression of surface receptors NKG2D and CD107a on NK cells was significantly increased, and IFN-γ level was increases, NK cell toxicity is enhanced.

Conclusion

In peripheral blood of AML, the surface receptor NKG2D of NK cells is lower than that of control, and CD4+CD25+foxp3+ regulatory T cells regulate NK cell toxicity through the expression of NKG2D effecting by IL-2 and IL-15.

图1 AML患者外周血NK细胞表面受体NKG2D低表达注:a图为流式细胞术检测AML患者及健康对照外周血NK细胞中NKG2D的表达;b图为AML组和对照NKG2D表达分析,与对照比较,aP < 0.0001
图2 外周血淋巴细胞中CD4+ CD25+ foxp3+细胞比例与NK活性呈正相关注:a图为GEPIA2数据库分析foxp3与NKG2D在AML患者中表达相关性;b图为分析AML患者(AML)外周血淋巴细胞中NKG2D表达与CD4+CD25+foxp3+细胞群比例;c图为分析AML患者外周血淋巴细胞中NK细胞活性与CD4+CD25+foxp3+细胞群比例
图3 过表达foxp3促进外周血NK细胞NKG2D表达及细胞毒性注:a图为流式细胞术检测OE-NC组及OE-foxp3组NK细胞中NKG2D表达;b、c图为OE-NC组及OE-foxp3组NK细胞中NKG2D表达、NK细胞活性分析,与OE-NC比较,aP < 0.001
图4 过表达foxp3促进外周血NK细胞中CD107a和IFN-γ的表达注:a ~ c图为流式细胞术检测OE-NC组及OE-foxp3组NK细胞中CD107a和IFN-γ的表达水平;d图为OE-NC组及OE-foxp3组NK细胞中CD107a和IFN-γ的表达水平分析,与OE-NC比较,aP < 0.001
图5 NKG2D与CD3G,IL3等基因的相关性分析
表1 IL2,IL15处理NK细胞后NKG2D和CD107a表达(%, ± s
图6 foxp3调控IL15、IL2增强NK细胞毒性注:a图为IL2,IL15处理后NK细胞中IFN-γ含量检测;b图为IL2,IL15处理后NK细胞毒性检测;c图为OE-NC组及OE-foxp3组细胞中IL2,IL15水平检测;与对照比较,aP < 0.05,bP < 0.001
1
Lasry A, Nadorp B, Fornerod M, et al. An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia[J]. Nat Cancer, 2023, 4(1):27-42.
2
Umeda M, Ma J, Westover T, et al. A new genomic framework to categorize pediatric acute myeloid leukemia[J]. Nat Genet, 2024, 56(2):281-293.
3
Tang F, Li J, Qi L, et al. A pan-cancer single-cell panorama of human natural killer cells[J]. Cell, 2023, 186(19):4235-4251.e20.
4
Badrinath S, Dellacherie MO, Li A, et al. A vaccine targeting resistant tumours by dual T cell plus NK cell attack[J]. Nature, 2022, 606(7916):992-998.
5
Kaidun P, Holzmayer SJ, Greiner SM, et al. Targeting NKG2DL with Bispecific NKG2D-CD16 and NKG2D-CD3 Fusion Proteins on Triple-Negative Breast Cancer[J]. Int J Mol Sci, 2023, 24(17):13156. doi: 10.3390/ijms241713156.
6
Arianfar E, Khandoozi SR, Mohammadi S, et al. Suppression of CD56bright NK cells in breast cancer patients is associated with the PD-1 and TGF-βRII expression[J]. Clin Transl Oncol, 2023, 25(3):841-851.
7
Usman AN, Ahmad M, Sinrang AW, et al. FOXP3 regulatory T cells on prognosis of breast cancer[J]. Breast Dis, 2023, 42(1):213-218.
8
Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T cells[J]. Nat Immunol, 2003, 4(4):330-336.
9
Waldmann TA. The shared and contrasting roles of IL2 and IL15 in the life and death of normal and neoplastic lymphocytes: implications for cancer therapy[J]. Cancer Immunol Res, 2015, 3(3):219-227.
10
Alizadeh D, Wong RA, Yang X, et al. IL15 Enhances CAR-T Cell Antitumor Activity by Reducing mTORC1 Activity and Preserving Their Stem Cell Memory Phenotype[J]. Cancer Immunol Res, 2019, 7(5):759-772.
11
Xu J, Niu T. Natural killer cell-based immunotherapy for acute myeloid leukemia[J]. J Hematol Oncol, 2020, 13(1):167. doi: 10.1186/s13045-020-00996-x.
12
沈悌、赵永强. 血液病诊断及疗效标准[M]. 4版. 北京: 科学出版社, 2018.
13
Wang D, Sun Z, Zhu X, et al. GARP-mediated active TGF-β1 induces bone marrow NK cell dysfunction in AML patients with early relapse post-allo-HSCT[J]. Blood, 2022, 140(26):2788-2804.
14
Shao R, Li Z, Xin H, et al. Biomarkers as targets for CAR-T/NK cell therapy in AML[J]. Biomark Res, 2023, 11(1):65. doi: 10.1186/s40364-023-00501-9.
15
Gottschlich A, Thomas M, Grünmeier R, et al. Single-cell transcriptomic atlas-guided development of CAR-T cells for the treatment of acute myeloid leukemia[J]. Nat Biotechnol, 2023, 41(11):1618-1632.
16
Myers JA, Miller JS. Exploring the NK cell platform for cancer immunotherapy[J]. Nat Rev Clin Oncol, 2021, 18(2):85-100.
17
Pahl JHW, Koch J, Götz JJ, et al. CD16A activation of NK cells promotes NK cell proliferation and memory-like cytotoxicity against cancer cells[J]. Cancer Immunol Res, 2018, 6(5):517-527.
18
Slattery K, Woods E, Zaiatz-Bittencourt V, et al. TGFβ drives NK cell metabolic dysfunction in human metastatic breast cancer[J]. J Immunother Cancer, 2021,9(2):e002044. doi: 10.1136/jitc-2020-002044.
19
Secchiari F, Nuñez SY, Sierra JM, et al. The MICA-NKG2D axis in clear cell renal cell carcinoma bolsters MICA as target in immuno-oncology[J]. Oncoimmunology, 2022, 11(1):2104991. doi: 10.1080/2162402X.2022.2104991.
20
Lazarova M, Steinle A. Impairment of NKG2D-mediated tumor immunity by TGF-β[J]. Front Immunol, 2019, 10:2689. doi: 10.3389/fimmu.2019.02689.
21
Cui TX, Brady AE, Zhang YJ, et al. IL-17a-producing γδT cells and NKG2D signaling mediate bacterial endotoxin-induced neonatal lung injury: implications for bronchopulmonary dysplasia[J]. Front Immunol, 2023, 14:1156842. doi: 10.3389/fimmu.2023.1156842.
22
Tajer P, Canté-Barrett K, Naber BAE, et al. IL3 has a detrimental effect on hematopoietic stem cell self-renewal in transplantation settings[J]. Int J Mol Sci, 2022, 23(21):12736. doi: 10.3390/ijms232112736.
23
Tang L, Li Q, Chen L, et al. IL-21 collaborates with anti-TIGIT to restore NK cell function in chronic HBV infection[J]. J Med Virol, 2023, 95(10):e29142. doi: 10.1002/jmv.29142.
24
Zhang X, Zhang Y, Liu H, et al. IL-15 induced bystander activation of CD8+ T cells may mediate endothelium injury through NKG2D in Hantaan virus infection[J]. Front Cell Infect Microbiol, 2022, 12:1084841. doi: 10.3389/fcimb.2022.1084841.
25
Banerjee A, Li D, Guo Y, et al. Retargeting IL-2 signaling to NKG2D-expressing tumor-infiltrating leukocytes improves adoptive transfer immunotherapy[J]. J Immunol, 2021, 207(1):333-343.
[1] 赵雪, 宋蕊. 自然杀伤细胞在感染中的研究进展[J]. 中华实验和临床感染病杂志(电子版), 2019, 13(02): 93-98.
[2] 钟勇辉, 谢福川, 魏宜胜. 结肠癌来源外泌体对自然杀伤细胞miR-18a和NKG2D表达的影响[J]. 中华普通外科学文献(电子版), 2021, 15(03): 172-177.
[3] 杨芳, 盛立霞, 欧阳桂芳. 供者NK细胞及其嵌合状态在异基因造血干细胞移植中的研究进展[J]. 中华移植杂志(电子版), 2018, 12(02): 91-96.
[4] 胡新春, 李昌波, 孙杰, 邓超英, 肖华毅, 刘翱. N-乙酰半胱氨酸与IL-27对博莱霉素诱导的小鼠肺纤维化的影响[J]. 中华肺部疾病杂志(电子版), 2019, 12(06): 691-696.
[5] 杨娜, 孙毅, 迪丽努尔·尼加提. 血管内皮抑制素联合调强放疗对老年中晚期非小细胞肺癌的临床应用价值研究[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 34-39.
[6] 黄丽映, 刘韬. 免疫细胞衰老表现及免疫功能变化的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(02): 119-124.
[7] 李翠平, 陈晓燕, 钱师宇, 林惠珠, 曾彩辉, 阳莉, 卢建溪. 不同抗凝剂保存液对脐血培养的NK细胞增殖及杀伤效应的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 572-576.
[8] 纪泛扑, 黄娜, 张澍, 蔡芝芳, 蒋安, 周蕊, 李宝华, 任松, 李宗芳. 脾切除对丙型病毒性肝炎后肝硬化门静脉高压症患者细胞免疫功能的影响[J]. 中华肝脏外科手术学电子杂志, 2015, 04(04): 232-236.
[9] 杨琬芳, 许晶, 张耀方, 王青, 杨智超, 任方刚, 王宏伟. NK和NKT细胞对急性髓系白血病患者的临床影响[J]. 中华临床医师杂志(电子版), 2023, 17(09): 932-938.
[10] 罗俐梅, 罗娅, 蔡宜含, 冯伟华, 蔡蓓. 外周血淋巴细胞绝对计数在结直肠癌和食管癌肿瘤进展与治疗前后免疫状态评估的临床应用研究[J]. 中华临床实验室管理电子杂志, 2019, 07(03): 137-144.
阅读次数
全文


摘要