切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (02) : 119 -124. doi: 10.3877/cma.j.issn.2095-1221.2020.02.009

所属专题: 文献

综述

免疫细胞衰老表现及免疫功能变化的研究进展
黄丽映1, 刘韬1,()   
  1. 1. 515041 汕头,广东省汕头大学医学院;518001 深圳大学第三附属医院 (深圳市罗湖区人民医院)肿瘤康复科
  • 收稿日期:2019-09-03 出版日期:2020-04-01
  • 通信作者: 刘韬
  • 基金资助:
    深圳市科技计划项目(JCYJ20170412155231633,JCYJ201 70307171034705)

Advances in senescence phenotypes of immune cells and immune function

Liying Huang1, Tao Liu1,()   

  1. 1. Shantou University Medical College, Shantou 515041, China; Department of Oncology and Rehabilitation, Shenzhen Luohu People's Hospital, the 3rd Affiliated Hospital of Shenzhen University, Shenzhen 518001, China
  • Received:2019-09-03 Published:2020-04-01
  • Corresponding author: Tao Liu
  • About author:
    Corresponding author: Liu Tao, Email:
引用本文:

黄丽映, 刘韬. 免疫细胞衰老表现及免疫功能变化的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2020, 10(02): 119-124.

Liying Huang, Tao Liu. Advances in senescence phenotypes of immune cells and immune function[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(02): 119-124.

机体衰老的本质是细胞衰老不断累积的过程。免疫系统的衰老既是机体衰老的必然结果,也是导致机体衰老的重要原因。免疫系统作为衰老变化的主要系统之一受到越来越多的学者重视。本文将从适应性免疫系统的T、B细胞及固有免疫系统的自然杀伤(NK)细胞、巨噬细胞、中性粒细胞、树突状细胞(DC)和骨髓源性抑制细胞等免疫细胞的亚群、衰老指标和功能等方面在衰老过程中的改变进行总结,进一步明确免疫系统衰老在机体衰老过程中扮演的重要角色。

The essence of the body's aging was the process of accumulating cell senescence. The senescence of the immune system was not only the inevitable result of the body's aging, but also an important cause of the body's aging. The immune system, as one of the main systems of aging changes, had attracted scholars' attention. This review systematically summarized the changes from the adaptive immune system T, B cells and innate immune system natural killer (NK) cells, macrophages, neutrophils, dendritic cells, bone marrow-derived cells and other immune cells groups. And also, we tried to state aging indicators, functions and other aspects of the changes in the aging process. All together, we further clarified the important role of immune system senescence in the body aging process.

表1 衰老过程中T细胞的变化
表2 衰老过程中NK细胞的变化
表3 衰老对B细胞的影响
图1 骨髓源性抑制细胞介导机体衰老的过程
[1]
Xu W, Larbi A. Markers of T Cell Senescence in Humans[J]. Int J Mol Sci, 2017, 18(8).pii:E1742.
[2]
Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013,153(6):1194-1217.
[3]
Reed RG. Stress and immunological aging[J]. Curr Opin Behav Sci, 2019, 28:38-43.
[4]
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age- related immune deficiency[J]. Cell Mol Life Sci, 2019, 76(10):1901-1918.
[5]
Fulop T, Dupuis G, Witkowski JM, et al. The role of immunosenescence in the development of age-related diseases[J]. Rev Invest Clin, 2016, 68(2):84-91.
[6]
Ovadya Y, Landsberger T, Leins H, et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging[J]. Nature communications, 2018, 9(1):5435.
[7]
Alonso-Arias R, Moro-Garcia MA, Lopez-Vazquez A, et al. NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system[J]. Age (Dordr), 2011, 33(4):591-605.
[8]
Weyand CM, Yang Z, Goronzy JJ. T-cell aging in rheumatoid arthritis[J]. Curr Opin Rheumatol, 2014, 26(1):93-100.
[9]
Pawelec G. Age and immunity: What is "Immunosenescence"?[J]. Exp Gerontol, 2018, 105:4-9.
[10]
Tarazona R, Sanchez-Correa B, Casas-Avilés I, et al. Immunosenescence: limitations of natural killer cell-based cancer immunotherapy[J]. Cancer Immunol Immunother, 2017, 66(2):233-245.
[11]
Shin MS, Yim K, Moon K, et al. Dissecting alterations in human CD8+ T cells with aging by high-dimensional single cell mass cytometry[J]. Clin Immunol, 2019,200:24-30.
[12]
Hu B, Li G, Ye Z, et al. Transcription factor networks in aged naive CD4 T cells bias lineage differentiation[J]. Aging Cell, 2019,18(4):e12957.
[13]
Jadali Z. Th9 cells as a new player in inflammatory skin disorders[J]. Iran J Allergy Asthma Immunol, 2019, 18(2):120-130.
[14]
Li J, Chen S, Xiao X, et al. IL-9 and Th9 cells in health and diseases- From tolerance to immunopathology[J]. Cytokine Growth Factor Rev, 2017, 37:47-55.
[15]
Alves AS, Bueno V. Immunosenescence: participation of T lymphocytes and myeloid-derived suppressor cells in aging-related immune response changes[J]. Einstein (Sao Paulo), 2019, 17(2):eRB4733.
[16]
Voehringer D, Koschella M, Pircher H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1)[J]. Blood, 2002, 100(10):3698-3702.
[17]
Larbi A, Fulop T. From "Truly Naïve" to "Exhausted Senescent" T cells: when markers predict functionality[J]. Cytometry A, 2014, 85(1):25-35.
[18]
Onyema OO, Njemini R, Forti LN, et al. Aging-associated subpopulations of human CD8+ T-lymphocytes identified by their CD28 and CD57 phenotypes[J]. Arch Gerontol Geriatr, 2015, 61(3):494-502.
[19]
Bi J, Tian Z. NK Cell Exhaustion[J]. Front Immunol, 2017, 8:760.
[20]
Crooke SN, Ovsyannikova IG, Poland GA, et al. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses[J]. Exp Gerontol, 2019:110632.
[21]
Camous X, Pera A, Solana R, et al. NK cells in healthy aging and age- associated diseases[J]. J Biomed Biotechnol, 2012, 2012:195956.
[22]
Solana R, Alonso MC, Peña J. Natural killer cells in healthy aging[J]. Exp Gerontol, 1999, 34(3):435-443.
[23]
Salminen A, Kaarniranta K, Kauppinen A. The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process[J]. Ageing Res Rev, 2018,48:1-10.
[24]
Bjorkstrom NK, Riese P, Heuts F, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56 dim NK-cell differentiation uncoupled from NK-cell education[J]. Blood, 2010,116(19):3853-3864.
[25]
Manser AR, Uhrberg M. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance[J]. Cancer immunol Immunother, 2016, 65(4):417-426.
[26]
Le Garff-Tavernier M, Beziat V, Decocq J, et al. Human NK cells display major phenotypic and functional changes over the life span[J]. Aging Cell, 2010, 9(4):527-535.
[27]
Gayoso I, Sanchez-Correa B, Campos C, et al. Immunosenescence of human natural killer cells[J]. J Innate Immun, 2011, 3(4):337-343.
[28]
Buffa S, Bulati M, Pellicanò M, et al. B cell immunosenescence: different features of naive and memory B cells in elderly[J]. Biogerontology, 2011, 12(5):473-483.
[29]
Bulati M, Buffa S, Candore G, et al. B cells and immunosenescence: a focus on IgG+IgD-CD27- (DN) B cells in aged humans[J]. Ageing Res Rev, 2011, 10(2):274-284.
[30]
Qin L, Jing X, Qiu Z, et al. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults[J]. Aging (Albany NY), 2016,8(5):848-859.
[31]
Salminen A, Kauppinen A, Kaarniranta K. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence[J]. Biogerontology, 2018, 19(5):325-339.
[32]
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3):162-174.
[33]
Howcroft TK, Campisi J, Louis GB, et al. The role of inflammation in age-related disease[J]. Aging, 2013, 5(1):84-93.
[34]
Scheller J, Chalaris A, Schmidt-Arras D, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6[J]. Biochim Biophys Acta, 2011, 1813(5):878-888.
[35]
Moro-Garcia MA, Echeverria A, Galan-Artimez MC, et al. Immunosenescence and inflammation characterize chronic heart failure patients with more advanced disease[J]. Int J Cardiol, 2014, 174(3):590-599.
[36]
Licastro F, Porcellini E. Persistent infections, immune-senescence and Alzheimer's disease[J]. Oncoscience, 2016, 3(5-6):135-142.
[37]
Browne TC, McQuillan K, McManus RM, et al. IFN-γ Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease[J]. J Immunol, 2013, 190(5):2241-2251.
[38]
Martin S, Pérez A, Aldecoa C. Sepsis and immunosenescence in the elderly patient: A review[J]. Front Med (Lausanne), 2017, 4:20.
[39]
Fenimore J, H AY. Regulation of IFN-gamma expression[J]. Adv Exp Med Biol, 2016,941:1-19.
[40]
Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function[J]. Nat Immunol, 2004, 5(2):133-139.
[1] 蚁淳, 袁冬生, 熊学军. 系统免疫炎症指数与骨密度降低和骨质疏松的关联[J/OL]. 中华关节外科杂志(电子版), 2024, 18(05): 609-617.
[2] 黄蓉, 梁自毓, 祁文瑾. NLRP3炎症小体在胎膜早破孕妇血清中的表达及其意义[J/OL]. 中华妇幼临床医学杂志(电子版), 2024, 20(05): 540-548.
[3] 王振宇, 张洪美, 荆琳, 何名江, 闫奇. 膝骨关节炎相关炎症因子与血浆代谢物间的因果关系及中介效应[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 467-473.
[4] 张洁, 罗小霞, 余鸿. 系统性免疫炎症指数对急性胰腺炎患者并发器官功能损伤的预测价值[J/OL]. 中华普外科手术学杂志(电子版), 2025, 19(01): 68-71.
[5] 唐梅, 周丽, 牛岑月, 周小童, 王倩. ICG荧光导航的腹腔镜肝切除术临床意义[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 655-658.
[6] 付成旺, 杨大刚, 王榕, 李福堂. 营养与炎症指标在可切除胰腺癌中的研究进展[J/OL]. 中华普外科手术学杂志(电子版), 2024, 18(06): 704-708.
[7] 高娟, 徐建庆, 闫芳, 丁盛华, 刘霞. Rutkow、TAPP、TEP 手术治疗单侧腹股沟疝患者的临床疗效及对血清炎症因子水平的影响[J/OL]. 中华疝和腹壁外科杂志(电子版), 2024, 18(06): 675-680.
[8] 邢嘉翌, 龚佳晟, 祝佳佳, 陆群. 肺癌化疗患者继发肺部感染的病原菌耐药性及炎症因子变化分析[J/OL]. 中华肺部疾病杂志(电子版), 2024, 17(05): 714-718.
[9] 孙璐, 蒋亚玲, 陈凌君. 布托啡诺对脑缺血再灌注损伤大鼠神经炎症和JAK2/STAT3信号通路的影响[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(06): 344-350.
[10] 陈伟杰, 何小东. 胆囊癌免疫靶向治疗进展[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(06): 763-768.
[11] 张英信, 林婷, 张剑文. 构建靶向HLA-A2且表达PD-L1的CAR-Treg细胞及验证其对CD4+T细胞抑制作用[J/OL]. 中华肝脏外科手术学电子杂志, 2024, 13(05): 719-728.
[12] 杭丽, 张耀辉, 孙文恺. 参菝抗瘤液对结直肠腺瘤性息肉术后肠道功能、炎症指标及复发情况的影响[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 413-416.
[13] 丛黎, 马林, 陈旭, 李文文, 张亮亮, 周华亭. 改良CT严重指数联合炎症指标在重症急性胰腺炎患者胰腺感染预测及预后评估中的研究[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(05): 432-436.
[14] 王湛, 李文坤, 杨奕, 徐芳, 周敏思, 苏珈仪, 王亚丹, 吴静. 炎症指标在早发性结直肠肿瘤中的应用[J/OL]. 中华临床医师杂志(电子版), 2024, 18(09): 802-810.
[15] 牟磊, 徐东成, 韩鑫, 徐长江, 韩坤锜, 薛叶潇, 牟媛, 秦文玲, 刘相静, 陈哲, 高楠. 五虫通络胶囊防治椎动脉开口支架术后再狭窄发生的效果[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 467-472.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?