切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2023, Vol. 13 ›› Issue (02) : 121 -128. doi: 10.3877/cma.j.issn.2095-1221.2023.02.009

综述

脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用
赵子祯, 严紫娟, 王家传()   
  1. 518033 深圳,南京中医药大学附属深圳市中医院病理科
    518033 深圳市中医院广州中医药大学第四临床医学院病理科
  • 收稿日期:2023-02-17 出版日期:2023-04-01
  • 通信作者: 王家传
  • 基金资助:
    国家自然科学基金面上项目(82274248); 深圳市科技计划基础研究项目(JCYJ20220531092403007)

Advances in brain organoid culture technology and its application in the repair of ischemic stroke injury

Zizhen Zhao, Zijuan Yan, Jiachuan Wang()   

  1. Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Shenzhen 518033, China
    Department of Pathology, Shenzhen Traditional Chinese Medicine Hospital, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen 518033, China
  • Received:2023-02-17 Published:2023-04-01
  • Corresponding author: Jiachuan Wang
引用本文:

赵子祯, 严紫娟, 王家传. 脑类器官培养技术进展及其在缺血性脑卒中损伤修复中的应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 121-128.

Zizhen Zhao, Zijuan Yan, Jiachuan Wang. Advances in brain organoid culture technology and its application in the repair of ischemic stroke injury[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2023, 13(02): 121-128.

脑类器官在体外再现了部分大脑区域的生长和发育,并且在不涉及实验伦理问题的前提下,揭示了以往未知的中枢神经系统疾病机制。缺血性脑卒中的致残率和死亡率极高,目前尚无有效治疗手段。干细胞及其衍生的外泌体临床疗效局限,而脑类器官展现出极大的治疗潜能。脑类器官移植治疗能够减少脑损伤面积,改善神经功能,并在一定程度上促进自身的生长。本文综述了脑类器官培养技术的最新进展,对优化其结构和功能复杂性以及延长脑类器官存活时间的培养方法进行归纳总结,探讨了脑类器官移植在缺血性脑卒中后治疗应用,为未来脑类器官的正式应用提供前临床评估。

The cerebral organoid has recapitulated the growth and development of some areas of the brain in vitro and has revealed previously unknown mechanisms of central nervous system diseases without ethical concerns. Ischemic stroke has a high disability and mortality rate, and effective treatments are currently lacking. Although stem cells clinical efficacy and excreted extracellular vesicles are limited, cerebral organoids demonstrate significant therapeutic potential. Intervention with cerebral organoids has reduced the brain damage area, improved nerve function, and to some extent, promoted their growth. In this review, we have summarized the latest advances in cerebral organoid culture technology, described methods to optimize its structure and functional complexity and prolong its survival time, and discussed the use of cerebral organoids as therapeutic transplantation materials and pathological models for ischemic stroke. By summarizing these contents, we aim to provide a preclinical evaluation for future formal applications of cerebral organoids.

图1 脑类器官的构建及优化方案
表1 脑类器官血管化研究
表2 生物工程与脑类器官构建研究
支架类型 基质类型 加入组分 生成类器官类型 生长情况 参考文献
静态液滴支架 Matrigel-海藻酸盐融合基质 hiPSCs 中脑类器官 类器官结构随着基质硬度改变 [47]
静态液滴支架 海藻酸盐 hiPSCs 脊髓类器官 与Matrigel神经发生和胶质细胞生成的效率相似,同时减少非特异性标记物的表达 [48]
静态液滴支架 脱细胞猪脑ECM hESCs 脑类器官 增加了培养环境的稳定性,但功能性人脑特异性蛋白并未保留 [49]
静态液滴支架 明胶甲基丙烯酸酯 神经祖细胞 分化的神经细胞聚合物 促进神经元分化,部分神经干细胞干性保留 [50]
静态碳纤维支架 生长阶段的中脑类器官 成熟的中脑类器官 加速类器官生长,延长其培养时间,类器官中多巴胺能神经元比例增加 [51]
静态重组丝微纤维支架 hiPSCs 脑类器官 降低类器官间的异质性,降低类器官内的变异性,增强自组织能力,促进氧气和营养物质输送 [52]
微流控设备 Matrigel hESCs 脑类器官 类器官内缺氧核心减少,类器官之间的异质性降低 [53]
微流控设备 脱细胞人脑组织衍生ECM 生长阶段的脑类器官 成熟的脑类器官 增加类器官的神经元和神经胶质细胞数量,促进神经发生和皮质发育,类器官在分子和功能水平上进一步成熟 [45]
微流控设备 GelTrex 生长阶段的中脑类器官 成熟的中脑类器官 类器官活性提升,核心的凋亡坏死情况明显改善,多巴胺能神经元比例增加 [54]
微流控空心网状设备 EB维持培养基 EB、小胶质细胞 管状人脑类器官 类器官缺氧核心减小,类器官异质性减小,神经发育增强 [55]
微流控设备 Matrigel 生长阶段的脑类器官、周细胞、内皮细胞 神经血管类器官 以出芽的方式在类器官内形成复杂的、有灌注能力的血管网络 [56]
微流控设备 纤维蛋白凝胶 神经干细胞球、人脐静脉内皮细胞 血管化的神经干细胞球 促进神经元生长和神经干细胞分化,减少神经细胞凋亡 [57]
1
Hamblin MH, Murad R, Yin J, et al. Modulation of gene expression on a transcriptome-wide level following human neural stem cell transplantation in aged mouse stroke brains[J]. Exp Neurol, 2022, 347:113913. doi: 10.1016/j.expneurol.2021.113913.
2
Zhao LN, Ma SW, Xiao J, et al. Bone marrow mesenchymal stem cell therapy regulates gut microbiota to improve post-stroke neurological function recovery in rats[J]. World J Stem Cells, 2021, 13(12):1905-1917.
3
Kawabori M, Shichinohe H, Kuroda S, et al. Clinical trials of stem cell therapy for cerebral ischemic stroke[J]. Int J Mol Sci, 2020, 21(19):7380. doi: 10.3390/ijms21197380.
4
Levy ML, Crawford JR, Dib N, et al. Phase I/II study of safety and preliminary efficacy of intravenous allogeneic mesenchymal stem cells in chronic stroke[J]. Stroke, 2019, 50(10):2835-2841.
5
Yakoub AM, Sadek M. Development and characterization of human cerebral organoids[J]. Cell Transplant, 2018, 27(3):393-406.
6
Xu R, Boreland AJ, Li X, et al. Developing human pluripotent stem cell-based cerebral organoids with a controllable microglia ratio for modeling brain development and pathology[J]. Stem Cell Reports, 2021, 16(8):1923-1937.
7
Nascimento JM, Saia-Cereda VM, Sartore RC, et al. Human cerebral organoids and fetal brain tissue share proteomic similarities[J]. Front Cell Dev Biol, 2019, 7:303. doi: 10.3389/fcell.2019.00303.
8
Kim H, XU R, Padmashri R, et al. Pluripotent stem cell-derived cerebral organoids reveal human oligodendrogenesis with dorsal and ventral origins[J]. Stem Cell Reports, 2019, 12(5):890-905.
9
Lancaster MA, Knoblich JA. Generation of cerebral organoids from human pluripotent stem cells[J]. Nat Protoc, 2014, 9(10):2329-2340.
10
Eiraku M, Watanabe K, Matsuo TM, et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals[J]. Cell Stem Cell, 2008, 3(5):519-532.
11
Lancaster MA, Renner M, Martin CA, et al. Cerebral organoids model human brain development and microcephaly[J]. Nature, 2013, 501(7467):373-379.
12
Qian X, Nguyen HN, Song MM, et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure[J]. Cell, 2016, 165(5):1238-1254.
13
Qian X, Jacob F, Song MM, et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor[J]. Nat Protoc, 2018, 13(3):565-580.
14
Paşca AM, Sloan SA, Clarke LE, et al. Functional cortical neurons and astrocytes from human pluripotent stem cells in 3D culture[J]. Nat Methods, 2015, 12(7):671-678.
15
Giandomenico SL, Sutcliffe M, Lancaster MA. Generation and long-term culture of advanced cerebral organoids for studying later stages of neural development[J]. Nat Protoc, 2021, 16(2):579-602.
16
Chiaradia I, Lancaster MA. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo[J]. Nat Neurosci, 2020, 23(12):1496-1508.
17
Jo J, Xiao Y, Sun AX, et al. Midbrain-like organoids from human pluripotent stem cells contain functional dopaminergic and neuromelanin-producing neurons[J]. Cell Stem Cell, 2016, 19(2):248-257.
18
Eura N, Matsui TK, Luginbühl J, et al. Brainstem organoids from human pluripotent stem cells[J]. Front Neurosci, 2020, 14:538. doi: 10.3389/fnins.2020.00538.
19
Muguruma K, Nishiyama A, Kawakami H, et al. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells[J]. Cell Rep, 2015, 10(4):537-550.
20
Pellegrini L, Bonfio C, Chadwick J, et al. Human CNS barrier-forming organoids with cerebrospinal fluid production[J]. Science, 2020, 369(6500):eaaz5626. doi:10.1126/science.aaz5626.
21
Sakaguchi H, Kadoshima T, Soen M, et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell-derived dorsomedial telencephalic tissue[J]. Nat Commun, 2015, 6:8896.doi: 10.1038/ncomms9896.
22
Huang WK, Wong S ZH, Pather SR, et al. Generation of hypothalamic arcuate organoids from human induced pluripotent stem cells[J]. Cell Stem Cell, 2021, 28(9):1657-1670.e10.
23
Ozone C, Suga H, Eiraku M, et al. Functional anterior pituitary generated in self-organizing culture of human embryonic stem cells[J]. Nat Commun, 2016, 7:10351. doi: 10.1038/ncomms10351.
24
Sloan SA, Andersen J, Pasca AM, et al. Generation and assembly of human brain region-specific three-dimensional cultures[J]. Nat Protoc, 2018, 13(9):2062-2085.
25
Bagley JA, Reumann D, Bian S, et al. Fused cerebral organoids model interactions between brain regions[J]. Nat Methods, 2017, 14(7):743-751.
26
Birey F, Andersen J, Makinson C-D, et al. Assembly of functionally integrated human forebrain spheroids[J]. Nature, 2017, 545(7652):54-59.
27
Xiang Y, Tanaka Y, Patterson B, et al. Fusion of regionally specified hPSC-derived organoids models human brain development and interneuron migration[J]. Cell Stem Cell, 2017, 21(3):383-398.e7.
28
Xiang Y, Tanaka Y, Cakir B, et al. hESC-derived thalamic organoids form reciprocal projections when fused with cortical organoids[J]. Cell Stem Cell, 2019, 24(3):487-497.e7.
29
Ao Z, Cai H, Wu Z, et al. Controllable fusion of human brain organoids using acoustofluidics[J]. Lab Chip, 2021, 21(4):688-699.
30
Fligor CM, Lavekar SS, Harkin J, et al. Extension of retinofugal projections in an assembled model of human pluripotent stem cell-derived organoids[J]. Stem Cell Reports, 2021, 16(9):2228-2241.
31
Cakir B, Xiang Y, Tanaka Y, et al. Engineering of human brain organoids with a functional vascular-like system[J]. Nat Methods, 2019, 16(11):1169-1175.
32
Ahn Y, An JH, Yang HJ, et al. Human blood vessel organoids penetrate human cerebral organoids and form a vessel-like system[J]. Cells, 2021, 10(8):2036. doi: 10.3390/cells10082036.
33
Shi Y, Sun L, Wang M, et al. Vascularized human cortical organoids (vOrganoids) model cortical development in vivo[J]. PLoS Biol, 2020, 18(5):e3000705.
34
Worsdorfer P, Dalda N, Kern A, et al. Generation of complex human organoid models including vascular networks by incorporation of mesodermal progenitor cells[J]. Sci Rep, 2019, 9(1):15663.doi: 10.1038/s41598-019-52204-7.
35
Ham O, Jin YB, Kim J, et al. Blood vessel formation in cerebral organoids formed from human embryonic stem cells[J]. Biochem Biophys Res Commun, 2020, 521(1):84-90.
36
Dailamy A, Parekh U, Katrekar D, et al. Programmatic introduction of parenchymal cell types into blood vessel organoids[J]. Stem Cell Reports, 2021, 16(10):2432-2441.
37
Ormel PR, Vieira de Sá R, van Bodegraven EJ, et al. Microglia innately develop within cerebral organoids[J]. Nat Commun, 2018, 9(1):4167.doi: 10.1038/s41467-018-06684-2.
38
Fagerlund I, Dougalis A, Shakirzyanova A, et al. Microglia-like cells promote neuronal functions in cerebral organoids[J]. Cells, 2021, 11(1):124. doi: 10.3390/cells11010124.
39
Marton RM, Miura Y, Sloan SA, et al. Differentiation and maturation of oligodendrocytes in human three-dimensional neural cultures[J]. Nat Neurosci, 2019, 22(3):484-491.
40
Kozlowski M-T, Crook C-J, Ku H-T. Towards organoid culture without Matrigel[J]. Commun Biol, 2021, 4(1):1387.doi: 10.1038/s42003-021-02910-8.
41
Gu Q, Tomaskovic CE, Lozano R, et al. Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells[J]. Adv Healthc Mater, 2016, 5(12):1429-1438.
42
Cederquist G-Y, Asciolla JJ, Tchieu J, et al. Specification of positional identity in forebrain organoids[J]. Nat Biotechnol, 2019, 37(4):436-444.
43
Gabriel E, Albanna W, Pasquini G, et al. Human brain organoids assemble functionally integrated bilateral optic vesicles[J]. Cell Stem Cell, 2021, 28(10):1740-1757 e8.
44
Tourovskaia A, Fauver M, Kramer G, et al. Tissue-engineered microenvironment systems for modeling human vasculature[J]. Exp Biol Med (Maywood), 2014, 239(9):1264-1271.
45
Cho AN, Jin Y, An Y, et al. Microfluidic device with brain extracellular matrix promotes structural and functional maturation of human brain organoids[J]. Nat Commun, 2021, 12(1):4730.doi: 10.1038/s41467-021-24775-5.
46
Ronaldson BK, Teles D, Yeager K, et al. A multi-organ chip with matured tissue niches linked by vascular flow[J]. Nat Biomed Eng, 2022, 6(4):351-371.
47
Cassel de Camps C, Aslani S, Stylianesis N, et al. Hydrogel mechanics influence the growth and development of embedded brain organoids[J]. ACS Appl Bio Mater, 2022, 5(1):214-224.
48
Chooi WH, Ng CY, Ow V, et al. Defined alginate hydrogels support spinal cord organoid derivation, maturation, and modeling of spinal cord diseases[J]. Adv Healthc Mater, 2022:e2202342.doi: 10.1002/adhm.202202342.
49
Simsa R, Rothenbücher T, Gürbüz H, et al. Brain organoid formation on decellularized porcine brain ECM hydrogels[J]. PLoS One, 2021, 16(1):e0245685.doi: 10.1371/journal.pone.0245685.
50
Cruz EM, Machado LS, Zamproni LN, et al. A gelatin methacrylate-based hydrogel as a potential bioink for 3D bioprinting and neuronal differentiation[J]. Pharmaceutics, 2023, 15(2):627. doi: 10.3390/pharmaceutics15020627.
51
Tejchman A, Znój A, Chlebanowska P, et al. Carbon fibers as a new type of scaffold for midbrain organoid development[J]. Int J Mol Sci, 2020, 21(17):5959. doi: 10.3390/ijms21175959.
52
Sozzi E, Kajtez J, Bruzelius A, et al. Silk scaffolding drives self-assembly of functional and mature human brain organoids[J]. Front Cell Dev Biol, 2022, 10:1023279.doi: 10.3389/fcell.2022.1023279.
53
Ao Z, Cai H, Havert DJ, et al. One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure[J]. Anal Chem, 2020, 92(6):4630-4638.
54
Berger E, Magliaro C, Paczia N, et al. Millifluidic culture improves human midbrain organoid vitality and differentiation[J]. Lab Chip, 2018, 18(20):3172-3183.
55
Ao Z, Cai H, Wu Z, et al. Tubular human brain organoids to model microglia-mediated neuroinflammation[J]. Lab Chip, 2021, 21(14):2751-2762.
56
Salmon I, Grebenyuk S, Abdel Fattah AR, et al. Engineering neurovascular organoids with 3D printed microfluidic chips[J]. Lab Chip, 2022, 22(8):1615-1629.
57
Shin N, Kim Y, Ko J, et al. Vascularization of iNSC spheroid in a 3D spheroid-on-a-chip platform enhances neural maturation[J]. Biotechnol Bioeng, 2022, 119(2):566-574.
58
王小文,郑哲,黄洁.脑卒中供者心脏的心肌损伤机制与临床研究进展[J].器官移植, 2023, 14(01):42-48.
59
Zhou L, Zhu H, Bai X, et al. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke[J]. Stem Cell Res Ther, 2022, 13(1):195.doi: 10.1186/s13287-022-02876-2.
60
Caplan AI. MSCs: The sentinel and safe-guards of injury[J]. J Cell Physiol, 2016, 231(7):1413-1416.
61
Daviaud N, Friedel RH, Zou H. Vascularization and engraftment of transplanted human cerebral organoids in mouse cortex[J]. eNeuro, 2018, 5(6):ENEURO.0219-18.
62
Wang SN, Wang Z, Xu TY, et al. Cerebral organoids repair ischemic stroke brain injury[J]. Transl Stroke Res, 2020, 11(5):983-1000.
63
Wang Z, Wang SN, Xu TY, et al. Cerebral organoids transplantation improves neurological motor function in rat brain injury[J]. CNS Neurosci Ther, 2020, 26(7):682-697.
64
Kitahara T, Sakaguchi H, Morizane A, et al. Axonal extensions along corticospinal tracts from transplanted human cerebral organoids[J]. Stem Cell Reports, 2020, 15(2):467-481.
65
Bao Z, Fang K, Miao Z, et al. Human cerebral organoid implantation alleviated the neurological deficits of traumatic brain injury in mice[J]. Oxid Med Cell Longev, 2021, 2021:6338722.doi: 10.1155/2021/6338722.
66
Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol, 2018, 36(5):432-441.
67
Dong X, Xu SB, Chen X, et al. Human cerebral organoids establish subcortical projections in the mouse brain after transplantation[J]. Mol Psychiatry, 2021, 26(7):2964-2976.
68
Revah O, Gore F, Kelley KW, et al. Maturation and circuit integration of transplanted human cortical organoids[J]. Nature, 2022, 610(7931): 319-326.
69
Tsuchida T, Murata S, Hasegawa S, et al. Investigation of clinical safety of human iPS cell-derived liver organoid transplantation to infantile patients in porcine model[J]. Cell Transplant, 2020, 29:963689720964384.doi: 10.1177/0963689720964384.
70
Iwasa N, Matsui T-K, Iguchi N, et al. Gene expression profiles of human cerebral organoids identify PPAR pathway and PKM2 as key markers for oxygen-glucose deprivation and reoxygenation[J]. Front Cell Neurosci, 2021, 15:605030. doi: 10.3389/fncel.2021.605030.
71
Kim MS, Kim DH, Kang HK, et al. Modeling of hypoxic brain injury through 3D human neural organoids[J]. Cells, 2021, 10(2):234. doi: 10.3390/cells10020234.
72
Daviaud N, Chevalier C, Friedel RH, et al. Distinct vulnerability and resilience of human neuroprogenitor subtypes in cerebral organoid model of prenatal hypoxic injury[J]. Front Cell Neurosci, 2019, 13:336.doi: 10.3389/fncel.2019.00336.
73
Pașca AM, Park JY, Shin HW, et al. Human 3D cellular model of hypoxic brain injury of prematurity[J]. Nat Med, 2019, 25(5):784-791.
74
Nzou G, Wicks RT, VanOstrand NR, et al. Multicellular 3D neurovascular unit model for assessing hypoxia and neuroinflammation induced blood-brain barrier dysfunction[J]. Sci Rep, 2020, 10(1):9766.doi: 10.1038/s41598-020-66487-8.
[1] 谢迎东, 孙帼, 徐超丽, 杨斌, 孙晖, 戴云. 超声造影定量评价不同生存期移植肾血流灌注的临床价值[J]. 中华医学超声杂志(电子版), 2023, 20(07): 749-754.
[2] 罗旺林, 杨传军, 许国星, 俞建国, 孙伟东, 颜文娟, 冯志. 开放性楔形胫骨高位截骨术不同植入材料的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(06): 818-826.
[3] 刘林峰, 王增涛, 王云鹏, 钟硕, 郝丽文, 仇申强, 陈超. 足底内侧皮瓣联合甲骨皮瓣在手指V度缺损再造中的临床应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 480-484.
[4] 陈永沛, 仲海燕, 陈勇, 王慜, 王倩, 邹鸣立, 袁斯明. 数字减影血管造影在腓动脉穿支皮瓣移植中的应用[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 507-510.
[5] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[6] 刘竹影, 周年苟, 李泳祺, 周丽斌. 空心环钻联合手术导板用于自体牙移植牙槽窝备洞[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 418-423.
[7] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[8] 严庆, 刘颖, 邓斐文, 陈焕伟. 微血管侵犯对肝癌肝移植患者生存预后的影响[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 624-629.
[9] 廖梅, 张红君, 金洁玚, 吕艳, 任杰. 床旁超声造影对肝移植术后早期肝动脉血栓的诊断价值[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 630-634.
[10] 李秉林, 吕少诚, 潘飞, 姜涛, 樊华, 寇建涛, 贺强, 郎韧. 供肝灌注液病原菌与肝移植术后早期感染的相关性分析[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 656-660.
[11] 吕垒, 冯啸, 何凯明, 曾凯宁, 杨卿, 吕海金, 易慧敏, 易述红, 杨扬, 傅斌生. 改良金氏评分在儿童肝豆状核变性急性肝衰竭肝移植手术时机评估中价值并文献复习[J]. 中华肝脏外科手术学电子杂志, 2023, 12(06): 661-668.
[12] 王孟龙. 肿瘤生物学特征在肝癌肝移植治疗中的意义[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 490-494.
[13] 何吉鑫, 杨燕妮, 王继伟, 李建国, 谢铭. 肠道菌群及肠道代谢产物参与慢性便秘发生机制的研究进展[J]. 中华结直肠疾病电子杂志, 2023, 12(06): 495-499.
[14] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[15] 王丁然, 迟洪滨. 自身免疫甲状腺炎对子宫内膜异位症患者胚胎移植结局的影响[J]. 中华临床医师杂志(电子版), 2023, 17(06): 682-688.
阅读次数
全文


摘要