切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (03) : 167 -175. doi: 10.3877/cma.j.issn.2095-1221.2022.03.006

综述

人诱导多能干细胞及其在血管相关疾病模型中的应用
胡敏洁1, 王思贤1, 王永煜1,()   
  1. 1. 325035 温州,浙江省温州医科大学基础医学院
  • 收稿日期:2022-03-15 出版日期:2022-06-01
  • 通信作者: 王永煜
  • 基金资助:
    国家自然科学基金(82070487,81670454); 浙江省自然科学基金(LY21C120003)

Human induced pluripotent stem cell and its applications in vascular disease modeling

Minjie Hu1, Sixian Wang1, Yongyu Wang1,()   

  1. 1. College of Basic Medical Sciences, Wenzhou Medical University, Wenzhou 325035, China
  • Received:2022-03-15 Published:2022-06-01
  • Corresponding author: Yongyu Wang
引用本文:

胡敏洁, 王思贤, 王永煜. 人诱导多能干细胞及其在血管相关疾病模型中的应用[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 167-175.

Minjie Hu, Sixian Wang, Yongyu Wang. Human induced pluripotent stem cell and its applications in vascular disease modeling[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(03): 167-175.

诱导多能干细胞(iPSCs)是由体细胞重编程获得的一种与胚胎干细胞类似能够无限自我更新和分化成体内各种细胞类型的多能干细胞。iPSCs现已广泛应用于人类疾病的发病机制研究、治疗药物研发及再生医学等领域。血管疾病具有较高的发病率和死亡率,其发病机制常与血管平滑肌细胞(VSMCs)和内皮细胞(ECs)功能障碍有关。建立血管疾病特异性iPSCs并将其定向分化为VSMCs和ECs等,可作为研究血管疾病发病机制或进行药物筛选的重要体外细胞模型。此外,3D培养和其他技术的发展应用还可从3D水平模拟体内环境将iPSCs应用于疾病模型构建和发病机制研究。本综述旨在介绍血管疾病特异性iPSCs的获取、iPSCs定向诱导分化为SMCs和ECs的方法及其在各种血管疾病发病机制研究中的应用与挑战。

Induced pluripotent stem cells (iPSCs) are reprogrammed from somatic cells, which is similar to embryonic stem cells with the capable of infinite self-renewal and differentiation into various types of cells. The iPSCs have been widely used in the pathogenesis of human disease modeling, drug development and regenerative medicine. Vascular diseases with high morbidity and mortality are often associated with the dysfunction of vascular smooth muscle cells (VSMCs) and endothelial cells (ECs) . Establishment of patient-specific iPSCs and the derived-SMCs or ECs can provide an important cellular model for studying the pathogenesis of vascular diseases, as well as drug screening. In addition, the development and application of 3-Dimensions (3D) culture and other technologies can also simulate to generate the 3D constructs, such as organoid, organ on chip, and disease modeling. The purpose of this review is to introduce the generation of iPSCs, the differentiation methods of SMCs and ECs from iPSCs, as well as their applications and challenges in the pathogenesis of the various vascular diseases.

图1 iPSC重编程、定向分化为SMCs和ECs及其在各种血管相关疾病模型中的应用注:OCT4SOX2NANOGKLF4为重编程关键转录因子;CRISPR为成簇的规律间隔的短回文重复序列;iPSCs为诱导多能干细胞;2D为二维;3D为三维;iPSC为诱导多能干细胞;SMCs为平滑肌细胞;ECs为内皮细胞
表1 iPSCs诱导的SMCs在血管疾病模型中的应用
疾病 病变细胞 特征 表型 突变基因 参考文献
HGPS SMCs 血管早衰、动脉粥样硬化、中风 VSMCs丢失 LMNA基因突变 Pitrez等[74];Liu等[34]
MFS SMCs 结缔组织疾病,多个器官出现病理,胸主动脉受影响最为明显 FBN1沉积;ECM降解;收缩和凋亡缺陷 15q21.1 c.6388G > Ap.E2130K Li等[80]
c.4082G > A Klein等[81]
外显子21 c.2638G> A;外显子30c.3725G > A Granata等[25]
PRKG1中的c.530G> A突变(p.Arg177Gln Shalhub等[82]
FBN1 c.2939G > A Qin等[4]
FBN1 c.6734G > A Pan等[83]
FBN1c.2613A > C,(p.Leu871Phe)和c.684_736 + 4del Ma等[84]
BS - 先天性蛛网膜炎、漏斗胸、脊柱侧凸、TAD FBN2突变 FBN2基因c.728 T > C Liu等[85]
WBS SMCs 主动脉发育不良和认知障碍 对血管活性激动剂,卡巴胆碱和内皮素-1的反应降低;血管形成受损;钙通量降低 7q11.23半合子缺失 Ghaffari等[86];Kinnear等[30]
SVAS SMCs 血管狭窄 VSMCs异常增殖 ELN基因突变 Kinnear等[24]
CADASIL SMCs 遗传性脑血管疾病 细胞骨架解体;细胞过度增殖 NOTCH3基因突变 Ling等[5]
LDS SMCs 多发性骨折,腭裂,广泛的动脉瘤和动脉弯曲 SMCs收缩功能减弱,增殖能力增强;ECM形成破坏 TGFBR1A230T突变;TGFBR1外显子4p.M253I; c.759G > A Zhou等[11];Pongpamorn等[87]
TGFBR2突变 Hu等[88]
TAA/TAD SMCs 进行性主动脉根部扩张、夹层、破裂 VSMCs收缩性减弱 SMAD3突变 Gong等[89]
COL4A2突变 Jin等[90]
NOTCH1缺乏 Abudupataer等[75]
CAD SMCs 血管钙化 SMCs增殖和迁移能力增加 9p21.3基因座 Lo Sardo等[7];Trillhaase等[35]
- 原因不明的冠状动脉疾病,肌纤维发育不良 - PHACTR1/EDN1基因有关 Mishra等[91]
BAV SMCs;ECs 三尖瓣的两小叶异常融合的主动脉瓣缺陷性疾病,常与TAA/TAD相关 SMCs收缩减弱,线粒体功能障碍,EC间质转化 NOTCH1基因突变 Jiao等[32,92]
ROBO4基因突变 Dong等[93]
糖尿病 SMCs;ECs 血糖升高,心血管疾病,微血管病变,糖尿病足 SMCs脂质代谢异常,引起动脉粥样硬化 芳基乙酰胺脱乙酰酶表达发生改变 Toyohara等[36]
异常血管生成 - Chan等[94]
伤口难以愈合 - Gorecka等[95]
MMD SMCs;ECs 闭塞性脑血管疾病 大脑颈内动脉内膜增厚 - Tokairin等[37]
RNF213 R4810k多态性 Hitomi等[96]
表2 iPSCs诱导的ECs在血管疾病模型中的应用
1
Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1):68.doi: 10.1186/s13287-019-1165-5.
2
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
3
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5):861-872.
4
Qin Z, Sun L, Sun X, et al. Reprogramming of a human induced pluripotent stem cell line from a Marfan syndrome patient harboring a heterozygous mutation of c.2939G > A in FBN1 gene[J]. Stem Cell Res, 2021, 51:102163.doi: 10.1016/j.scr.2021.102163.
5
Ling C, Liu Z, Song M, et al. Modeling CADASIL vascular pathologies with patient-derived induced pluripotent stem cells[J]. Protein Cell, 2019, 10(4):249-271.
6
Bang JS, Choi NY, Lee M, et al. Optimization of episomal reprogramming for generation of human induced pluripotent stem cells from fibroblasts[J]. Anim Cells Syst (Seoul), 2018, 22(2):132-139.
7
Lo Sardo V, Chubukov P, Ferguson W, et al. Unveiling the role of the most impactful cardiovascular risk locus through haplotype editing[J]. Cell, 2018, 175(7):1796-810. e20.
8
Acun A, Zorlutuna P. CRISPR/Cas9 edited hiPSC-based vascular tissues to model aging and disease-dependent impairment[J]. Tissue Eng Part A, 2019, 25(9-10):759-772.
9
Malankhanova TB, Malakhova AA, Medvedev SP, et al. Modern genome editing technologies in Huntington's disease research[J]. J Huntingtons Dis, 2017, 6(1):19-31.
10
Lee S, Kim JE, Johnson BA, et al. Direct reprogramming into endothelial cells: a new source for vascular regeneration[J]. Regen Med, 2017, 12(4):317-320.
11
Zhou D, Feng H, Yang Y, et al. hiPSC modeling of lineage-specific smooth muscle cell defects caused by TGFBR1A230T variant, and its therapeutic implications for Loeys-Dietz syndrome[J]. Circulation, 2021, 144(14):1145-1159.
12
Hu J, Wang Y, Jiao J, et al. Patient-specific cardiovascular progenitor cells derived from integration-free induced pluripotent stem cells for vascular tissue regeneration[J]. Biomaterials, 2015, 73:51-59.
13
Dash BC, Levi K, Schwan J, et al. Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells[J]. Stem Cell Reports, 2016, 7(1):19-28.
14
Ji H, Atchison L, Chen Z, et al. Transdifferentiation of human endothelial progenitors into smooth muscle cells[J]. Biomaterials, 2016, 85:180-194.
15
Hirai H, Yang B, Garcia-Barrio MT, et al. Direct reprogramming of fibroblasts into smooth muscle-like cells with defined transcription factors-brief report[J]. Arterioscler Thromb Vasc Biol, 2018, 38(9):2191-2197.
16
Cao N, Liang H, Huang J, et al. Highly efficient induction and long-term maintenance of multipotent cardiovascular progenitors from human pluripotent stem cells under defined conditions[J]. Cell Res, 2013, 23(9):1119-1132.
17
Klein D. iPSCs-based generation of vascular cells:reprogramming approaches and applications[J]. Cell Mol Life Sci, 2018, 75(8):1411-1433.
18
Wang ZZ, Au P, Chen T, et al. Endothelial cells derived from human embryonic stem cells form durable blood vessels in vivo[J]. Nat Biotechnol, 2007, 25(3):317-318.
19
Ginsberg M, James D, Ding BS, et al. Efficient direct reprogramming of mature amniotic cells into endothelial cells by ETS factors and TGFbeta suppression[J]. Cell, 2012, 151(3):559-575.
20
Morita R, Suzuki M, Kasahara H, et al. ETS transcription factor ETV2 directly converts human fibroblasts into functional endothelial cells[J]. Proc Natl Acad Sci U S A, 2015, 112(1):160-165.
21
Pugsley MK, Tabrizchi R. The vascular system. An overview of structure and function[J]. J Pharmacol Toxicol Methods, 2000, 44(2):333-340.
22
Pärsson H, Jönsson BA, Norgren L, et al. The effect of dextran 40 and Dazmegrel on early platelet deposition onto vascular grafts[J]. Vasa, 1990, 19(3):242-246.
23
Li G, Wang M, Caulk AW, et al. Chronic mTOR activation induces a degradative smooth muscle cell phenotype[J]. J Clin Invest, 2020, 130(3):1233-1251.
24
Kinnear C, Agrawal R, Loo C, et al. Everolimus rescues the phenotype of elastin insufficiency in patient induced pluripotent stem cell-derived vascular smooth muscle cells[J]. Arterioscler Thromb Vasc Biol, 2020, 40(5):1325-1339.
25
Granata A, Serrano F, Bernard WG, et al. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death[J]. Nat Genet, 2017, 49(1):97-109.
26
Milewicz DM, Braverman AC, De Backer J, et al. Marfan syndrome[J]. Nat Rev Dis Primers, 2021, 7(1):64.doi: 10.1038/s41572-021-00298-7.
27
Granata A, Serrano F, Bernard WG, et al. An iPSC-derived vascular model of Marfan syndrome identifies key mediators of smooth muscle cell death[J]. Nat Genet, 2017, 49(1):97-109.
28
Park JW, Yan L, Stoddard C, et al. Recapitulating and correcting marfan syndrome in a cellular model[J]. Int J Biol Sci, 2017, 13(5):588-603.
29
Meester JAN, Verstraeten A, Schepers D, et al. Differences in manifestations of Marfan syndrome, Ehlers-Danlos syndrome, and Loeys-Dietz syndrome[J]. Ann Cardiothorac Surg, 2017, 6(6):582-594.
30
Kinnear C, Chang WY, Khattak S, et al. Modeling and rescue of the vascular phenotype of Williams-Beuren syndrome in patient induced pluripotent stem cells[J]. Stem Cells Transl Med, 2013, 2(1):2-15.
31
Yang B, Zhou W, Jiao J, et al. Protein-altering and regulatory genetic variants near GATA4 implicated in bicuspid aortic valve[J]. Nat Commun, 2017, 8:15481.doi: 10.1038/ncomms15481.
32
Jiao J, Xiong W, Wang L, et al. Differentiation defect in neural crest-derived smooth muscle cells in patients with aortopathy associated with bicuspid aortic valves[J]. EBioMedicine, 2016, 10:282-290.
33
Varga R, Eriksson M, Erdos MR, et al. Progressive vascular smooth muscle cell defects in a mouse model of Hutchinson-Gilford progeria syndrome[J]. Proc Natl Acad Sci U S A, 2006, 103(9):3250-3255.
34
Liu GH, Barkho BZ, Ruiz S, et al. Recapitulation of premature ageing with iPSCs from Hutchinson-Gilford progeria syndrome[J]. Nature, 2011, 472(7342):221-225.
35
Trillhaase A, Schmidt B, Märtens M, et al. The CAD risk locus 9p21 increases the risk of vascular calcification in an iPSC-derived VSMC model[J]. Stem Cell Res Ther, 2021, 12(1):166.doi: 10.1186/s13287-021-02229-5.
36
Toyohara T, Roudnicky F, Florido MHC, et al. Patient hiPSCs identify vascular smooth muscle arylacetamide deacetylase as protective against atherosclerosis[J]. Cell Stem Cell, 2020, 27(1):147-57. e7.
37
Tokairin K, Hamauchi S, Ito M, et al. Vascular smooth muscle cell derived from IPS cell of moyamoya disease - comparative characterization with endothelial cell transcriptome[J]. J Stroke Cerebrovasc Dis, 2020, 29(12):105305.doi: 10.1016/j.jstrokecerebrovasdis.2020.105305.
38
Hamauchi S, Shichinohe H, Uchino H, et al. Cellular functions and gene and protein expression profiles in endothelial cells derived from moyamoya disease-specific iPS cells[J]. PloS one, 2016, 11(9):e0163561.doi: 10.1371/journal.pone.0163561.
39
Lim RG, Quan C, Reyes-Ortiz AM, et al. Huntington's disease iPSC-derived brain microvascular endothelial cells reveal WNT-mediated angiogenic and blood-brain barrier deficits[J]. Cell Rep, 2017, 19(7):1365-1377.
40
Sa S, Gu M, Chappell J, et al. Induced pluripotent stem cell model of pulmonary arterial hypertension reveals novel gene expression and patient specificity[J]. Am J Respir Crit Care Med, 2017, 195(7):930-941.
41
Ong SB, Lee WH, Shao NY, et al. Calpain inhibition restores autophagy and prevents mitochondrial fragmentation in a human iPSC model of diabetic endotheliopathy[J]. Stem Cell Reports,2019, 12(3):597-610.
42
Gu M, Shao NY, Sa S, et al. Patient-specific iPSC-derived endothelial cells uncover pathways that protect against pulmonary hypertension in BMPR2 mutation carriers[J]. Cell stem cell, 2017, 20(4):490-504.e5.
43
Mojiri A, Walther BK, Jiang C, et al. Telomerase therapy reverses vascular senescence and extends lifespan in progeria mice[J]. Eur Heart J, 2021, 42(42):4352-4369.
44
Li Y, Terstappen GC, Zhang W. Differentiation of human induced pluripotent stem cells (hiPSC) into endothelial-type cells and establishment of an in vitro blood-brain barrier model[J]. Methods Mol Biol, 2021.doi: 10.1007/7651_2021_363. Online ahead of print.
45
Li Y, Xia Y, Zhu H, et al. Investigation of neurodevelopmental deficits of 22 q11.2 deletion syndrome with a patient-iPSC-derived blood-brain barrier model[J]. Cells, 2021, 10(10):2576. doi: 10.3390/cells10102576.
46
Park TE, Mustafaoglu N, Herland A, et al. Hypoxia-enhanced blood-brain barrier chip recapitulates human barrier function and shuttling of drugs and antibodies[J]. Nat Commun, 2019, 10(1):2621.doi: 10.1038/s41467-019-10588-0.
47
Zhang J, Tecson KM, McCullough PA. Endothelial dysfunction contributes to COVID-19-associated vascular inflammation and coagulopathy[J]. Rev Cardiovasc Med, 2020, 21(3):315-319.
48
Ma Z, Li X, Fan R L Y, et al. A human pluripotent stem cell-based model of SARS-CoV-2 infection reveals an ACE2-independent inflammatory activation of vascular endothelial cells through TLR4[J]. Stem Cell Reports, 2022, 17(3):538-555.
49
Liu T, Luo S, Libby P, et al. Cathepsin L-selective inhibitors:A potentially promising treatment for COVID-19 patients[J]. Pharmacol Ther, 2020, 213:107587.doi: 10.1016/j.pharmthera.2020.107587.
50
Yang L, Han Y, Nilsson-Payant BE, et al. A human pluripotent stem cell-based platform to study SARS-CoV-2 tropism and model virus infection in human cells and organoids[J]. Cell Stem Cell, 2020, 27(1):125-36. e7.
51
Kim K W, Shin Y J, Kim B M, et al. Modeling of endothelial cell dysfunction using human induced pluripotent stem cells derived from patients with end-stage renal disease[J]. Kidney Res Clin Pract, 2021, 40(4):698-711.
52
Hinson JT, Chopra A, Lowe A, et al. Integrative analysis of PRKAG2 cardiomyopathy iPS and microtissue models identifies AMPK as a regulator of metabolism, survival, and fibrosis[J]. Cell Rep, 2016, 17(12):3292-3304.
53
Hinson JT, Chopra A, Nafissi N, et al. HEART DISEASE. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy[J]. Science, 2015, 349(6251):982-986.
54
Yadid M, Lind JU, Ardoña HAM, et al. Endothelial extracellular vesicles contain protective proteins and rescue ischemia-reperfusion injury in a human heart-on-chip[J]. Sci Transl Med, 2020, 12(565):eaax8005. doi: 10.1126/scitranslmed.aax8005.
55
Liu C, Oikonomopoulos A, Sayed N, et al. Modeling human diseases with induced pluripotent stem cells:from 2D to 3D and beyond[J]. Development, 2018, 145(5):dev156166. doi: 10.1242/dev.156166.
56
Takebe T, Wells JM. Organoids by design[J]. Science, 2019, 364(6444):956-959.
57
Ingram PN, Hind LE, Jiminez-Torres JA, et al. An accessible organotypic microvessel model using iPSC-derived endothelium[J]. Adv Healthc Mater, 2018, 7(2):10.1002/adhm.201700497. doi: 10.1002/adhm.201700497.
58
Wimmer RA, Leopoldi A, Aichinger M, et al. Human blood vessel organoids as a model of diabetic vasculopathy[J]. Nature, 2019, 565(7740):505-510.
59
Zhang S, Wan Z, Kamm RD. Vascularized organoids on a chip:strategies for engineering organoids with functional vasculature[J]. Lab Chip, 2021, 21(3):473-488.
60
Mansour AA, Gonçalves JT, Bloyd CW, et al. An in vivo model of functional and vascularized human brain organoids[J]. Nat Biotechnol, 2018, 36(5):432-441.
61
Pezzoli D, Di Paolo J, Kumra H, et al. Fibronectin promotes elastin deposition, elasticity and mechanical strength in cellularised collagen-based scaffolds[J]. Biomaterials, 2018, 180:130-142.
62
Dash BC, Levi K, Schwan J, et al. Tissue-engineered vascular rings from human iPSC-derived smooth muscle cells[J]. Stem Cell Reports, 2016, 7(1):19-28.
63
Ellis MW, Luo J, Qyang Y. Modeling elastin-associated vasculopathy with patient induced pluripotent stem cells and tissue engineering[J]. Cell Mol Life Sci, 2019, 76(5):893-901.
64
Atchison L, Zhang H, Cao K, et al. A tissue engineered blood vessel model of hutchinson-gilford progeria syndrome using human iPSC-derived smooth muscle cells[J]. Sci Rep, 2017, 7(1):8168.doi: 10.1038/s41598-017-08632-4.
65
Atchison L, Abutaleb NO, Snyder-Mounts E, et al. iPSC-derived endothelial cells affect vascular function in a tissue-engineered blood vessel model of hutchinson-gilford progeria syndrome[J]. Stem Cell Reports, 2020, 14(2):325-337.
66
Campisi M, Shin Y, Osaki T, et al. 3D self-organized microvascular model of the human blood-brain barrier with endothelial cells, pericytes and astrocytes[J]. Biomaterials, 2018, 180:117-129.
67
Vatine GD, Barrile R, Workman MJ, et al. Human iPSC-derived blood-brain barrier chips enable disease modeling and personalized medicine applications[J]. Cell stem cell, 2019, 24(6):995-1005.e6.
68
Takebe T, Zhang B, Radisic M. Synergistic engineering:organoids meet organs-on-a-chip[J]. Cell stem cell, 2017, 21(3):297-300.
69
Sances S, Ho R, Vatine G, et al. Human iPSC-derived endothelial cells and microengineered organ-chip enhance neuronal development[J]. Stem Cell Reports, 2018, 10(4):1222-1236.
70
Vila Cuenca M, Cochrane A, van den Hil FE, et al. Engineered 3D vessel-on-chip using hiPSC-derived endothelial- and vascular smooth muscle cells[J]. Stem Cell Reports, 2021, 16(9):2159-2168.
71
Ragelle H, Goncalves A, Kustermann S, et al. Organ-on-a-chip technologies for advanced blood-retinal barrier models[J]. J Ocul Pharmacol Ther, 2020, 36(1):30-41.
72
Tian P, Lennon R. The myriad possibility of kidney organoids[J]. Curr Opin Nephrol Hypertens, 2019, 28(3):211-218.
73
Roye Y, Bhattacharya R, Mou X, et al. A personalized glomerulus chip engineered from stem cell-derived epithelium and vascular endothelium[J]. Micromachines (Basel), 2021, 12(8):967. doi: 10.3390/mi12080967.
74
Pitrez PR, Estronca L, Monteiro LM, et al. Vulnerability of progeroid smooth muscle cells to biomechanical forces is mediated by MMP13[J]. Nat Commun, 2020, 11(1):4110.doi: 10.1038/s41467-020-17901-2.
75
Abudupataer M, Zhu S, Yan S, et al. Aorta smooth muscle-on-a-chip reveals impaired mitochondrial dynamics as a therapeutic target for aortic aneurysm in bicuspid aortic valve disease[J]. Elife, 2021, 10:e69310. doi: 10.7554/eLife.69310.
76
Mandrycky C, Wang Z, Kim K, et al. 3D bioprinting for engineering complex tissues[J]. Biotechnol Adv, 2016, 34(4):422-434.
77
Itoh M, Mukae Y, Kitsuka T, et al. Development of an immunodeficient pig model allowing long-term accommodation of artificial human vascular tubes[J]. Nat Commun, 2019, 10(1):2244.doi: 10.1038/s41467-019-10107-1.
78
Kawai Y, Tohyama S, Arai K, et al. Scaffold-free tubular engineered heart tissue from human induced pluripotent stem cells using Bio-3D printing technology in vivo[J]. Front Cardiovasc Med, 2021, 8:806215.doi: 10.3389/fcvm.2021.806215.
79
Ji S, Guvendiren M. Complex 3D bioprinting methods[J]. APL Bioeng, 2021, 5(1):011508.doi: 10.1063/5.0034901.
80
Li X, Dong T, Li Y, et al. Generation of a human iPSC line from a patient with Marfan syndrome caused by mutation in FBN1[J]. Stem Cell Res, 2019, 36:101414.doi: 10.1016/j.scr.2019.101414.
81
Klein S, Dvornik JL, Yarrabothula AR, et al. A Marfan syndrome human induced pluripotent stem cell line with a heterozygous FBN1 c.4082G>A mutation, ISMMSi002-B, for disease modeling[J]. Stem Cell Res, 2017, 23:73-76.
82
Shalhub S, Regalado ES, Guo DC, et al. The natural history of type B aortic dissection in patients with PRKG1 mutation c.530G>A (p.Arg177Gln)[J]. J Vasc Surg, 2019, 70(3):718-723.
83
Pan Z, Wang H, Wang H, et al. Generation of an induced pluripotent stem cell line from a patient carrying FBN1/c.6734 G > A mutation[J]. Stem Cell Res, 2021, 55:102459.doi: 10.1016/j.scr.2021.102459.
84
Ma B, Luo M, Yang H, et al. Generation of a human induced pluripotent stem cell line (NCCDFWi001-A) from a Marfan syndrome patient carrying two FBN1 variants (c.2613A > C and c.684_736 + 4del)[J]. Stem Cell Res, 2020, 42:101690.doi: 10.1016/j.scr.2019.101690.
85
Liu H, Tsui Y, Wang J, et al. Establishment of a Beals syndrome patient-derived human induced pluripotent stem cell line HELPi001-A[J]. Stem Cell Res, 2019, 40:101535.doi: 10.1016/j.scr.2019.101535.
86
Ghaffari M, Tahmasebi Birgani M, Kariminejad R, et al. Genotype-phenotype correlation and the size of microdeletion or microduplication of 7q11.23 region in patients with Williams-Beuren syndrome[J]. Ann Hum Genet, 2018, 82(6):469-476.
87
Pongpamorn P, Dahlmann J, Haase A, et al. Generation of three induced pluripotent stem cell lines (MHHi012-A, MHHi013-A, MHHi014-A) from a family with Loeys-Dietz syndrome carrying a heterozygous p.M253I (c.759G>A) mutation in the TGFBR1 gene[J]. Stem Cell Res, 2020, 43:101707.doi: 10.1016/j.scr.2020.101707.
88
Hu K, Li J, Zhu K, et al. Generation of an induced pluripotent stem cell line from a Loeys-Dietz syndrome patient with transforming growth factor-beta receptor-2 gene mutation[J]. Stem Cell Res, 2017, 20:115-117.
89
Gong J, Zhou D, Jiang L, et al. In vitro lineage-specific differentiation of vascular smooth muscle cells in response to SMAD3 deficiency:implications for SMAD3-related thoracic aortic aneurysm[J]. Arterioscler Thromb Vasc Biol, 2020, 40(7):1651-1663.
90
Jin P, Wang S, Jiang X, et al. Generation of human induced pluripotent stem cell line (WMUi001-A) from a patient with aortic dissection[J]. Stem Cell Res, 2020, 43:101730.doi: 10.1016/j.scr.2020.101730.
91
Jiao J, Tian W, Qiu P, et al. Induced pluripotent stem cells with NOTCH1 gene mutation show impaired differentiation into smooth muscle and endothelial cells:Implications for bicuspid aortic valve-related aortopathy[J]. J Thorac Cardiovasc Surg, 2018, 156(2):515-522. e1.
92
Dong L, Zhang H, Quan Y, et al. Establishment and characterization of human induced pluripotent stem cell line (WMUi020-A) from a patient with bicuspid aortic valve aortopathy[J]. Stem Cell Res, 2021, 53:102260.doi: 10.1016/j.scr.2021.102260.
93
Mishra K, Junday K, Wong CMY, et al. Generation of VCCRIi001-A, a human induced pluripotent stem cell line, from a patient with spontaneous coronary artery dissection[J]. Stem Cell Res, 2019, 41:101584.doi: 10.1016/j.scr.2019.101584.
94
Chan XY, Black R, Dickerman K, et al. Three-dimensional vascular network assembly from diabetic patient-derived induced pluripotent stem cells[J]. Arterioscler Thromb Vasc Biol, 2015, 35(12):2677-2685.
95
Gorecka J, Gao X, Fereydooni A, et al. Induced pluripotent stem cell-derived smooth muscle cells increase angiogenesis and accelerate diabetic wound healing[J]. Regen Med, 2020, 15(2):1277-93.
96
Hitomi T, Habu T, Kobayashi H, et al. Downregulation of securin by the variant RNF213 R4810K (rs112735431, G>A) reduces angiogenic activity of induced pluripotent stem cell-derived vascular endothelial cells from moyamoya patients[J]. Biochem Biophys Res Commun, 2013, 438(1):13-19.
97
Kimura Y, Shofuda T, Higuchi Y, et al. Human genomic safe harbors and the suicide gene-based safeguard system for iPSC-based cell therapy[J]. Stem Cells Transl Med, 2019, 8(7):627-38.
98
Rowe RG, Daley GQ. Induced pluripotent stem cells in disease modelling and drug discovery[J]. Nat Rev Genet, 2019, 20(7):377-88.
99
Noguchi H, Miyagi-Shiohira C, Nakashima Y. Induced tissue-specific stem cells and epigenetic memory in induced pluripotent stem cells[J]. Int J Mol Sci, 2018, 19(4):930. doi: 10.3390/ijms19040930.
100
Wnorowski A, Yang H, Wu JC. Progress, obstacles, and limitations in the use of stem cells in organ-on-a-chip models[J]. Adv Drug Deliv Rev, 2019, 140:3-11.
[1] 冯雪园, 韩萌萌, 马宁. 乳腺原发上皮样血管内皮瘤一例[J]. 中华乳腺病杂志(电子版), 2023, 17(06): 378-380.
[2] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[3] 黄汇, 朱信强. 131I治疗45岁以下分化型甲状腺癌的疗效及影响因素[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 627-630.
[4] 郑泽坤, 刘卓恒, 邹浩, 胡会元, 李妲, 吴巍. 扩大根治性手术切除复发性巨大腹膜后去分化脂肪肉瘤1例[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 588-590.
[5] 张蓉, 秦洪真, 杨晓冬, 刘爽, 刘明锋, 曹秀堂. 分化型甲状腺癌术后康复锻炼的临床应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 439-442.
[6] 刘阳阳, 王梁, 戴志红, 郝建戈, 张力仁, 刘志宇. 腹膜后去分化脂肪肉瘤合并左肾透明细胞癌一例报告[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(04): 412-414.
[7] 符莞孟, 王晓黎, 刘玉, 张潍, 张菊. 干细胞治疗多囊卵巢综合征的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(02): 108-114.
[8] 樱峰, 王静, 刘雪清, 李潇. 水通道蛋白1对人角膜内皮细胞增殖、迁移及凋亡影响的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(03): 146-151.
[9] 刘然然, 方倩倩, 唐泽文. 周围神经损伤对骨髓间充质干细胞增殖及成骨分化影响的研究[J]. 中华神经创伤外科电子杂志, 2023, 09(01): 7-11.
[10] 于迪, 于海波, 吴焕成, 李玉明, 苏彬, 陈馨. 发状分裂相关增强子1差异表达对胆固醇刺激下血管内皮细胞的影响[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(05): 264-270.
[11] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[12] 陶璐, 初楠, 韩洁, 白春英, 逄雯丽, 余海源. 血清PECAM-1、Sirt1水平与2型糖尿病患者颈动脉粥样硬化的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 291-296.
[13] 周洋, 曹学, 赵飞, 郑波, 查惠娟, 蒋娜, 罗俊, 熊伟. 血清miR-22、HSPB1水平与急性Stanford A型主动脉夹层患者预后的关系[J]. 中华临床医师杂志(电子版), 2023, 17(03): 243-248.
[14] 岑妍慧, 高月, 林江, 刘鹏, 贾微, 杨瑞, 黄威, 刘鑫, 黄泽萍, 宁志莹. 水解南珠液通过Wnt/β-catenin通路调节细胞自噬对人微血管内皮细胞氧化应激损伤的影响[J]. 中华临床医师杂志(电子版), 2023, 17(01): 72-79.
[15] 李少莹, 文莹, 贾翠萍, 张媛, 邓伟豪. 抑制糖毒性通路对细胞线粒体功能障碍的影响和潜在意义[J]. 中华临床实验室管理电子杂志, 2023, 11(02): 65-70.
阅读次数
全文


摘要