1 |
Langer R, Vacanti JP. Tissue engineering[J]. Science, 1993, 260(5110): 920-926.
|
2 |
Skylar-Scott MA, Uzel SGM, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels[J]. Sci Adv, 2019, 5(9):eaaw2459. doi: 10.1126/sciadv.aaw2459.
|
3 |
Murphy SV, Atala A. 3D bioprinting of tissues and organs[J]. Nat Biotechnol, 2014, 32(8):773-785.
|
4 |
Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs[J]. Front Bioeng Biotechnol, 2017, 5:23. doi: 10.3389/fbioe.2017.00023.
|
5 |
Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439):458-464.
|
6 |
Wang ZX, Chen C, Zhou Q, et al. The treatment efficacy of bone tissue engineering strategy for repairing segmental bone defects under osteoporotic conditions[J]. Tissue Eng Part A, 2015, 21(17-18):2346-2355.
|
7 |
Liu S, Mou S, Zhou C, et al. Off-the-shelf biomimetic graphene oxide-collagen hybrid scaffolds wrapped with osteoinductive extracellular matrix for the repair of cranial defects in rats[J]. ACS Appl Mater Interfaces, 2018, 10(49):42948-42958.
|
8 |
Mou S, Zhou M, Li Y, et al. Extracellular vesicles from human adipose-derived stem cells for the improvement of angiogenesis and fat-grafting application[J]. Plast Reconstr Surg, 2019, 144(4):869-880.
|
9 |
Fang H, Luo C, Liu S, et al. A biocompatible vascularized graphene oxide (GO)-collagen chamber with osteoinductive and anti-fibrosis effects promotes bone regeneration in vivo[J]. Theranostics, 2020, 10(6):2759-2772.
|
10 |
Chen L, Mou S, Li F, et al. Self-assembled human adipose-derived stem cell-derived extracellular vesicle-functionalized biotin-doped polypyrrole titanium with long-term stability and potential osteoinductive ability[J]. ACS Appl Mater Interfaces, 2019, 11(49): 46183-46196.
|
11 |
Zeng Y, Zhou M, Chen L, et al. Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats[J]. Bioact Mater, 2020, 5(4):859-870.
|
12 |
Lee SS, Kim JH, Jeong J, et al. Sequential growth factor releasing double cryogel system for enhanced bone regeneration[J]. Biomaterials, 2020, 257:120223.doi: 10.1016/j.biomaterials.2020.120223.
|
13 |
Gao G, Lee J H, Jang J, et al. Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease[J]. Advanced Functional Materials, 2017, 27(33):1700798.
|
14 |
Morrison WA, Marre D, Grinsell D, et al. Creation of a large adipose tissue construct in humans using a tissue-engineering chamber:a step forward in the clinical application of soft tissue engineering[J]. EBio Medicine, 2016, 6:238-245.
|
15 |
Chhaya MP, Balmayor ER, Hutmacher DW, et al. Transformation of breast reconstruction via additive biomanufacturing[J]. Sci Rep, 2016, 6:28030.doi: 10.1038/srep28030.
|
16 |
Sun W, Starly B, Daly AC, et al. The bioprinting roadmap[J]. Biofabrication, 2020, 12(2):022002. doi: 10.1088/1758-5090/ab5158.
|
17 |
Luo C, Fang H, Li J, et al. An in vivo comparative study of the gelatin microtissue-based bottom-up strategy and top-down strategy in bone tissue engineering application[J]. J Biomed Mater Res A, 2019, 107(3):678-688.
|
18 |
Luo C, Fang H, Zhou M, et al. Biomimetic open porous structured core-shell microtissue with enhanced mechanical properties for bottom-up bone tissue engineering[J]. Theranostics, 2019, 9(16):4663-4677.
|
19 |
Ouyang L, Armstrong JPK, Salmeron-Sanchez M, et al. Assembling living building blocks to engineer complex tissues[J]. Advanced Functional Materials, 2020, 30(26). DOI: 10.1002/adfm.201909009.
|
20 |
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
|
21 |
Gartner ZJ, Bertozzi CR. Programmed assembly of 3-dimensional microtissues with defined cellular connectivity[J]. Proc Natl Acad Sci U S A, 2009, 106(12):4606-4610.
|
22 |
Mubyana K, Corr DT. Cyclic uniaxial tensile strain enhances the mechanical properties of engineered, scaffold-free tendon fibers[J]. Tissue Eng Part A, 2018, 24(23-24):1808-1817.
|
23 |
Owaki T, Shimizu T, Yamato M, et al. Cell sheet engineering for regenerative medicine:current challenges and strategies[J]. Biotechnol J, 2014, 9(7):904-914.
|
24 |
Rim NG, Yih A, Hsi P, et al. Micropatterned cell sheets as structural building blocks for biomimetic vascular patches[J]. Biomaterials, 2018, 181:126-139.
|
25 |
Baraniak PR, McDevitt TC. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential[J]. Cell Tissue Res, 2012, 347(3):701-711.
|
26 |
Phelan MA, Gianforcaro AL, Gerstenhaber JA, et al. An air bubble-isolating rotating wall vessel bioreactor for improved spheroid/organoid formation[J]. Tissue Eng Part C Methods, 2019, 25(8):479-488.
|
27 |
Frey O, Misun PM, Fluri DA, et al. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis[J]. Nat Commun, 2014, 5:4250.doi: 10.1038/ncomms5250.
|
28 |
Giandomenico SL, Mierau SB, Gibbons GM, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output[J]. Nat Neurosci, 2019, 22(4):669-679.
|
29 |
Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture[J]. Nature, 2016, 539(7630):560-564.
|
30 |
Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro[J]. Nat Methods, 2019, 16(3):255-262.
|
31 |
Takebe T, Enomura M, Yoshizawa E, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation[J]. Cell Stem Cell, 2015, 16(5):556-565.
|
32 |
Kamperman T, Henke S, van den Berg A, et al. Single cell microgel based modular bioinks for uncoupled cellular micro- and macroenvironments[J]. Adv Healthc Mater, 2017, 6(3).doi: 10.1002/adhm.201600913.
|
33 |
Lienemann PS, Rossow T, Mao AS, et al. Single cell-laden protease-sensitive microniches for long-term culture in 3D[J]. Lab Chip, 2017, 17(4):727-737.
|
34 |
Mao AS, Shin JW, Utech S, et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery[J]. Nat Mater, 2017, 16(2):236-243.
|
35 |
Yu Y, Shang L, Guo J, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nat Protoc, 2018, 13(11):2557-2579.
|
36 |
Xie R, Liang Z, Ai Y, et al. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes[J]. Nat Protoc, 2021, 16(2):937-964.
|
37 |
Nam E, Lee WC, Takeuchi S. Formation of highly aligned collagen nanofibers by continuous cyclic stretch of a collagen hydrogel sheet[J]. Macromol Biosci, 2016, 16(7):995-1000.
|
38 |
Son J, Bae CY, Park JK. Freestanding stacked mesh-like hydrogel sheets enable the creation of complex macroscale cellular scaffolds[J]. Biotechnol J, 2016, 11(4):585-591.
|
39 |
Leng L, McAllister A, Zhang B, et al. Mosaic hydrogels:one-step formation of multiscale soft materials[J]. Adv Mater, 2012, 24(27):3650-3658.
|
40 |
Kobayashi A, Yamakoshi K, Yajima Y, et al. Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts[J]. J Biosci Bioeng, 2013, 116(6):761-767.
|
41 |
Wang X, Jiao Q, Zhang S, et al. Perfusion culture-induced template-assisted assembling of cell-laden microcarriers is a promising route for fabricating macrotissues[J]. Biotechnol J, 2014, 9(11):1425-1434.
|
42 |
Leferink A, Schipper D, Arts E, et al. Engineered micro-objects as scaffolding elements in cellular building blocks for bottom-up tissue engineering approaches[J]. Adv Mater, 2014, 26(16):2592-2599.
|
43 |
Jiang W, Li M, Chen Z, et al. Cell-laden microfluidic microgels for tissue regeneration[J]. Lab Chip, 2016, 16(23):4482-4506.
|
44 |
Chan HF, Zhang Y, Leong KW. Efficient one-step production of microencapsulated hepatocyte spheroids with enhanced functions[J]. Small, 2016, 12(20):2720-2730.
|
45 |
Kumachev A, Greener J, Tumarkin E, et al. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation[J]. Biomaterials, 2011, 32(6):1477-1483.
|
46 |
Mohamed MGA, Kheiri S, Islam S, et al. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels[J]. Lab Chip, 2019, 19(9):1621-1632.
|
47 |
Lee JS, Roh YH, Choi YS, et al. Tissue beads:tissue-specific extracellular matrix microbeads to potentiate reprogrammed cell-based therapy[J]. Adv Funct Mater, 2019, 29(31):1807803.
|
48 |
Franco CL, Price J, West JL. Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres[J]. Acta Biomater, 2011, 7(9):3267-3276.
|
49 |
Du Y, Lo E, Ali S, et al. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs[J]. Proc Natl Acad Sci U S A, 2008, 105(28):9522-9527.
|
50 |
Zamanian B, Masaeli M, Nichol JW, et al. Interface-directed self-assembly of cell-laden microgels[J]. Small, 2010, 6(8):937-944.
|
51 |
Koo H, Choi M, Kim E, et al. Bioorthogonal click chemistry-based synthetic cell glue[J]. Small, 2015, 11(48):6458-6466.
|
52 |
Li CY, Wood DK, Hsu CM, et al. DNA-templated assembly of droplet-derived PEG microtissues[J]. Lab Chip, 2011, 11(17):2967-2975.
|
53 |
Hoffman BD, Yap AS. Towards a dynamic understanding of cadherin-based mechanobiology[J]. Trends Cell Biol, 2015, 25(12):803-814.
|
54 |
Demirci U, Montesano G. Single cell epitaxy by acoustic picolitre droplets[J]. Lab Chip, 2007, 7(9):1139-1145.
|
55 |
Fu Z, Naghieh S, Xu C, et al. Printability in extrusion bioprinting[J]. Biofabrication, 2021, 13(3). doi: 10.1088/1758-5090/abe7ab.
|
56 |
Jeon O, Lee YB, Jeong H, et al. Individual cell-only bioink and photocurable supporting medium for 3D printing and generation of engineered tissues with complex geometries[J]. Mater Horiz, 2019, 6(8):1625-1631.
|
57 |
Santos LJ, Reis RL, Gomes ME. Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering[J]. Trends Biotechnol, 2015, 33(8):471-479.
|
58 |
Tseng H, Balaoing LR, Grigoryan B, et al. A three-dimensional co-culture model of the aortic valve using magnetic levitation[J]. Acta Biomater, 2014, 10(1):173-182.
|
59 |
Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3D vascularized proximal tubule models[J]. Proc Natl Acad Sci U S A, 2019, 116(12):5399-5404.
|
60 |
Redd MA, Zeinstra N, Qin W, et al. Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts[J]. Nat Commun, 2019, 10(1):584.doi: 10.1038/s41467-019-08388-7.
|
61 |
Kabirian F, Mozafari M. Decellularized ECM-derived bioinks:Prospects for the future[J]. Methods, 2020, 171:108-118.
|
62 |
Szklanny AA, Machour M, Redenski I, et al. 3D bioprinting of engineered tissue flaps with hierarchical vessel networks (VesselNet) for direct host-to-implant perfusion[J]. Adv Mater, 2021, 33(42):e2102661. doi: 10.1002/adma.202102661.
|