切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (02) : 119 -124. doi: 10.3877/cma.j.issn.2095-1221.2020.02.009

所属专题: 文献

综述

免疫细胞衰老表现及免疫功能变化的研究进展
黄丽映1, 刘韬1,()   
  1. 1. 515041 汕头,广东省汕头大学医学院;518001 深圳大学第三附属医院 (深圳市罗湖区人民医院)肿瘤康复科
  • 收稿日期:2019-09-03 出版日期:2020-04-01
  • 通信作者: 刘韬
  • 基金资助:
    深圳市科技计划项目(JCYJ20170412155231633,JCYJ201 70307171034705)

Advances in senescence phenotypes of immune cells and immune function

Liying Huang1, Tao Liu1,()   

  1. 1. Shantou University Medical College, Shantou 515041, China; Department of Oncology and Rehabilitation, Shenzhen Luohu People's Hospital, the 3rd Affiliated Hospital of Shenzhen University, Shenzhen 518001, China
  • Received:2019-09-03 Published:2020-04-01
  • Corresponding author: Tao Liu
  • About author:
    Corresponding author: Liu Tao, Email:
引用本文:

黄丽映, 刘韬. 免疫细胞衰老表现及免疫功能变化的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(02): 119-124.

Liying Huang, Tao Liu. Advances in senescence phenotypes of immune cells and immune function[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(02): 119-124.

机体衰老的本质是细胞衰老不断累积的过程。免疫系统的衰老既是机体衰老的必然结果,也是导致机体衰老的重要原因。免疫系统作为衰老变化的主要系统之一受到越来越多的学者重视。本文将从适应性免疫系统的T、B细胞及固有免疫系统的自然杀伤(NK)细胞、巨噬细胞、中性粒细胞、树突状细胞(DC)和骨髓源性抑制细胞等免疫细胞的亚群、衰老指标和功能等方面在衰老过程中的改变进行总结,进一步明确免疫系统衰老在机体衰老过程中扮演的重要角色。

The essence of the body's aging was the process of accumulating cell senescence. The senescence of the immune system was not only the inevitable result of the body's aging, but also an important cause of the body's aging. The immune system, as one of the main systems of aging changes, had attracted scholars' attention. This review systematically summarized the changes from the adaptive immune system T, B cells and innate immune system natural killer (NK) cells, macrophages, neutrophils, dendritic cells, bone marrow-derived cells and other immune cells groups. And also, we tried to state aging indicators, functions and other aspects of the changes in the aging process. All together, we further clarified the important role of immune system senescence in the body aging process.

表1 衰老过程中T细胞的变化
表2 衰老过程中NK细胞的变化
表3 衰老对B细胞的影响
图1 骨髓源性抑制细胞介导机体衰老的过程
[1]
Xu W, Larbi A. Markers of T Cell Senescence in Humans[J]. Int J Mol Sci, 2017, 18(8).pii:E1742.
[2]
Lopez-Otin C, Blasco MA, Partridge L, et al. The hallmarks of aging[J]. Cell, 2013,153(6):1194-1217.
[3]
Reed RG. Stress and immunological aging[J]. Curr Opin Behav Sci, 2019, 28:38-43.
[4]
Salminen A, Kaarniranta K, Kauppinen A. Immunosenescence: the potential role of myeloid-derived suppressor cells (MDSC) in age- related immune deficiency[J]. Cell Mol Life Sci, 2019, 76(10):1901-1918.
[5]
Fulop T, Dupuis G, Witkowski JM, et al. The role of immunosenescence in the development of age-related diseases[J]. Rev Invest Clin, 2016, 68(2):84-91.
[6]
Ovadya Y, Landsberger T, Leins H, et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging[J]. Nature communications, 2018, 9(1):5435.
[7]
Alonso-Arias R, Moro-Garcia MA, Lopez-Vazquez A, et al. NKG2D expression in CD4+ T lymphocytes as a marker of senescence in the aged immune system[J]. Age (Dordr), 2011, 33(4):591-605.
[8]
Weyand CM, Yang Z, Goronzy JJ. T-cell aging in rheumatoid arthritis[J]. Curr Opin Rheumatol, 2014, 26(1):93-100.
[9]
Pawelec G. Age and immunity: What is "Immunosenescence"?[J]. Exp Gerontol, 2018, 105:4-9.
[10]
Tarazona R, Sanchez-Correa B, Casas-Avilés I, et al. Immunosenescence: limitations of natural killer cell-based cancer immunotherapy[J]. Cancer Immunol Immunother, 2017, 66(2):233-245.
[11]
Shin MS, Yim K, Moon K, et al. Dissecting alterations in human CD8+ T cells with aging by high-dimensional single cell mass cytometry[J]. Clin Immunol, 2019,200:24-30.
[12]
Hu B, Li G, Ye Z, et al. Transcription factor networks in aged naive CD4 T cells bias lineage differentiation[J]. Aging Cell, 2019,18(4):e12957.
[13]
Jadali Z. Th9 cells as a new player in inflammatory skin disorders[J]. Iran J Allergy Asthma Immunol, 2019, 18(2):120-130.
[14]
Li J, Chen S, Xiao X, et al. IL-9 and Th9 cells in health and diseases- From tolerance to immunopathology[J]. Cytokine Growth Factor Rev, 2017, 37:47-55.
[15]
Alves AS, Bueno V. Immunosenescence: participation of T lymphocytes and myeloid-derived suppressor cells in aging-related immune response changes[J]. Einstein (Sao Paulo), 2019, 17(2):eRB4733.
[16]
Voehringer D, Koschella M, Pircher H. Lack of proliferative capacity of human effector and memory T cells expressing killer cell lectinlike receptor G1 (KLRG1)[J]. Blood, 2002, 100(10):3698-3702.
[17]
Larbi A, Fulop T. From "Truly Naïve" to "Exhausted Senescent" T cells: when markers predict functionality[J]. Cytometry A, 2014, 85(1):25-35.
[18]
Onyema OO, Njemini R, Forti LN, et al. Aging-associated subpopulations of human CD8+ T-lymphocytes identified by their CD28 and CD57 phenotypes[J]. Arch Gerontol Geriatr, 2015, 61(3):494-502.
[19]
Bi J, Tian Z. NK Cell Exhaustion[J]. Front Immunol, 2017, 8:760.
[20]
Crooke SN, Ovsyannikova IG, Poland GA, et al. Immunosenescence: A systems-level overview of immune cell biology and strategies for improving vaccine responses[J]. Exp Gerontol, 2019:110632.
[21]
Camous X, Pera A, Solana R, et al. NK cells in healthy aging and age- associated diseases[J]. J Biomed Biotechnol, 2012, 2012:195956.
[22]
Solana R, Alonso MC, Peña J. Natural killer cells in healthy aging[J]. Exp Gerontol, 1999, 34(3):435-443.
[23]
Salminen A, Kaarniranta K, Kauppinen A. The role of myeloid-derived suppressor cells (MDSC) in the inflammaging process[J]. Ageing Res Rev, 2018,48:1-10.
[24]
Bjorkstrom NK, Riese P, Heuts F, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56 dim NK-cell differentiation uncoupled from NK-cell education[J]. Blood, 2010,116(19):3853-3864.
[25]
Manser AR, Uhrberg M. Age-related changes in natural killer cell repertoires: impact on NK cell function and immune surveillance[J]. Cancer immunol Immunother, 2016, 65(4):417-426.
[26]
Le Garff-Tavernier M, Beziat V, Decocq J, et al. Human NK cells display major phenotypic and functional changes over the life span[J]. Aging Cell, 2010, 9(4):527-535.
[27]
Gayoso I, Sanchez-Correa B, Campos C, et al. Immunosenescence of human natural killer cells[J]. J Innate Immun, 2011, 3(4):337-343.
[28]
Buffa S, Bulati M, Pellicanò M, et al. B cell immunosenescence: different features of naive and memory B cells in elderly[J]. Biogerontology, 2011, 12(5):473-483.
[29]
Bulati M, Buffa S, Candore G, et al. B cells and immunosenescence: a focus on IgG+IgD-CD27- (DN) B cells in aged humans[J]. Ageing Res Rev, 2011, 10(2):274-284.
[30]
Qin L, Jing X, Qiu Z, et al. Aging of immune system: Immune signature from peripheral blood lymphocyte subsets in 1068 healthy adults[J]. Aging (Albany NY), 2016,8(5):848-859.
[31]
Salminen A, Kauppinen A, Kaarniranta K. Myeloid-derived suppressor cells (MDSC): an important partner in cellular/tissue senescence[J]. Biogerontology, 2018, 19(5):325-339.
[32]
Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system[J]. Nat Rev Immunol, 2009, 9(3):162-174.
[33]
Howcroft TK, Campisi J, Louis GB, et al. The role of inflammation in age-related disease[J]. Aging, 2013, 5(1):84-93.
[34]
Scheller J, Chalaris A, Schmidt-Arras D, et al. The pro- and anti-inflammatory properties of the cytokine interleukin-6[J]. Biochim Biophys Acta, 2011, 1813(5):878-888.
[35]
Moro-Garcia MA, Echeverria A, Galan-Artimez MC, et al. Immunosenescence and inflammation characterize chronic heart failure patients with more advanced disease[J]. Int J Cardiol, 2014, 174(3):590-599.
[36]
Licastro F, Porcellini E. Persistent infections, immune-senescence and Alzheimer's disease[J]. Oncoscience, 2016, 3(5-6):135-142.
[37]
Browne TC, McQuillan K, McManus RM, et al. IFN-γ Production by amyloid beta-specific Th1 cells promotes microglial activation and increases plaque burden in a mouse model of Alzheimer's disease[J]. J Immunol, 2013, 190(5):2241-2251.
[38]
Martin S, Pérez A, Aldecoa C. Sepsis and immunosenescence in the elderly patient: A review[J]. Front Med (Lausanne), 2017, 4:20.
[39]
Fenimore J, H AY. Regulation of IFN-gamma expression[J]. Adv Exp Med Biol, 2016,941:1-19.
[40]
Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function[J]. Nat Immunol, 2004, 5(2):133-139.
[1] 韩圣瑾, 周正武, 翁云龙, 黄鑫. 碳酸氢钠林格液联合连续性肾脏替代疗法对创伤合并急性肾损伤患者炎症水平及肾功能的影响[J]. 中华危重症医学杂志(电子版), 2023, 16(05): 376-381.
[2] 魏徐, 张鸽, 伍金林. 新生儿脓毒症相关性凝血病的监测和治疗[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 379-386.
[3] 陈大敏, 曹晓刚, 曹能琦. 肥胖对胃癌患者手术治疗效果的影响研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 651-653.
[4] 贾成朋, 王代宏, 陈华, 孙备. 可切除性胰腺癌预后术前预测模型的建立及应用[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 566-570.
[5] 陈瑜, 尤良顺, 孟海涛, 杨敏. 嵌合抗原受体T细胞治疗多发性骨髓瘤新进展[J]. 中华移植杂志(电子版), 2023, 17(05): 313-320.
[6] 伍学成, 李远伟, 袁武雄, 王建松, 石泳中, 卢强, 李卓, 陈佳, 刘哲, 滕伊漓, 高智勇. 炎症介质谱联合降钙素原在尿源性脓毒血症中的诊断价值[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 476-480.
[7] 王可, 范彬, 李多富, 刘奎. 两种疝囊残端处理方法在经腹腹膜前腹股沟疝修补术中的疗效比较[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(06): 692-696.
[8] 刘小燕, 龙乾发, 席俊秀, 杜明皓, 黄晓欢. 细胞外囊泡介导的胶质细胞交互作用对神经炎症的调节意义及研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 235-241.
[9] 李翠平, 陈晓燕, 钱师宇, 林惠珠, 曾彩辉, 阳莉, 卢建溪. 不同抗凝剂保存液对脐血培养的NK细胞增殖及杀伤效应的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 572-576.
[10] 许磊, 孙杰, 陈先志, 张家泉, 李旺勇, 冯其柱, 王琦. 血液净化治疗在高血脂性重症胰腺炎中的应用[J]. 中华肝脏外科手术学电子杂志, 2023, 12(04): 464-468.
[11] 邹勇, 顾应江, 丁昊, 杨呈浩, 陈岷辉, 蔡昱. 基于Nrf2/HO-1及NF-κB信号通路探讨葛根素对大鼠脑出血后早期炎症反应及氧化应激反应的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 271-277.
[12] 屈霄, 王靓, 陆萍, 何斌, 孙敏. 外周血炎症因子及肠道菌群特征与活动性溃疡性结肠炎患者病情的相关性分析[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 466-470.
[13] 朱风尚, 舍玲, 丁永年, 杨长青. 警惕炎症性肠病与少见肠道疾病的鉴别诊断[J]. 中华消化病与影像杂志(电子版), 2023, 13(05): 273-276.
[14] 杨琬芳, 许晶, 张耀方, 王青, 杨智超, 任方刚, 王宏伟. NK和NKT细胞对急性髓系白血病患者的临床影响[J]. 中华临床医师杂志(电子版), 2023, 17(9): 932-938.
[15] 刘感哲, 艾芬. MiRNA-210通过抑制HIF-1α的表达改善大鼠血管性认知功能障碍[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 489-494.
阅读次数
全文


摘要