切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (03) : 161 -166. doi: 10.3877/cma.j.issn.2095-1221.2022.03.005

综述

模块化与血管化组织工程技术
周莹芊1, 汪振星1, 张一帆1, 孙家明1, 曹谊林2,()   
  1. 1. 430022 武汉,湖北省武汉市华中科技大学同济医学院附属协和医院整形外科
    2. 200241 上海,组织工程国家工程研究中心
  • 收稿日期:2022-03-13 出版日期:2022-06-01
  • 通信作者: 曹谊林

Modular and vascularized tissue engineering techniques

Yingqian Zhou1, Zhenxing Wang1, Yifan Zhang1, Jiaming Sun1, Yilin Cao2,()   

  1. 1. Department of Plastic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
    2. National Engineering Research Center for Tissue Engineering, Shanghai 200241, China
  • Received:2022-03-13 Published:2022-06-01
  • Corresponding author: Yilin Cao
引用本文:

周莹芊, 汪振星, 张一帆, 孙家明, 曹谊林. 模块化与血管化组织工程技术[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(03): 161-166.

Yingqian Zhou, Zhenxing Wang, Yifan Zhang, Jiaming Sun, Yilin Cao. Modular and vascularized tissue engineering techniques[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(03): 161-166.

大尺寸的复杂器官构建是组织工程构建技术未来的重大挑战。其中有2个核心问题,一个是如何在可操作的厘米级尺寸器官内建立可吻合的血管循环,另一个是如何模拟天然组织中的细胞分布。模块化组织工程技术是基于"自下而上"理论兴起的构建理念,理论上利用该技术能从根本解决上述问题。随着干细胞与生物材料研究的深入,类器官和生物打印技术层出不穷,构建技术也需要随之发展,最终实现从人造组织整体植入的模式变化为带血管蒂吻合的"活体器官"移植。

Large-scale complex organ construction is a major challenge for tissue engineering construction technology in the future. There are two core issues, one is how to establish anastomotic vascular circulation in operable centimeter-sized organs, and the another is how to simulate the cell distribution in native tissues. Modular tissue engineering technology is a construction concept based on the "bottom-up" theory. In theory, this technology can fundamentally solve the above problems. With the in-depth research of stem cells and biomaterials, organoids and bioprinting technologies emerge in an endless stream, and construction technologies also need to be developed accordingly. Eventually, the model of overall implantation of artificial tissues will be changed to "living organ" transplantation with vascular pedicle anastomosis.

1
Langer R, Vacanti JP. Tissue engineering[J]. Science, 1993, 260(5110): 920-926.
2
Skylar-Scott MA, Uzel SGM, Nam LL, et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels[J]. Sci Adv, 2019, 5(9):eaaw2459. doi: 10.1126/sciadv.aaw2459.
3
Murphy SV, Atala A. 3D bioprinting of tissues and organs[J]. Nat Biotechnol, 2014, 32(8):773-785.
4
Ji S, Guvendiren M. Recent advances in bioink design for 3D bioprinting of tissues and organs[J]. Front Bioeng Biotechnol, 2017, 5:23. doi: 10.3389/fbioe.2017.00023.
5
Grigoryan B, Paulsen SJ, Corbett DC, et al. Multivascular networks and functional intravascular topologies within biocompatible hydrogels[J]. Science, 2019, 364(6439):458-464.
6
Wang ZX, Chen C, Zhou Q, et al. The treatment efficacy of bone tissue engineering strategy for repairing segmental bone defects under osteoporotic conditions[J]. Tissue Eng Part A, 2015, 21(17-18):2346-2355.
7
Liu S, Mou S, Zhou C, et al. Off-the-shelf biomimetic graphene oxide-collagen hybrid scaffolds wrapped with osteoinductive extracellular matrix for the repair of cranial defects in rats[J]. ACS Appl Mater Interfaces, 2018, 10(49):42948-42958.
8
Mou S, Zhou M, Li Y, et al. Extracellular vesicles from human adipose-derived stem cells for the improvement of angiogenesis and fat-grafting application[J]. Plast Reconstr Surg, 2019, 144(4):869-880.
9
Fang H, Luo C, Liu S, et al. A biocompatible vascularized graphene oxide (GO)-collagen chamber with osteoinductive and anti-fibrosis effects promotes bone regeneration in vivo[J]. Theranostics, 2020, 10(6):2759-2772.
10
Chen L, Mou S, Li F, et al. Self-assembled human adipose-derived stem cell-derived extracellular vesicle-functionalized biotin-doped polypyrrole titanium with long-term stability and potential osteoinductive ability[J]. ACS Appl Mater Interfaces, 2019, 11(49): 46183-46196.
11
Zeng Y, Zhou M, Chen L, et al. Alendronate loaded graphene oxide functionalized collagen sponge for the dual effects of osteogenesis and anti-osteoclastogenesis in osteoporotic rats[J]. Bioact Mater, 2020, 5(4):859-870.
12
Lee SS, Kim JH, Jeong J, et al. Sequential growth factor releasing double cryogel system for enhanced bone regeneration[J]. Biomaterials, 2020, 257:120223.doi: 10.1016/j.biomaterials.2020.120223.
13
Gao G, Lee J H, Jang J, et al. Tissue engineered bio-blood-vessels constructed using a tissue-specific bioink and 3D coaxial cell printing technique: a novel therapy for ischemic disease[J]. Advanced Functional Materials, 2017, 27(33):1700798.
14
Morrison WA, Marre D, Grinsell D, et al. Creation of a large adipose tissue construct in humans using a tissue-engineering chamber:a step forward in the clinical application of soft tissue engineering[J]. EBio Medicine, 2016, 6:238-245.
15
Chhaya MP, Balmayor ER, Hutmacher DW, et al. Transformation of breast reconstruction via additive biomanufacturing[J]. Sci Rep, 2016, 6:28030.doi: 10.1038/srep28030.
16
Sun W, Starly B, Daly AC, et al. The bioprinting roadmap[J]. Biofabrication, 2020, 12(2):022002. doi: 10.1088/1758-5090/ab5158.
17
Luo C, Fang H, Li J, et al. An in vivo comparative study of the gelatin microtissue-based bottom-up strategy and top-down strategy in bone tissue engineering application[J]. J Biomed Mater Res A, 2019, 107(3):678-688.
18
Luo C, Fang H, Zhou M, et al. Biomimetic open porous structured core-shell microtissue with enhanced mechanical properties for bottom-up bone tissue engineering[J]. Theranostics, 2019, 9(16):4663-4677.
19
Ouyang L, Armstrong JPK, Salmeron-Sanchez M, et al. Assembling living building blocks to engineer complex tissues[J]. Advanced Functional Materials, 2020, 30(26). DOI:10.1002/adfm.201909009.
20
Jinek M, Chylinski K, Fonfara I, et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity[J]. Science, 2012, 337(6096):816-821.
21
Gartner ZJ, Bertozzi CR. Programmed assembly of 3-dimensional microtissues with defined cellular connectivity[J]. Proc Natl Acad Sci U S A, 2009, 106(12):4606-4610.
22
Mubyana K, Corr DT. Cyclic uniaxial tensile strain enhances the mechanical properties of engineered, scaffold-free tendon fibers[J]. Tissue Eng Part A, 2018, 24(23-24):1808-1817.
23
Owaki T, Shimizu T, Yamato M, et al. Cell sheet engineering for regenerative medicine:current challenges and strategies[J]. Biotechnol J, 2014, 9(7):904-914.
24
Rim NG, Yih A, Hsi P, et al. Micropatterned cell sheets as structural building blocks for biomimetic vascular patches[J]. Biomaterials, 2018, 181:126-139.
25
Baraniak PR, McDevitt TC. Scaffold-free culture of mesenchymal stem cell spheroids in suspension preserves multilineage potential[J]. Cell Tissue Res, 2012, 347(3):701-711.
26
Phelan MA, Gianforcaro AL, Gerstenhaber JA, et al. An air bubble-isolating rotating wall vessel bioreactor for improved spheroid/organoid formation[J]. Tissue Eng Part C Methods, 2019, 25(8):479-488.
27
Frey O, Misun PM, Fluri DA, et al. Reconfigurable microfluidic hanging drop network for multi-tissue interaction and analysis[J]. Nat Commun, 2014, 5:4250.doi: 10.1038/ncomms5250.
28
Giandomenico SL, Mierau SB, Gibbons GM, et al. Cerebral organoids at the air-liquid interface generate diverse nerve tracts with functional output[J]. Nat Neurosci, 2019, 22(4):669-679.
29
Gjorevski N, Sachs N, Manfrin A, et al. Designer matrices for intestinal stem cell and organoid culture[J]. Nature, 2016, 539(7630):560-564.
30
Homan KA, Gupta N, Kroll KT, et al. Flow-enhanced vascularization and maturation of kidney organoids in vitro[J]. Nat Methods, 2019, 16(3):255-262.
31
Takebe T, Enomura M, Yoshizawa E, et al. Vascularized and complex organ buds from diverse tissues via mesenchymal cell-driven condensation[J]. Cell Stem Cell, 2015, 16(5):556-565.
32
Kamperman T, Henke S, van den Berg A, et al. Single cell microgel based modular bioinks for uncoupled cellular micro- and macroenvironments[J]. Adv Healthc Mater, 2017, 6(3).doi: 10.1002/adhm.201600913.
33
Lienemann PS, Rossow T, Mao AS, et al. Single cell-laden protease-sensitive microniches for long-term culture in 3D[J]. Lab Chip, 2017, 17(4):727-737.
34
Mao AS, Shin JW, Utech S, et al. Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery[J]. Nat Mater, 2017, 16(2):236-243.
35
Yu Y, Shang L, Guo J, et al. Design of capillary microfluidics for spinning cell-laden microfibers[J]. Nat Protoc, 2018, 13(11):2557-2579.
36
Xie R, Liang Z, Ai Y, et al. Composable microfluidic spinning platforms for facile production of biomimetic perfusable hydrogel microtubes[J]. Nat Protoc, 2021, 16(2):937-964.
37
Nam E, Lee WC, Takeuchi S. Formation of highly aligned collagen nanofibers by continuous cyclic stretch of a collagen hydrogel sheet[J]. Macromol Biosci, 2016, 16(7):995-1000.
38
Son J, Bae CY, Park JK. Freestanding stacked mesh-like hydrogel sheets enable the creation of complex macroscale cellular scaffolds[J]. Biotechnol J, 2016, 11(4):585-591.
39
Leng L, McAllister A, Zhang B, et al. Mosaic hydrogels:one-step formation of multiscale soft materials[J]. Adv Mater, 2012, 24(27):3650-3658.
40
Kobayashi A, Yamakoshi K, Yajima Y, et al. Preparation of stripe-patterned heterogeneous hydrogel sheets using microfluidic devices for high-density coculture of hepatocytes and fibroblasts[J]. J Biosci Bioeng, 2013, 116(6):761-767.
41
Wang X, Jiao Q, Zhang S, et al. Perfusion culture-induced template-assisted assembling of cell-laden microcarriers is a promising route for fabricating macrotissues[J]. Biotechnol J, 2014, 9(11):1425-1434.
42
Leferink A, Schipper D, Arts E, et al. Engineered micro-objects as scaffolding elements in cellular building blocks for bottom-up tissue engineering approaches[J]. Adv Mater, 2014, 26(16):2592-2599.
43
Jiang W, Li M, Chen Z, et al. Cell-laden microfluidic microgels for tissue regeneration[J]. Lab Chip, 2016, 16(23):4482-4506.
44
Chan HF, Zhang Y, Leong KW. Efficient one-step production of microencapsulated hepatocyte spheroids with enhanced functions[J]. Small, 2016, 12(20):2720-2730.
45
Kumachev A, Greener J, Tumarkin E, et al. High-throughput generation of hydrogel microbeads with varying elasticity for cell encapsulation[J]. Biomaterials, 2011, 32(6):1477-1483.
46
Mohamed MGA, Kheiri S, Islam S, et al. An integrated microfluidic flow-focusing platform for on-chip fabrication and filtration of cell-laden microgels[J]. Lab Chip, 2019, 19(9):1621-1632.
47
Lee JS, Roh YH, Choi YS, et al. Tissue beads:tissue-specific extracellular matrix microbeads to potentiate reprogrammed cell-based therapy[J]. Adv Funct Mater, 2019, 29(31):1807803.
48
Franco CL, Price J, West JL. Development and optimization of a dual-photoinitiator, emulsion-based technique for rapid generation of cell-laden hydrogel microspheres[J]. Acta Biomater, 2011, 7(9):3267-3276.
49
Du Y, Lo E, Ali S, et al. Directed assembly of cell-laden microgels for fabrication of 3D tissue constructs[J]. Proc Natl Acad Sci U S A, 2008, 105(28):9522-9527.
50
Zamanian B, Masaeli M, Nichol JW, et al. Interface-directed self-assembly of cell-laden microgels[J]. Small, 2010, 6(8):937-944.
51
Koo H, Choi M, Kim E, et al. Bioorthogonal click chemistry-based synthetic cell glue[J]. Small, 2015, 11(48):6458-6466.
52
Li CY, Wood DK, Hsu CM, et al. DNA-templated assembly of droplet-derived PEG microtissues[J]. Lab Chip, 2011, 11(17):2967-2975.
53
Hoffman BD, Yap AS. Towards a dynamic understanding of cadherin-based mechanobiology[J]. Trends Cell Biol, 2015, 25(12):803-814.
54
Demirci U, Montesano G. Single cell epitaxy by acoustic picolitre droplets[J]. Lab Chip, 2007, 7(9):1139-1145.
55
Fu Z, Naghieh S, Xu C, et al. Printability in extrusion bioprinting[J]. Biofabrication, 2021, 13(3). doi: 10.1088/1758-5090/abe7ab.
56
Jeon O, Lee YB, Jeong H, et al. Individual cell-only bioink and photocurable supporting medium for 3D printing and generation of engineered tissues with complex geometries[J]. Mater Horiz, 2019, 6(8):1625-1631.
57
Santos LJ, Reis RL, Gomes ME. Harnessing magnetic-mechano actuation in regenerative medicine and tissue engineering[J]. Trends Biotechnol, 2015, 33(8):471-479.
58
Tseng H, Balaoing LR, Grigoryan B, et al. A three-dimensional co-culture model of the aortic valve using magnetic levitation[J]. Acta Biomater, 2014, 10(1):173-182.
59
Lin NYC, Homan KA, Robinson SS, et al. Renal reabsorption in 3D vascularized proximal tubule models[J]. Proc Natl Acad Sci U S A, 2019, 116(12):5399-5404.
60
Redd MA, Zeinstra N, Qin W, et al. Patterned human microvascular grafts enable rapid vascularization and increase perfusion in infarcted rat hearts[J]. Nat Commun, 2019, 10(1):584.doi: 10.1038/s41467-019-08388-7.
61
Kabirian F, Mozafari M. Decellularized ECM-derived bioinks:Prospects for the future[J]. Methods, 2020, 171:108-118.
62
Szklanny AA, Machour M, Redenski I, et al. 3D bioprinting of engineered tissue flaps with hierarchical vessel networks (VesselNet) for direct host-to-implant perfusion[J]. Adv Mater, 2021, 33(42):e2102661. doi: 10.1002/adma.202102661.
[1] 陈严城, 符培亮. 组织工程技术在骨软骨缺损中应用的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 376-384.
[2] 钱嘉天, 符培亮. 3D打印脱细胞的细胞外基质修复软骨缺损的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(03): 368-375.
[3] 陈曦, 刘畅, 李萍, 李雨航, 陈彦斌, 王昆. 肩峰下滑囊的解剖结构和功能与临床意义[J]. 中华关节外科杂志(电子版), 2022, 16(03): 337-342.
[4] 王雪, 程微, 苏建东. 微针法表皮移植应用的新进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(03): 270-273.
[5] 蒯贤东, 郑国爽, 杨佳慧, 赵德伟. 用于关节软骨缺损修复的壳聚糖复合支架的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(06): 535-539.
[6] 刘梦柔, 刘沛东, 张城铭, 刘阳, 李鹏翠, 杨自权. 基于文献计量学与可视化分析的骨组织工程支架材料的全球研究现状及发展趋势[J]. 中华损伤与修复杂志(电子版), 2022, 17(05): 411-420.
[7] 彭毛东智, 李毅, 王洪瑾, 杨文静. 现代敷料促进创面愈合的研究进展[J]. 中华损伤与修复杂志(电子版), 2022, 17(04): 354-358.
[8] 王湘滔, 张爱娟, 王万春, 王芳萍, 徐颖婕, 孟洋. 中药白及在口腔疾病中的研究与应用[J]. 中华口腔医学研究杂志(电子版), 2023, 17(05): 371-375.
[9] 赵国栋. 机器人根治性顺行模块化胰脾切除术[J]. 中华普外科手术学杂志(电子版), 2022, 16(04): 368-368.
[10] 孙艺琪, 史宏灿. 纳米技术在气管移植物中的应用[J]. 中华移植杂志(电子版), 2022, 16(05): 309-313.
[11] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[12] 林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.
[13] 张郭, 慈海, 周牧冉, 孙家明, 郭亮. 仿生聚己内酯支架用于乳房组织工程的可行性研究[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 215-223.
[14] 杜凯玥, 袁博伟, 洪晶. 水凝胶在角膜修复中的应用研究进展[J]. 中华眼科医学杂志(电子版), 2022, 12(05): 298-304.
[15] 汤汉清, 米芳, 邱美蓉, 吕雪珍, 苏小珠, 张淑云, 刘敏, 卓龙彩. 多视角评价胸外专科ICU模块化教学对轮转新护士专科护理能力的提升效果[J]. 中华胸部外科电子杂志, 2022, 09(02): 128-132.
阅读次数
全文


摘要