切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (03) : 176 -180. doi: 10.3877/cma.j.issn.2095-1221.2022.03.007

综述

内皮祖细胞在血管损伤修复中的研究进展
李婧娴1, 韩兴龙1, 涂元媛1, 胡士军1, 于淼1, 雷伟1,()   
  1. 1. 215006 苏州,江苏省苏州大学附属第一医院心脏大血管外科;215021 苏州,江苏省苏州大学苏州医学院心血管病研究所
  • 收稿日期:2022-03-15 出版日期:2022-06-01
  • 通信作者: 雷伟
  • 基金资助:
    国家自然科学基金面上项目(81970223、82003756); 江苏省自然科学基金(BK20201409、BK20200880)

Advances in endothelial progenitor cells in vascular injury repair

Jingxian Li1, Xinglong Han1, Yuanyuan Tu1, Shijun Hu1, Miao Yu1, Wei Lei1,()   

  1. 1. Department of Cardiovascular Surgery, First Affiliated Hospital of Soochow University, Suzhou 215006, China; Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Suzhou 215021, China
  • Received:2022-03-15 Published:2022-06-01
  • Corresponding author: Wei Lei
引用本文:

李婧娴, 韩兴龙, 涂元媛, 胡士军, 于淼, 雷伟. 内皮祖细胞在血管损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 176-180.

Jingxian Li, Xinglong Han, Yuanyuan Tu, Shijun Hu, Miao Yu, Wei Lei. Advances in endothelial progenitor cells in vascular injury repair[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(03): 176-180.

血管系统主要负责向体内细胞以及组织输送氧气和营养物质以满足机体各项生理功能正常发挥,同时带走代谢废物以维系微环境的稳态;因此,健康的血管系统对人体来说至关重要。当血管内皮受到损伤时,内皮祖细胞(EPCs)可分化为内皮细胞或通过旁分泌机制促进血管生成。EPCs的功能调控十分复杂,涉及多种信号通路,深入了解其调控机制有助于更好推动临床研究和应用。目前,国内外正开展EPCs移植或药物激活内源性EPCs治疗血管损伤的临床试验。本文就EPCs促内皮损伤修复的机制、功能调控以及临床治疗应用的研究进展作一综述。

The vascular system is mainly responsible for transporting oxygen and nutrients to cells and tissues to ensure the normal development of the human body, while taking away metabolic waste to maintain the homeostasis of microenvironment. Thus, healthy vascular systems are essential to the human body. When vascular endothelium is damaged, endothelial progenitor cells (EPCs) can differentiate into endothelial cells or promote angiogenesis through paracrine mechanisms. The functional regulation of EPCs is complex, involving a variety of signaling pathways. Understanding the regulatory mechanism is helpful for the clinical research and application. At present, EPCs are also used in clinic trial for vascular injury repairment by cell transplantation or endogenous activation with drugs. Here, the mechanism of EPCs promoting endothelial injury repair, the regulation of EPCs function and the clinical application of EPCs are reviewed.

图1 内皮祖细胞在血管损伤修复中的调控机制(总结自参考文献[13,21,24,25,30]注:NICD为Notch胞内结构域;RTK为受体络氨酸激酶;PI3K为磷脂酰肌醇3-激酶;AKT为蛋白激酶B;eNOS为内皮型一氧化氮合酶;mTOR为哺乳动物雷帕霉素靶蛋白;SDF-1为基质细胞衍生因子1;CXCR4为CXC趋化因子受体4
1
Bitar MS. Diabetes impairs angiogenesis and induces endothelial cell senescence by up-regulating thrombospondin-CD47-dependent signaling[J]. Int J Mol Sci, 2019, 20(3):673. doi: 10.3390/ijms20030673.
2
Incalza MA, D'Oria R, Natalicchio A, et al. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases[J]. Vascul Pharmacol, 2018, 100:1-19.
3
Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis[J]. Science, 1997, 275(5302):964-967.
4
Yang JX, Pan YY, Wang XX, et al. Endothelial progenitor cells in age-related vascular remodeling[J]. Cell Transplant, 2018, 27(5):786-795.
5
Peters EB. Endothelial progenitor cells for the vascularization of engineered tissues[J]. Tissue Eng Part B Rev, 2018, 24(1):1-24.
6
Duan Y, Yu S, Xu P, et al. Co-immobilization of CD133 antibodies, vascular endothelial growth factors, and REDV peptide promotes capture, proliferation, and differentiation of endothelial progenitor cells[J]. Acta Biomater, 2019, 96:137-148.
7
Cai H, Ma Y, Jiang L, et al. Hypoxia response element-regulated MMP-9 promotes neurological recovery via glial scar degradation and angiogenesis in delayed stroke[J]. Mol Ther, 2017, 25(6):1448-1459.
8
Chetty SC, Rost MS, Enriquez JR, et al. Vegf signaling promotes vascular endothelial differentiation by modulating etv2 expression[J]. Dev Biol, 2017, 424(2):147-161.
9
Xie L, Song X, Lin H, et al. Aberrant activation of CYR61 enhancers in colorectal cancer development[J]. J ExpClin Cancer Res, 2019, 38(1):213.doi: 10.1186/s13046-019-1217-9.
10
Ling S, Ni RZ, Yuan Y, et al. Natural compound bavachalcone promotes the differentiation of endothelial progenitor cells and neovascularization through the RORα-erythropoietin-AMPK axis[J]. Oncotarget, 2017, 8(49):86188-86205.
11
Kutikhin AG, Sinitsky MY, Yuzhalin AE, et al. Shear stress: an essential driver of endothelial progenitor cells[J]. J Mol Cell Cardiol, 2018, 118:46-69.
12
Wong L, Kumar A, Gabela-Zuniga B, et al. Substrate stiffness directs diverging vascular fates[J]. Acta Biomater, 2019, 96:321-329.
13
Yan F, Liu X, Ding H, et al. Paracrine mechanisms of endothelial progenitor cells in vascular repair[J]. Acta Histochem, 2022, 124(1):151833. doi: 10.1016/j.acthis.2021.151833.
14
Del Papa N, Pignataro F. The role of endothelial progenitors in the repair of vascular damage in systemic sclerosis[J]. Front Immunol, 2018, 9:1383.doi: 10.3389/fimmu.2018.01383.
15
Maki T, Morancho A, Martinez-San Segundo P, et al. Endothelial progenitor cell secretome and oligovascular repair in a mouse model of prolonged cerebral hypoperfusion[J]. Stroke, 2018, 49(4):1003-1010.
16
Bai S, Yin Q, Dong T, et al. Endothelial progenitor cell-derived exosomes ameliorate endothelial dysfunction in a mouse model of diabetes[J]. Biomed Pharmacother, 2020, 131:110756. doi: 10.1016/j.biopha.2020.110756.
17
Xu X, Jiao X, Song N, et al. Role of miR21 on vascular endothelial cells in the protective effect of renal delayed ischemic preconditioning[J]. Mol Med Rep, 2017, 16(3):2627-2635.
18
Hu H, Wang B, Jiang C, et al. Endothelial progenitor cell-derived exosomes facilitate vascular endothelial cell repair through shuttling miR-21-5p to modulate thrombospondin-1 expression[J]. Clin Sci (Lond), 2019, 133(14):1629-1644.
19
Ma X, Wang J, Li J, et al. Loading miR-210 in endothelial progenitor cells derived exosomes boosts their beneficial effects on hypoxia/reoxygeneation-injured human endothelial cells via protecting mitochondrial function[J]. Cell Physiol Biochem, 2018, 46(2):664-675.
20
Ma Y, Hu Z, Yang D, et al. Extracorporeal cardiac shock waves therapy promotes function of endothelial progenitor cells through PI3K/AKT and MEK/ERK signaling pathways[J]. Am J Transl Res, 2020, 12(7):3895-3905.
21
Wang M, Yang D, Hu Z, et al. Extracorporeal cardiac shock waves therapy improves the function of endothelial progenitor cells after hypoxia injury via activating PI3K/Akt/eNOS signal pathway[J]. Front Cardiovasc Med, 2021, 8:747497. doi: 10.3389/fcvm.2021.747497.
22
Zhao Z, Ma X, Ma J, et al. Naringin enhances endothelial progenitor cell (EPC) proliferation and tube formation capacity through the CXCL12/CXCR4/PI3K/AKT signaling pathway[J]. Chem Biol Interact, 2018, 286:45-51.
23
Wei S, Huang J, Li Y, et al. Novel zinc finger transcription factor ZFP580 promotes differentiation of bone marrow-derived endothelial progenitor cells into endothelial cells via eNOS/NO pathway[J]. J Mol Cell Cardiol, 2015, 87:17-26.
24
Li WD, Zhou DM, Sun LL, et al. LncRNAWTAPP1 promotes migration and angiogenesis of endothelial progenitor cells via MMP1 through microRNA3120 and AKT/PI3K/autophagy pathways[J]. Stem Cells, 2018, 36(12):1863-1874.
25
Shen L, Gao Y, Qian J, et al. The role of SDF-1α/Rac pathway in the regulation of endothelial progenitor cell polarity; homing and expression of Rac1, Rac2 during endothelial repair[J]. Mol Cell Biochem, 2012 , 365(1-2):1-7.
26
Tsai CN, Yu SC, Lee CW, et al. SOX4 activates CXCL12 in hepatocellular carcinoma cells to modulate endothelial cell migration and angiogenesis in vivo[J]. Oncogene, 2020, 39(24):4695-4710.
27
Kong L, Zuo R, Wang M, et al. Silencing microRNA-137-3p, which targets RUNX2 and CXCL12 prevents steroid-induced osteonecrosis of the femoral head by facilitating osteogenesis and angiogenesis[J]. Int J Biol Sci, 2020, 16(4):655-670.
28
Yuan Z, Kang L, Wang Z, et al. 17β-estradiol promotes recovery after myocardial infarction by enhancing homing and angiogenic capacity of bone marrow-derived endothelial progenitor cells through ERα-SDF-1/CXCR4 crosstalking[J]. Acta Biochim Biophys Sin (Shanghai), 2018, 50(12):1247-1256.
29
Liu ZY, Yang QX, Cao Y, et al. CXCR4 protects bone marrow-derived endothelial progenitor cells against hypoxia through the PI3K/AKT signaling pathway[J]. Exp Ther Med, 2021, 22(5):1200. doi: 10.3892/etm.2021.10634.
30
Luo Z, Shang X, Zhang H, et al. Notch signaling in osteogenesis, osteoclastogenesis, and angiogenesis[J]. Am J Pathol, 2019, 189(8): 1495-1500.
31
Wang Q, Liu L, Li Y, et al. Hypoxic preconditioning enhances biological function of endothelial progenitor cells via Notch-Jagged1 signaling pathway[J]. Med Sci Monit, 2017, 23:4665-4667.
32
Son Y, Kwon SM, Cho JY. CD276 (B7-H3) maintains proliferation and regulates differentiation in angiogenic function in late endothelial progenitor cells[J]. Stem Cells, 2019, 37(3):382-394.
33
Fan J, Xu W, Nan S, et al. MicroRNA-384-5p promotes endothelial progenitor cell proliferation and angiogenesis in cerebral ischemic stroke through the delta-likeligand4-mediated notch signaling pathway[J]. Cerebrovasc Dis, 2020, 49(1):39-54.
34
Kong Z, Wang Y, Zhang Y, et al. MicroRNA-126 promotes endothelial progenitor cell proliferation and migration ability via the Notch pathway[J]. Cardiovasc Diagn Ther, 2020, 10(3):490-499.
35
Guo YJ, Pan WW, Liu SB, et al. ERK/MAPK signalling pathway and tumorigenesis[J]. Exp Ther Med, 2020, 19(3):1997-2007.
36
Liu F, Yang X, Geng M, et al. Targeting ERK, an achilles' heel of the MAPK pathway, in cancer therapy[J]. Acta Pharm Sin B, 2018, 8(4):552-562.
37
Gui Y, Chen J, Hu J, et al. Soluble epoxide hydrolase inhibitors improve angiogenic function of endothelial progenitor cells via ERK/p38-mediated miR-126 upregulation in myocardial infarction mice after exercise[J]. Exp Cell Res, 2020, 397(2):112360. doi: 10.1016/j.yexcr.2020.112360.
38
Deng Y, Zhou Z, Lin S, et al. METTL1 limits differentiation and functioning of EPCs derived from human-induced pluripotent stem cells through a MAPK/ERK pathway[J]. Biochem Biophys Res Commun, 2020, 527(3):791-798.
39
Foulquier S, Daskalopoulos EP, Lluri G, et al. Wntsignaling in cardiac and vascular disease[J]. Pharmacol Rev, 2018, 70(1):68-141.
40
Yan J, Wang WB, Fan YJ, et al. Cyclic stretch induces vascular smooth muscle cells to secrete connective tissue growth factor and promote endothelial progenitor cell differentiation and angiogenesis[J]. Front Cell Dev Biol, 2020, 8:606989.doi: 10.3389/fcell.2020.606989.
41
Shao Y, Chen J, Freeman W, et al. Canonical Wnt signaling promotes neovascularization through determination of endothelial progenitor cell fate via metabolic profile regulation[J]. Stem Cells, 2019, 37(10):1331-1343.
42
Kaushik K, Das A. Endothelial progenitor cell therapy for chronic wound tissue regeneration[J]. Cytotherapy, 2019, 21(11):1137-1150.
43
Bianconi V, Sahebkar A, Kovanen P, et al. Endothelial and cardiac progenitor cells for cardiovascular repair:a controversial paradigm in cell therapy[J]. Pharmacol Ther, 2018, 181:156-168.
44
Quiroz HJ, Valencia SF, Liu ZJ, et al. Increasing the therapeutic potential of stem cell therapies for critical limb ischemia[J]. HSOA J Stem Cells Res Dev Ther, 2020, 6(1):024. doi: 10.24966/srdt-2060/100024.
45
D'Avola D, Fernández-Ruiz V, Carmona-Torre F, et al. Phase 1-2 pilot clinical trial in patients with decompensated liver cirrhosis treated with bone marrow-derived endothelial progenitor cells[J]. Transl Res, 2017, 188:80-91.e2.
46
Lee SH, Ra JC, Oh HJ, et al. Clinical assessment of intravenous endothelial progenitor cell transplantation in dogs[J]. Cell Transplant, 2019, 28(7):943-954.
47
Edwards N, Langford-Smith AWW, Wilkinson FL, et al. Endothelial progenitor cells: new targets for therapeutics for inflammatory conditions with high cardiovascular risk[J]. Front Med (Lausanne), 2018, 5:200. doi: 10.3389/fmed.2018.00200.
48
Morrone D, Picoi MEL, Felice F, et al. Endothelial progenitor cells: an appraisal of relevant data from bench to bedside[J]. Int J Mol Sci, 2021, 22(23):12874. doi: 10.3390/ijms222312874.
49
Qadura M, Terenzi DC, Verma S, et al. Concise review: cell therapy for critical limb ischemia: an integrated review of preclinical and clinical studies[J]. Stem Cells, 2018, 36(2):161-171.
[1] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[2] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[3] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[4] 尹娟, 杨兴, 李平, 徐旻馨, 鲍玉, 张志鹏, 薛慧. 低强度脉冲式超声波在脂多糖诱导的RAW264.7巨噬细胞分化中的抗炎和抗氧化作用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(01): 26-36.
[5] 刘娜, 赵然然. 支气管哮喘微量元素水平与免疫功能的相关性分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(01): 74-76.
[6] 罗丽芳, 刘哲夫, 董兵, 刘晓玲, 丘雨旻, 周喆, 何江, 夏文豪. 达格列净改善高糖诱导的人脐静脉内皮细胞功能的机制研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(01): 10-18.
[7] 洪权. 从血管内皮探讨糖尿病肾病的进展机制[J]. 中华肾病研究电子杂志, 2023, 12(01): 60-60.
[8] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[9] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
[10] 刘卓, 段虎斌. 生物电相关疗法在神经损伤修复中的应用进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 257-260.
[11] 王洁琼, 王慧霞, 赵慧颖, 安友仲. 血管紧张素转换酶2对人肺微血管内皮细胞炎性损伤的调控作用[J]. 中华重症医学电子杂志, 2023, 09(01): 78-83.
[12] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[13] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[14] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[15] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
阅读次数
全文


摘要