切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (02) : 125 -128. doi: 10.3877/cma.j.issn.2095-1221.2020.02.010

所属专题: 文献

综述

自体疗法对组织愈合和再生的促进作用的研究进展
公绪合1   
  1. 1. 100050 北京,首都医科大学附属北京友谊医院心血管中心
  • 收稿日期:2019-09-28 出版日期:2020-04-01
  • 基金资助:
    国家自然科学基金(81770340); 国家自然科学基金(81600196); 北京市代谢紊乱相关心血管疾病重点实验室(首都医科大学)(OP2018DXWL01)

Advances in autotherapies on enhancing endogenous healing and regeneration

Xuhe Gong1   

  1. 1. Department of Cardiology, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
  • Received:2019-09-28 Published:2020-04-01
  • About author:
    Corresponding author: Huang Rongchong, Email:
引用本文:

公绪合. 自体疗法对组织愈合和再生的促进作用的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(02): 125-128.

Xuhe Gong. Advances in autotherapies on enhancing endogenous healing and regeneration[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(02): 125-128.

组织工程和再生医学是基础研究和转化医学的热点,传统的组织工程和再生医学方法依赖体外构建组织、外源性干细胞移植至靶部位等方法,尽管这些方法在体外细胞研究、动物研究中证实可以达到组织修复和再生等作用,然而,临床实践尚存在一定问题,无法有效转化。基于干细胞、发育生物学、免疫学、生物工程和材料科学的最新进展,新一代体内再生的医学疗法,即自体疗法得以应用。自体疗法是一种基于优化内源性组织反应,利用干细胞和内源性组织微环境,促进组织愈合和再生的策略。本文将对自体疗法的概念、作用、微环境及优化自体疗法途径做一综述。

Tissue engineering and regenerative medicine are hot topics in basic research and translational medicine. Traditional tissue engineering and regenerative medicine approaches rely on the generation of tissue constructs in vitro or ex vivo stem cell transplantation to target sites. Although these methods have been shown to achieve tissue repairmen and regeneration in vitro and in vivo, few such therapies have succeeded in clinical practice. Recent advances in the stem cell and developmental biology, immunology, bioengineering, and material sciences promote us to develop a new generation of in vivo regenerative medicine therapies: autotherapies. Autotherapies are strategies based on optimizing endogenous tissue responses and capitalizing on manipulation of stem cell niches and endogenous tissue microenvironments to enhance tissue healing and regeneration. This article reviews the concept, role, microenvironment of autotherapy and the strategy onoptimizing autotherapies.

[1]
Rajabzadeh N, Fathi E, Farahzadi R. Stem cell-based regenerative medicine[J]. Stem Cell Investig, 2019, 6:19.
[2]
Lumelsky N, O'Hayre M, Chander P, et al. Autotherapies: enhancing endogenous healing and regeneration[J]. Trends Mol Med, 2018, 24(11):919-930.
[3]
Castaño O, Pérez-Amodio S, Navarro-Requena C, et al. Instructive microenvironments in skin wound healing:Biomaterials as signal releasing platforms[J]. Adv Drug Deliv Rev, 2018, 129:95-117.
[4]
Singh A, Yadav CB, Tabassum N, et al. Stem cell niche:Dynamic neighbor of stem cells[J]. Eur J Cell Biol, 2019, 98(2/4):65-73.
[5]
Iismaa SE, Kaidonis X, Nicks AM, et al. Comparative regenerative mechanisms across different mammalian tissues[J]. NPJ Regen Med, 2018, 3:6.
[6]
Iglesias-Bartolome R, Uchiyama A, Molinolo AA. Transcriptional signature primes human oral mucosa for rapid wound healing[J].Sci Transl Med, 2018, 10(451). pii:eaap8798.
[7]
Durand C, Charbord P, Jaffredo T. The crosstalk between hematopoietic stem cells and their niches[J]. Curr Opin Hematol, 2018, 25(4):285-289.
[8]
Farin HF, Jordens I, Mosa MH, et al. Visualization of a short-range Wnt gradient in the intestinal stem-cell niche[J]. Nature, 2016, 530(7590): 340-343.
[9]
Giuranno L, Wansleeben C, Iannone R, et al. NOTCH signaling promotes the survival of irradiated basal airway stem cells[J]. Am J Physiol Lung Cell Mol Physiol, 2019, 317(3):L414-L423.
[10]
Jheon AH, Prochazkova M, Meng B, et al. Inhibition of notch signaling during mouse incisor renewal leads to enamel defects[J]. J Bone Miner Res, 2016, 31(1):152-162.
[11]
Dumont NA, Wang YX, Rudnicki MA. Intrinsic and extrinsic mechanisms regulating satellite cell function[J]. Development, 2015, 142(9):1572-1581.
[12]
Quarta M, Brett JO, Dimarco R, et al. An artificial niche preserves the quiescence of muscle stem cells and enhances their therapeutic efficacy[J]. Nat Biotechnol, 2016, 34(7):752-759.
[13]
Jones NC, Tyner KJ, Nibarger L, et al. The p38alpha/beta MAPK functions as a molecular Switch to activate the quiescent satellite cell[J]. J Cell Biol, 2005, 169(1):105-116.
[14]
Rockey DC, Bell PD, Hill JA. Fibrosis - A common pathway to organ injury and failure[J]. N Engl J Med, 2015, 372(12):1138-1149.
[15]
Emmerson E, May AJ, Berthoin L, et al. Salivary glands regenerate after radiation injury through SOX2-mediated secretory cell replacement[J]. EMBO Mol Med, 2018, 10(3). pii: e8051.
[16]
Manavski Y, Boon RA, Dimmeler S. Vascular niche controls organ regeneration[J]. Circ Res, 2014, 114(7):1077-1079.
[17]
De La Fuente AG, Lange S, Silva ME, et al. Pericytes stimulate oligodendrocyte progenitor cell differentiation during CNS remyelination[J]. Cell Rep, 2017, 20(8):1755-1764.
[18]
Hu J, Srivastava K, Wieland M, et al. Endothelial cell-derived angiopoietin-2 controls liver regeneration as a spatiotemporal rheostat[J]. Science, 2014, 343(6169):416-419.
[19]
Sehgal A, Donaldson DS, Pridans C. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche[J].Nat Commun, 2018, 9(1):1272.
[20]
Schlundt C, El Khassawna T, Serra A, et al. Macrophages in bone fracture healing: Their essential role in endochondral ossification[J]. Bone, 2018, 106:78-89.
[21]
Chakrabarti R, Celià-Terrassa T, Kumar S, et al. Notch ligand Dll1 mediates cross-talk between mammary stem cells and the macrophageal niche[J]. Science, 2018, 360(6396). pii: eaan4153.
[22]
Ballestas SA, Turner TC, Kamalakar A, et al. Improving hard palate wound healing using immune modulatory autotherapies[J]. Acta Biomater, 2019, 91:209-219.
[23]
Mescher AL, Neff AW, King MW. Inflammation and immunity in organ regeneration[J]. Dev Comp Immunol, 2017, 66:98-110.
[24]
Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis[J]. Immunity, 2016, 44(3):450-462.
[25]
Karin M, Clevers H. Reparative inflammation takes charge of tissue regeneration[J]. Nature, 2016, 529(7586):307-315.
[26]
Dalli J. Does promoting resolution instead of inhibiting inflammation represent the new paradigm in treating infections?[J]. Mol Aspects Med, 2017, 58:12-20.
[27]
Motwani MP, Colas RA, George MJ, et al. Pro-resolving mediators promote resolution in a human skin model of UV-killed Escherichia coli-driven acute inflammation[J]. JCI Insight, 2018, 3(6). pii:94463.
[28]
Musso G, Gambino R, Cassader M, et al. Specialized proresolving mediators: enhancing nonalcoholic steatohepatitis and fibrosis resolution[J]. Trends Pharmacol Sci, 2018, 39(4):387-401.
[29]
Su Y, Chen C, Guo L, et al. Ecological balance of oral microbiota is required to maintain oral mesenchymal stem cell homeostasis[J]. Stem Cells, 2018, 36(4):551-561.
[30]
Slack JM. Metaplasia and transdifferentiation: from pure biology to the clinic[J]. Nat Rev Mol Cell Biol, 2007, 8(5):369-378.
[31]
Wells WA. Is transdifferentiation in trouble?[J]. J Cell Biol, 2002, 157(1):15-18.
[32]
Lin B, Srikanth P, Castle AC, et al. Modulating cell fate as a therapeutic strategy[J]. Cell Stem Cell, 2018, 23(3):329-341.
[33]
Bjornson CR, Rietze RL, Reynolds BA, et al. Turning brain into blood: a hematopoietic fate adopted by adult neural stem cells in vivo[J]. Science, 1999, 283(541):534-537.
[34]
Klein D. iPSCs-based Generation of vascular cells: reprogramming approaches and applications[J]. Cell Mol Life Sci, 2018, 75(8):1411-1433.
[35]
Anderson DJ, Gage FH, Weissman IL. Can stem cells cross lineage boundaries?[J]. Nat Med, 2001, 7(4):393-395.
[36]
Discher DE, Mooney DJ, Zandstra PW. Growth factors, matrices, and forces combine and control stem cells[J]. Science, 2009, 324(5935): 1673-1677.
[37]
Darnell M, Mooney DJ. Leveraging advances in biology to design biomaterials[J]. Nat Mater, 2017, 16(12):1178-1185.
[38]
Cezar CA, Roche ET, Vandenburgh HH, et al. Biologic-free mechanically induced muscle regeneration[J]. Proc Natl Acad Sci U S A, 2016, 113(6):1534-1539.
[1] 张俊慧, 徐莉, 吕青, 谭秋雯. 肿瘤细胞外基质对乳腺癌侵袭转移的调控[J]. 中华乳腺病杂志(电子版), 2022, 16(04): 236-239.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[4] 初磊, 郭翼, 童晓文. Periostin在妇科恶性肿瘤中的研究现状[J]. 中华妇幼临床医学杂志(电子版), 2022, 18(02): 145-149.
[5] 王一淼, 何培杰. 成纤维细胞在增生性瘢痕形成中的作用及调控因素[J]. 中华损伤与修复杂志(电子版), 2023, 18(01): 78-85.
[6] 寇佳慧, 张梦圆, 张宝林. 生物组织工程中细胞外基质成分促进创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2021, 16(05): 449-452.
[7] 张修源, 吕军好, 陈大进. 2022年肾移植领域研究进展[J]. 中华移植杂志(电子版), 2023, 17(01): 32-35.
[8] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[9] 赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.
[10] 孙莉莉, 李晓强, 张明, 朱健, 黄佃. 非编码RNAs调控内皮祖细胞对静脉血栓的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 181-185.
[11] 刘艺霖, 吴志鹏, 邱江. 多能干细胞诱导分化为肾脏类器官的研究进展与挑战[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 57-62.
[12] 邱佳辉, 韩超, 黄陈. 胶原蛋白在结直肠癌中的研究现状与进展[J]. 中华结直肠疾病电子杂志, 2022, 11(04): 281-287.
[13] 文华伟, 汤明, 方禹舜, 李亚楠, 张绍华, 张青松. 生物材料增强肩袖腱骨愈合的研究进展[J]. 中华肩肘外科电子杂志, 2023, 11(03): 273-278.
[14] 吕斌, 胡良聪, 谢旭东, 程鹏, 米博斌, 刘国辉. 褪黑素调控椎间盘退变的研究进展[J]. 中华老年病研究电子杂志, 2022, 09(04): 58-64.
[15] 刘扬, 张锐毅, 张艳, 李红敏, 苏秋羊, 薛孟周. 细胞外基质金属蛋白酶诱导因子在脑卒中中的作用[J]. 中华脑血管病杂志(电子版), 2022, 16(01): 57-60.
阅读次数
全文


摘要