切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (03) : 181 -185. doi: 10.3877/cma.j.issn.2095-1221.2022.03.008

综述

非编码RNAs调控内皮祖细胞对静脉血栓的影响
孙莉莉1, 李晓强1, 张明1, 朱健1, 黄佃1,()   
  1. 1. 210008 南京大学医学院附属鼓楼医院血管外科
  • 收稿日期:2021-04-25 出版日期:2022-06-01
  • 通信作者: 黄佃
  • 基金资助:
    国家自然科学基金(82070496)

The role of non-coding RNAs in regulating of endothelial progenitor cells in venous thrombosis

Lili Sun1, Xiaoqiang Li1, Ming Zhang1, Jian Zhu1, Dian Huang1,()   

  1. 1. Department of Vascular Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, 210008 Nanjing, China
  • Received:2021-04-25 Published:2022-06-01
  • Corresponding author: Dian Huang
引用本文:

孙莉莉, 李晓强, 张明, 朱健, 黄佃. 非编码RNAs调控内皮祖细胞对静脉血栓的影响[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 181-185.

Lili Sun, Xiaoqiang Li, Ming Zhang, Jian Zhu, Dian Huang. The role of non-coding RNAs in regulating of endothelial progenitor cells in venous thrombosis[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(03): 181-185.

静脉血栓栓塞症(VTE)包括深静脉血栓形成(DVT)和肺栓塞(PE),是世界上第三大最常见的血管疾病,严重威胁患者生命。目前,临床上对DVT的治疗效果尚不满意。研究发现,循环内皮祖细胞在DVT的溶解和再通过程中发挥重要作用,已成为再生医学研究的热点,但不利的微环境会降低其功能作用。非编码RNAs特别是长链非编码RNAs (lncRNAs)和微小RNAs (miRNAs),对改善内皮祖细胞的生物学功能具有关键作用,可作为临床上疾病的生物学标志物及治疗靶点,研究其调控内皮祖细胞功能在VTE发生和发展过程中的作用及分子机制,将为临床上防治VTE提供理论基础和实验依据,给VTE患者带来希望。本文主要综述VTE的特征、内皮祖细胞对静脉血栓的调控作用和非编码RNAs调控内皮祖细胞对静脉血栓的影响,为VTE的诊断、预防、治疗和预后提供一定的参考价值和理论基础。

Venous thromboemlism (VTE) , which includes deep vein thrombosis (DVT) and pulmonary embolism (PE) , is the third most common vascular disease in the world and poses serious threat to patients' lives. Currently, the clinical treatment of DVT is not very effective. Studies have found that circulating endothelial progenitor cells play an important role in the resolution and recanalization of DVT, however, the unfavorable microenvironment reduced the function. Non-coding RNAs, especially long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) , play an important role in improving the biological functions of endothelial progenitor cells. They can use as biological markers and therapeutic targets for clinical diseases. Studies have also found that non-coding RNAs regulated the function of endothelial progenitor cells in the occurrence and development of VTE and the molecular mechanisms, which may provide new methods for the prevention and treatment of VTE in clinic, and give hope to VTE patients. Here, we mainly review the characteristics of VTE, the regulation of endothelial progenitor cells on venous thrombosis, and the effects of non-coding RNAs on endothelial progenitor cells on venous thrombosis, which provides a certain reference value and theoretical basis for the diagnosis, prevention, treatment and prognosis of VTE.

1
Hernandez W, Gamazon ER, Smithberger E, et al. Novel genetic predictors of venous thromboembolism risk in African Americans[J]. Blood, 2016, 127(15):1923-1929.
2
Bokshan SL, DeFroda SF, Panarello NM, et al. Risk factors for deep vein thrombosis or pulmonary embolus following anterior cruciate ligament reconstruction[J]. Orthop J Sports Med, 2018, 6(6):2325967118781328.doi: 10.1177/2325967118781328.
3
Xiang Q, Zhang HX, Wang Z, et al. The predictive value of circulating microRNAs for venous thromboembolism diagnosis:A systematic review and diagnostic meta-analysis[J]. Thromb Res, 2019, 181:127-134.
4
Turetz M, Sideris AT, Friedman OA, et al. Epidemiology, pathophysiology, and natural history of pulmonary embolism[J]. Semin Intervent Radiol, 2018, 35(2):92-98.
5
Sun LL, Xiao L, Du XL, et al. MiR-205 promotes endothelial progenitor cell angiogenesis and deep vein thrombosis recanalization and resolution by targeting PTEN to regulate Akt/autophagy pathway and MMP2 expression[J]. J Cell Mol Med, 2019, 23(12):8493-8504.
6
Lamsam L, Sussman ES, Iyer AK, et al. Intracranial hemorrhage in deep vein thrombosis/pulmonary embolus patients without atrial fibrillation: direct oral anticoagulants versus warfarin[J]. Stroke, 2018, 49(8):1866-1871.
7
Grosse SD, Nelson RE, Nyarko KA, et al. The economic burden of incident venous thromboembolism in the United States: A review of estimated attributable healthcare costs[J]. Thromb Res, 2016, 137:3-10.
8
Li WD, Li XQ. Endothelial progenitor cells accelerate the resolution of deep vein thrombosis[J]. Vascul Pharmacol, 2016, 83:10-16.
9
孙莉莉, 李文东, 李晓强, 等. 内皮祖细胞在深静脉血栓机化再通中的作用[J]. 中华普通外科杂志, 2017, 32(12):1079-1082.
10
Li WD, Zhou DM, Sun LL, et al. LncRNA WTAPP1 promotes migration and angiogenesis of endothelial progenitor cells via MMP1 through MicroRNA 3120 and Akt/PI3K/Autophagy pathways[J]. Stem Cells, 2018, 36(12):1863-1874.
11
Sun LL, Lei FR, Jiang XD, et al. LncRNA GUSBP5-AS promotes EPC migration and angiogenesis and deep vein thrombosis resolution by regulating FGF2 and MMP2/9 through the miR-223-3p/FOXO1/Akt pathway[J]. Aging, 2020, 12(5):4506-4526.
12
李文东, 李晓强, 肖伦. 下肢深静脉血栓治疗现状与趋势[J]. 中国实用外科杂志, 2017, 37(12):1354-1358.
13
中华医学会外科学分会血管外科学组. 深静脉血栓形成的诊断和治疗指南(第三版)[J]. 中华普通外科杂志, 2017, 32(9):807-812.
14
李文东, 李晓强, 钱爱民, 等. 下肢深静脉血栓形成治疗进展[J]. 中国实用外科杂志, 2014, 34(12):1190-1193.
15
Diaz JA, Ramacciotti E, Wakefield TW. Do galectins play a role in venous thrombosis? a review[J]. Thromb Res, 2010, 125(5):373-376.
16
Heit JA, Cohen AT, Anderson FA. Estimated annual number of incident and recurrent, non-fatal and fatal venous thromboembolism (VTE) events in the US[J]. Blood, 2005, 106(11):267A.
17
Giordano NJ, Jansson PS, Young MN, et al. Epidemiology, pathophysiology, stratification, and natural history of pulmonary embolism[J]. Tech Vasc Interv Radiol, 2017, 20(3):135-140.
18
Boon G, Van Dam LF, Klok FA, et al. Management and treatment of deep vein thrombosis in special populations[J]. Expert Rev Hematol, 2018:11(9):685-695.
19
Piazza G, Goldhaber SZ. Acute pulmonary embolism: part I: epidemiology and diagnosis[J]. Circulation, 2006, 114(2):e28-32.
20
Zhou DM, Sun LL, Zhu J, et al. MiR-9 enhancs angiogenesis of endothelial progenitor cell to facilitate thrombi recanalization via targeting TRPM7 through PI3K/Akt /autophagy pathway[J]. J Cell Mol Med, 2020, 24(8):4624-4632.
21
Cushman M. Epidemiology and risk factors for venous thrombosis[J]. Semin Hematol, 2007, 44(2):62-69.
22
Heit JA, Mohr DN, Silverstein MD, et al. Predictors of recurrence after deep vein thrombosis and pulmonary embolism: a population-based cohort study[J]. Arch Intern Med, 2000, 160(6):761-768.
23
Prandoni P, Lensing AW, Cogo A, et al. The long-term clinical course of acute deep venous thrombosis[J]. Ann Intern Med, 1996, 125(1):1-7.
24
Sun J, Zhang Z, Ma T, et al. Endothelial progenitor cell-derived exosomes, loaded with miR-126, promoted deep vein thrombosis resolution and recanalization[J]. Stem Cell Res Ther, 2018, 9(1):223. doi: 10.1186/s13287-018-0952-8.
25
Santo SD, Tepper OM, von Ballmoos MW, et al. Cell-based therapy facilitates venous thrombus resolution[J]. Thromb Haemost, 2009, 101(03):460-464.
26
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science, 1997, 275(5302):964-966.
27
Modarai B, Burnand KG, Sawyer B, et al. Endothelial progenitor cells are recruited into resolving venous thrombi[J]. Circulation, 2005, 111(20):2645-2653.
28
Modarai B, Burnand KG, Humphries J, et al. The role of neovascularisation in the resolution of venous thrombus[J]. Thromb Haemost, 2005, 93(5):801-809.
29
Miller-Kasprzak E, Jagodzinski PP. Endothelial progenitor cells as a new agent contributing to vascular repair[J]. Arch Immunol Ther Exp (Warsz), 2007, 55(4):247-259.
30
Werner N, Nickenig G. Influence of cardiovascular risk factors on endothelial progenitor cells:limitations for therapy?[J]. Arterioscler Thromb Vasc Biol, 2006, 26(2):257-266.
31
Al Mheid I, Hayek SS, Ko YA, et al. Age and human regenerative capacity impact of cardiovascular risk factors[J]. Circ Res, 2016, 119(7):801-809.
32
Hill JM, Zalos G, Halcox JP, et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk[J]. N Engl J Med, 2003, 348(7):593-600.
33
Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function[J]. Nat Rev Genet, 2016, 17(1):47-62.
34
Winter J, Jung S, Keller S, et al. Many roads to maturity:microRNA biogenesis pathways and their regulation[J]. Nat Cell Biol, 2009, 11(3):228-234.
35
Wang X, Sundquist K, Elf JL, et al. Diagnostic potential of plasma microRNA signatures in patients with deep-vein thrombosis[J]. Thromb Haemost, 2016, 116(2):328-336.
36
Teruel R, Corral J, Perez-Andreu V, et al. Potential role of miRNAs in developmental haemostasis[J]. PLoS One, 2011, 6(3):e17648.doi: 10.1371/journal.pone.0017648.
37
Nourse J, Braun J, Lackner K, et al. Large-scale identification of functional microRNA targeting reveals cooperative regulation of the hemostatic system[J]. J Thromb Haemost, 2018, 16(11):2233-2245.
38
Xiong G, Jiang X, Song T. The overexpression of lncRNA H19 as a diagnostic marker for coronary artery disease[J]. Rev Assoc Med Bras (1992), 2019, 65(2):110-117.
39
Wu D, Zhou Y, Fan Y, et al. LncRNA CAIF was downregulated in end-stage cardiomyopathy and is a promising diagnostic and prognostic marker for this disease[J]. Biomarkers, 2019, 24(8):735-738.
40
Calin GA , Dumitru CD, Shimizu M, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia[J]. Proc Natl Acad Sci U S A, 2002, 99(24):15524-15529.
41
Du B, Wang J, Zang S, et al. Long non-coding RNA MALAT1 suppresses the proliferation and migration of endothelial progenitor cells in deep vein thrombosis by regulating the Wnt/beta-catenin pathway[J]. Exp Ther Med, 2020, 20(4):3138-3146.
42
Qian AM, Li WD, Kong LS, et al. Long noncoding RNA expression profile of endothelial progenitor cells from deep vein thrombosis patients identified by microarray analysis[J]. Int J Clin Exp Pathol, 2016, 9(12):12275-12286.
43
Lou ZK, Zhu JW, Li X, et al. LncRNA Sirt1-AS upregulates Sirt1 to attenuate aging related deep venous thrombosis[J]. Aging, 2021, 13(5):6918-6935.
44
Wang K, Liu F, Zhou LY, et al. The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489[J]. Circ Res, 2014, 114(9):1377-1388.
45
Zeng R, Song XJ, Liu CW, et al. LncRNA ANRIL promotes angiogenesis and thrombosis by modulating microRNA-99a and microRNA-449a in the autophagy pathway[J]. Am J Transl Res, 2019, 11(12):7441-7448.
46
Jha PK, Vijay A, Prabhakar A, et al. Transcriptome profiling reveals the endogenous sponging role of LINC00659 and UST-AS1 in high altitude induced thrombosis[J]. Thromb Haemost, 2021, 121(11):1497-1511.
47
Gu S, Li G, Zhang X, et al. Aberrant expression of long noncoding RNAs in chronic thromboembolic pulmonary hypertension[J]. Mol Med Rep, 2015, 11(4):2631-2643.
48
Yang K, Li W, Duan W, et al. Resveratrol attenuates pulmonary embolism associated cardiac injury by suppressing activation of the inflammasome via the MALAT1miR223p signaling pathway[J]. Int J Mol Med, 2019, 44(6):2311-2320.
49
孙莉莉, 李文东, 李晓强, 等. 内皮祖细胞在血管新生及相关疾病中的作用[J]. 中国普通外科杂志, 2020, 29(6):759-764.
50
Kong L, Hu N, Du X, et al. Upregulation of miR-483-3p contributes to endothelial progenitor cells dysfunction in deep vein thrombosis patients via SRF[J]. J Transl Med, 2016, 14:23. doi: 10.1186/s12967-016-0775-2.
51
Zhou DM, Sun LL, Zhu J, et al. MiR-9 promotes angiogenesis of endothelial progenitor cell to facilitate thrombi recanalization via targeting TRPM7 through PI3K/Akt/autophagy pathway[J]. J Cell Mol Med, 2020, 24(8):4624-4632.
52
Du X, Hong L, Sun L, et al. miR-21 induces endothelial progenitor cells proliferation and angiogenesis via targeting FASLG and is a potential prognostic marker in deep venous thrombosis[J]. J Transl Med, 2019, 17(1):270.doi: 10.1186/s12967-019-2015-z.
53
Wang W, Zhu X, Du X, et al. MiR-150 promotes angiogensis and proliferation of endothelial progenitor cells in deep venous thrombosis by targeting SRCIN1[J]. Microvasc Res, 2019, 123:35-41.
54
Meng Q, Wang W, Yu X, et al. Upregulation of MicroRNA-126 contributes to endothelial progenitor cell function in deep vein thrombosis via its target PIK3R2[J]. J Cell Biochem, 2015, 116(8): 1613-1623.
55
Mo J, Zhang D, Yang R. MicroRNA-195 regulates proliferation, migration, angiogenesis and autophagy of endothelial progenitor cells by targeting GABARAPL1[J]. Biosci Rep, 2016, 36(5):e00396. doi: 10.1042/BSR20160139.
56
Jin J, Wang C, Ouyang Y, et al. Elevated miR-195-5p expression in deep vein thrombosis and mechanism of action in the regulation of vascular endothelial cell physiology[J]. Exp Ther Med, 2019, 18(6): 4617-4624.
57
Jin QQ, Sun JH, Du QX, et al. Integrating microRNA and messenger RNA expression profiles in a rat model of deep vein thrombosis[J]. Int J Mol Med, 2017, 40(4):1019-1028.
58
Lu Z, Wang S, Zhu X, et al. Resveratrol induces endothelial progenitor cells angiogenesis via MiR-542-3p by targeting angiopoietin-2 and involves in recanalization of venous thrombosis[J]. Med Sci Monit, 2019, 25:7675-7683.
59
Ni HZ, Liu Z, Sun LL, et al. Metformin inhibits angiogenesis of endothelial progenitor cells via miR-221-mediated p27 expression and autophagy[J]. Future Med Chem, 2019, 11(17):2263-2272.
[1] 闫文, 谢兴文, 顾玉彪, 雷宁波, 马成, 于文霞, 高亚雄, 张磊. 微小RNA与全膝关节置换术后深静脉血栓的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(06): 842-846.
[2] 肖志满, 龚煜, 谢景凌, 刘斌伟. 上下肢关节镜手术后患者下肢深静脉血栓发生的对比研究[J]. 中华关节外科杂志(电子版), 2023, 17(05): 601-606.
[3] 邵长杰, 杜晓颖, 徐奎帅, 张靓, 纪岩磊. 住院天数影响全膝关节置换术后下肢深静脉血栓形成[J]. 中华关节外科杂志(电子版), 2023, 17(04): 588-591.
[4] 张程, 何海军, 张光熠, 熊冰朗, 田天照, 孙诗艺, 吴子轩. 抗凝剂预防膝关节镜术后血栓发生的Meta分析[J]. 中华关节外科杂志(电子版), 2023, 17(03): 340-347.
[5] 张再博, 王冰雨, 焦志凯, 檀碧波. 胃癌术后下肢深静脉血栓危险因素的Meta分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 475-480.
[6] 黄应雄, 叶子, 蒋鹏, 詹红, 姚陈, 崔冀. 急性肠系膜静脉血栓形成致透壁性肠坏死的临床危险因素分析[J]. 中华普通外科学文献(电子版), 2023, 17(06): 413-421.
[7] 莫闲, 杨闯. 肝硬化患者并发门静脉血栓危险因素的Meta分析[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 678-683.
[8] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[9] 张杰, 谢铭. 腹股沟疝患者围手术期静脉血栓栓塞的预防及治疗[J]. 中华疝和腹壁外科杂志(电子版), 2023, 17(04): 394-399.
[10] 车娟, 刘俊阳. 肱骨近端骨折围手术期深静脉血栓发生因素分析[J]. 中华肩肘外科电子杂志, 2023, 11(02): 146-149.
[11] 李飞翔, 段虎斌, 李晋虎, 吴昊, 王永红, 范益民. 急性颅脑损伤继发下肢静脉血栓的相关危险因素分析及预测模型构建[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 277-282.
[12] 宋碧萱, 郭海川, 韩子钰, 周瑞娟, 李承思, 姬晨妮. 开放式楔形胫骨高位截骨术后下肢深静脉血栓形成的危险因素分析及预测列线图的构建[J]. 中华老年骨科与康复电子杂志, 2023, 09(04): 226-232.
[13] 郑景达, 黄金旗, 张庆贤, 陈煌, 高晓杰. 小腿深静脉入路AngioJet一站式血栓清除治疗全肢型急性下肢深静脉血栓形成患者的临床研究[J]. 中华介入放射学电子杂志, 2023, 11(04): 305-309.
[14] 吴佳霖, 罗骏阳, 钟胜, 王有枝, 姜在波. 肝内小直径覆膜支架联合抽栓、溶栓治疗门静脉血栓二例[J]. 中华介入放射学电子杂志, 2023, 11(04): 377-379.
[15] 张德伟, 雷毅, 江哲宇, 王黎洲, 许国辉, 周石. 杂交手术治疗下肢深静脉血栓合并下肢急性动脉血栓一例[J]. 中华介入放射学电子杂志, 2023, 11(04): 380-384.
阅读次数
全文


摘要