切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (05) : 293 -299. doi: 10.3877/cma.j.issn.2095-1221.2022.05.006

综述

共培养促神经化策略在组织工程骨构建中的研究进展
林诗雯1, 孙慧1, 陈娜娜1, 朱聪1,()   
  1. 1. 614100 乐山,解放军第32280部队
  • 收稿日期:2022-06-30 出版日期:2022-10-01
  • 通信作者: 朱聪

Advances in co-culture promoted neuralization strategy in tissue engineering bone construction

Shiwen Lin1, Hui Sun1, Nana Chen1, Cong Zhu1,()   

  1. 1. The 32280 People's Liberation Army, Leshan 614100, China
  • Received:2022-06-30 Published:2022-10-01
  • Corresponding author: Cong Zhu
引用本文:

林诗雯, 孙慧, 陈娜娜, 朱聪. 共培养促神经化策略在组织工程骨构建中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 293-299.

Shiwen Lin, Hui Sun, Nana Chen, Cong Zhu. Advances in co-culture promoted neuralization strategy in tissue engineering bone construction[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(05): 293-299.

组织工程骨移植是治疗大段骨缺损的重要手段,将选定的组织或细胞采用特定的模式进行共培养,使组织工程骨神经化,可有效增强组织工程骨对损伤骨组织的修复作用。本文回顾国内外组织工程骨构建中共培养促神经化策略相关文献,从组织和种子细胞选择、相互作用分子机制和共培养模式应用3个方面进行综述,以期为该技术进一步发展及其临床应用提供参考。

Tissue engineering bone transplantation is an important method for the treatment of large-segment bone defects. Co-cultivation of selected tissues or cells in a specific culture mode can make tissue engineering bone more neural, which can effectively enhance the repair effect of tissue engineering bone on the damaged bone tissue. The literature related to co-culture promoting neuralization strategy in tissue engineered bone construction was reviewed from three aspects inthisarticle: tissue and seed cell selection, the molecular mechanism of tissue and seed cell interaction, and application of co-culture mode, in order to provide a reference for the further development of the technology and its clinical applications.

表1 不同共培养模式神经化组织工程骨特点比较
共培养组织/细胞 体外检测 体内检测 优势 参考文献
大隐神经/组织工程骨 n.a NPY 大隐神经支配的组织工程骨具有更佳的促进骨修复能力 覃俊君等[3]
SCs/自体颅骨组织 骨钙素、骨源性碱性磷酸酶、骨桥蛋白 n.a SCs与骨组织共培养加强成骨细胞的骨修复能力 李钟鹏等[4]
BMSCs/壳聚糖多孔支架 n.a 溴脱氧核苷尿嘧啶、胶质纤维酸性蛋白 壳聚糖多孔支架与BMSCs共培养能明显改善大鼠受损的神经功能 谭可可等[5]
多能干细胞/神经前体细胞 巢蛋白 n.a 多能干细胞与神经前体细胞共培养可诱导未分化人类多能干细胞的神经转化 Rhee等[6]
SCs/MSCs 磷酸化蛋白激酶B、B淋巴细胞瘤-2蛋白 n.a SCs与MSCs共培养可抑制SCs的凋亡,对神经病变起修复作用 Zhang等[7]
BMSCs /新生儿海马细胞 n.a 巢蛋白、微管蛋白 BMSCs与海马细胞共培养促进BMSCs向神经元分化 Majeed等[8]
隐神经/组织工程骨 n.a 组织工程骨形成 植入隐神经的组织工程骨具有更佳的促进骨缺损修复能力 江汕等[12]
骨皮质/骨髓 BMP2、TGF-β1 骨折愈合情况 骨皮质与骨髓共培养的MSCs具有更好的促进骨折愈合能力 Zhu等[18]
SCs/ADSCs 神经元特异性烯醇化酶、微管关联蛋白2、胶质纤维酸性蛋白、神经元特异性核蛋白 n.a SCs与ADSCs共培养可显著促进ADSCs向神经元样细胞分化 张振辉等[19]
SCs/同种异体骨 S-100蛋白 n.a SCs与支架具有良好的组织相融性 周翔等[20]
骨膜细胞/髓核细胞 骨钙素、I型胶原、RUNX2 、ALP n.a 骨膜细胞与髓核细胞共培养在低氧环境里成骨分化能力更强 陆海涛等[50]
图1 CGRP相关信号分子对成骨-破骨作用信号通路 注:CGRP为降钙素基因相关肽;TRPV1为辣椒素受体;RANKL为核因子活化因子受体配体;cAMP为环磷酸腺苷;PKA为蛋白激酶A;IGF1为胰岛素样生长因子1;GSK-3β为糖原合成酶激酶;SP7/Osterix为锌指结构转录因子;CREB1为成骨相关蛋白环磷酸腺苷应答元件结合蛋白1;BMP2为骨形态发生蛋白2;TNF-α为肿瘤坏死因子α;β-catenin为β-连环蛋白
图2 Sema3A相关信号分子对成骨-破骨作用信号通路 注:Sema3A为信号素家族的一种可扩散蛋白;PlexinA1/TREM2/DAP12为Sema3A-Nrp1轴干扰/髓系细胞触发受体2/自然杀伤激活受体相关蛋白12;GEF为鸟嘌呤核苷酸交换因子;Rac1为C3肉毒素底物1;RANKL为核因子活化因子受体配体;RhoA为Ras同源基因家族成员A重组蛋白阻止破骨前体细胞分化;β-catenin为β-连环蛋白
1
Zhang ZK, Guo X, Lao J, et al. Effect of capsaicin-sensitive sensory neurons on bone architecture and mechanical properties in the rat hindlimb suspension model[J]. J Orthop Translat, 2017, 27:10:12-17.
2
Nikolaos KP, Wendy EB, Rajalakshmanan E, et al. Advances in tissue engineering through stem cell-based co-culture[J]. Tissue Eng Regen Med, 2015, 5:9(5):488-503.
3
覃俊君,尹东,裴国献, 等.植入单纯血管束、感觉神经束的组织工程骨修复大段骨缺损[J].中国组织工程研究, 2017, 21(8):1161-1166.
4
李钟鹏,庞芳河.乳鼠雪旺细胞与自体颅骨组织块体外联合培养对颅骨组织生长的影响[J].中国老年学杂志, 2018, 38(20):5054-5057.
5
谭可可,王秀秀,张君,等.壳聚糖多孔支架复合BMSCs移植修复大鼠创伤性脑损伤的实验研究[J]. 中国修复重建外科杂志, 2018, 32(6):745-752.
6
Rhee YH, Puspita L, Sulistio YA, et al. Efficient neural differentiation of hPSCs by extrinsic signals derived from co-cultured neural stem or precursor cells[J]. Mol Ther, 2019, 27(7):1299-1312.
7
Zhang S, Shi B. Erythropoietin modification enhances the protection of mesenchymal stem cells on diabetic rat-derived schwann cells: implications for diabetic neuropathy[J]. Biomed Res Int, 2017, 2017:6352858.doi: 10.1155/2017/6352858.
8
Majeed S, Aziz A, Simjee SU. Neuronal transcription program induced in hippocampal cells cocultured with bone marrow derived mesenchymalcells[J]. Heliyon, 2020, 6(10):e05083. doi: 10.1016/j.heliyon.2020.e05083.
9
Schreurs RRCE, Baumdick ME, Drewniak A, et al. In vitro co-culture of human intestinal organoids and lamina propria-derived CD4+ T cells[J]. STAR Protoc, 2021, 2(2):100519.doi: 10.1016/j.xpro.2021.100519.
10
赵豆豆,林开利.多细胞构建血管化组织工程骨在骨修复中的应用[J].中国组织工程研究, 2022, 26(27):4386-4392.
11
Lerner UH, Persson E. Osteotropic effects by the neuropeptides calcitonin gene-related peptide, substance P and vasoactive intestinal peptide[J]. J Musculoskelet Neuronal Interact, 2008, 8(2):154-165.
12
江汕, 刘勇, 王秋实, 等. 组织工程骨神经化构建及其修复兔大段骨缺损的实验研究[J]. 中国修复重建外科杂志, 2010, 24(5):599-605.
13
Silva DI, Santos BPD, Leng J, et al. Dorsal root ganglionneurons regulate the transcriptional and translational programs of osteoblast differentiation in a microfluidic platform[J]. Cell Death Dis, 2017, 8(12):3209.doi: 10.1038/s41419-017-0034-3.
14
Wu Y, Jing D, Ouyang H, et al. Pre-implanted sensory nerve could enhance the neurotization in tissue-engineered bone graft[J]. Tissue Eng Part A, 2015, 21(15-16):2241-2249.
15
Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970, 3(4):393-403.
16
Minteer DM, Marra KG, Rubin JP. Adipose stem cells: biology, safety, regulation, and regenerative potential[J]. Clin Plast Surg, 2015, 42(2):169-179.
17
Blashki D, Murphy MB, Ferrari M, et al. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow-derived counterparts[J]. J Tissue Eng, 2016, 7:2041731416661196. doi: 10.1177/2041731416661196.
18
Zhu C, Sha M, Jiang H, et al. Co-culture of the bone and bone marrow: a novel way to obtain mesenchymal stem cells with enhanced osteogenic ability for fracture healing in SD rats[J]. J OrthopSurg Res, 2019, 14(1):293. doi: 10.1186/s13018-019-1346-z.
19
张振辉,李东,孙凯,等.与雪旺细胞共培养诱导脂肪来源干细胞向神经元样细胞分化的实验研究[J].中国修复重建外科杂志, 2015, 29(1):97-102.
20
周翔,段春光,贾帅军,等.雪旺氏细胞与同种异体骨支架的体外共培养研究[J]. 现代生物医学进展, 2014, 14(13):2412-2416.
21
Yu H, Pei T, Ren J, et al. Semaphorin 3A enhances osteogenesis of MG63 cells through interaction with Schwann cells in vitro[J].Mol Med Rep, 2018, 17(4):6084-6092.
22
Hopf A, Schaefer DJ, Kalbermatten DF, et al. Schwann cell-like cells: origin and usability for repair and regeneration of the peripheral and central nervous system[J]. Cells, 2020,9(9):1990.doi: 10.3390/cells9091990.
23
Tie K, Cai J, Qin J, et al. Nanog/NFATc1/Osterix signaling pathway-mediated promotion of bone formation at the tendon-bone interface after ACL reconstruction with De-BMSCs transplantation[J]. Stem Cell Res Ther, 2021, 12(1):576.doi: 10.1186/s13287-021-02643-9.
24
Tuzmen C, Campbell P G. Crosstalk between neuropeptides SP and CGRP in regulation of BMP2induced bone differentiation[J]. Connect Tissue Res, 2018, 59(sup1):81-90.
25
Zhou R, Yuan Z, Liu J, et al. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signaltransduction pathway in bone marrow stromal stem cells[J]. Mol med rep, 2016, 13(6):4689-4696.
26
Takahashi N, Matsuda Y, Sato K, et al. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP[J]. Sci Rep, 2016, 6:29294.doi: 10.1038/srep29294.
27
Yu X, Liu S, Chen H, et al. CGRP gene-modified rBMSCs show better osteogenic differentiation capacity in vitro[J]. J Mol Histol, 2018, 49(4):357-367.
28
Zhou Y, Zhang H, Zhang G, et al. Calcitonin generelated peptide reduces Porphyromonas gingivalis LPS induced TNFα release and apoptosis in osteoblasts[J]. Mol Med Rep, 2018,17(2):3246-3254.
29
André E, Sheykhzade M, Edvinsson L. Differential inhibitory response to telcagepant on αCGRP induced vasorelaxation and intracellular Ca2+ levels in the perfused and non-perfused isolated rat middle cerebral artery[J]. J Headache Pain, 2017, 18(1):61.doi: 10.1186/s10194-017-0768-4.
30
Kepler C K, Markova D Z, Koerner J D, et al. Substance P receptor antagonist suppresses inflammatory cytokine expression in human disc cells[J]. Spine, 2015, 40(16):1261-1269.
31
刘娜, 张晓东, 李永涛, 等. 高糖环境下P物质活化Akt通路促进间充质干细胞增殖和成血管内皮细胞分化的研究[J]. 天津医药, 2022, 50(5):461-465.
32
惠婷, 张广灿, 冯丹丹, 等. 神经肽P物质及骨形态发生蛋白信号通路在ST2细胞成骨分化过程中的作用[J]. 华西口腔医学杂志, 2018, 36(4):378-383.
33
Wang XD, Li SY, Zhang SJ, et al. The neural system regulates bone homeostasis via mesenchymal stem cells: A translational approach[J]. Theranostics, 2020, 10(11):4839-4850.
34
Kim KJ, Lee Y, Jeong MH, et al. Extracts of flavoparmelia sp. inhibit receptor activator of nuclear factor-κb ligand-mediated osteoclast differentiation[J]. J Bone Metab, 2019, 26(2):113-121.
35
Lee NJ, Clarke IM, Zengin A, et al. RANK deletion in neuropeptide Y neurones attenuates oestrogen deficiency-related bone loss[J]. J Neuroendocrinol, 2019, 31(2):e12687.doi: 10.1111/jne.12687.
36
才忠民, 赵晓勇. NPY-Y1受体调控Wnt/β-catenin通路对OP成骨细胞作用及影响[J]. 内蒙古民族大学学报:自然科学版, 2021, 36(6):501-511.
37
Motoki, Yahara, Kanchu, et al. Inhibition of neuropeptide Y Y1 receptor induces osteoblast differentiation in MC3T3-E1 cells[J]. Mol Med Rep, 2017, 16(3):2779-2784.
38
张弛,梁笃,许子宜,等.神经肽Y对小鼠成骨细胞系细胞成骨分化的影响及其与Wnt通路相关机制的初步研究[J]. 中华创伤骨科杂志, 2017, 19(7):617-623.
39
Idelevich A, Sato K, Avihai B, et al. Both NPY-expressing and CART-expressing neurons increase energy expenditure and trabecular bone mass in response to AP1 antagonism, but have opposite effects on bone resorption[J]. J Bone Miner Res, 2020, 35(6):1107-1118.
40
Huang H, Ma L, Kyrkanides S. Effects of vascular endothelial growth factor on osteoblasts and osteoclasts[J]. Am J Orthod Dentofacial Orthop, 2016,149(3):366-373.
41
Qu H, Zhuang Y, Zhu L, et al. The effects of vasoactive intestinal peptide on RANKL-induced osteoclast formation[J]. Ann Transl Med, 2021, 9(2):127. doi: 10.21037/atm-20-7607.
42
Castro-Vazquez D, Lamana A, Arribas-Castaño P, et al. The neuropeptide VIP limits human osteoclastogenesis: clinical associations with bone metabolism markers in patients with early arthritis[J]. Biomedicines, 2021, 9(12):1880. doi: 10.3390/biomedicines9121880.
43
Guo Z, Li Y, Chen M, et al. Semaphorin3A regulates mitochondrial apoptosis in RAW264.7 cells in vitro[J].Tissue Cell, 2022, 75:101711.doi:10.1016/j.tice.2021.101711.
44
Xu C, Wang J, Zhu T, et al. Cross-talking between PPAR and WNT signaling and its regulation in mesenchymal stem cell differentiation[J]. Curr Stem Cell Res Ther, 2016, 11(3):247-254.
45
Takegahara N, Takamatsu H, Toyofuku T, et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis[J]. Nat Cell Biol, 2006, 8(6):615-622.
46
Li Z, Hao J, Duan X, et al. The role of semaphorin 3A in bone remodeling[J]. Front Cell Neurosci, 2017,11:40.doi: 10.3389/fncel.2017.00040.
47
Rivera KO, Russo F, Boileau RM, et al. Local injections of β-NGF accelerates endochondral fracture repair by promoting cartilage to bone conversion[J]. Sci Rep, 2020, 10(1):22241. doi: 10.1038/s41598-020-78983-y.
48
贝朝涌,林卓锋,杨志,等. NGF对骨折愈合影响的研究[J]. 中国修复重建外科杂志, 2009, 23(5):570-576.
49
皮昌军,邹翔,张然熙,等.神经生长因子增强骨形态蛋白-9诱导鼠胚胎成纤维细胞成骨分化的作用[J].中华创伤杂志, 2016, 32(2):171-175.
50
陆海涛,袁峰,张峻玮,等.低氧环境下共培养的骨膜细胞和髓核细胞骨向分化能力的研究[J]. 中国矫形外科杂志, 2016, 24(9):839-844.
51
Wang D, Zhu H, Cheng W, et al. Effects of hypoxia and ASIC3 on nucleus pulposus cells: From cell behavior to molecular mechanism[J]. Biomed Pharmacother, 2019,117:109061.doi: 10.1016/j.biopha.2019.109061.
52
Yu HH, Chen PC, Yang YH, et al. Statin reduces mortality and morbidity in systemic lupus erythematosus patients with hyperlipidemia: A nationwide population-based cohort study-ScienceDirect[J]. Atherosclerosis, 2015, 243(1):11-18.
53
Radtke CL, Nino-Fong R, Esparza Gonzalez BP, et al. Characterization and osteogenic potential of equine muscle tissue and periosteal tissue derived mesenchymal stem cells in comparison with bone marrow and adipose tissue derived mesenchymal stem cells[J]. Am J Vet Res, 2013,74(5):790-800.
54
孙骏,张磊,赵威,等.高糖环境下成骨细胞通过MCP-1/c-fos/NFATC1通路促进破骨细胞分化[J]. 中国医科大学学报, 2019, 48(8):683-687.
55
廖锋,刘瑶,刘航航,等.当归多糖对高糖状态下大鼠骨髓间充质干细胞成骨向分化的影响[J].华西口腔医学杂志, 2019, 37(2):193-199.
56
Wang L, Han X, Qu G, et al. A pH probe inhibits senescence in mesenchymal stem cells[J]. Stem Cell Res Ther, 2018, 9(1):343.doi: 10.1186/s13287-018-1081-0.
57
王汉邦,陶晖,申才良,等.酸环境对人髓核间充质干细胞生物学活性的影响[J].中国脊柱脊髓杂志, 2015, 25(10):912-919.
58
李佩仪,张新春.微环境酸碱度在组织工程骨再生中作用的研究进展[J].国际口腔医学杂志, 2021, 48(1):64-70.
59
刘猛,樊凤娇,石璞洁,等.不同浓度牛乳铁蛋白对成骨细胞与破骨细胞共培养的影响[J]. 食品研究与开发, 2017, 38(24):1-6.
60
张鹏,刘强,董伟,等.唑来膦酸对成骨细胞单核巨噬细胞共培养体系中Atp6v0d2基因表达及破骨细胞生成的抑制作用[J]. 实用口腔医学杂志, 2013, 29(6):766-769.
61
Hanwright PJ, Qiu C, Rath J, et al. Sustained IGF-1 delivery ameliorates effects of chronic denervation and improves functional recovery after peripheral nerve injury and repair[J]. Biomaterials, 2022, 280:121244. doi: 10.1016/j.biomaterials.2021.121244.
62
Tang Y, Xu Y, Xiao Z, et al. The combination of three-dimensional and rotary cell culture system promotes the proliferation and maintains the differentiation potential of rat BMSCs[J]. Sci Rep, 2017, 7(1):192.doi: 10.1038/s41598-017-00087-x.
63
麦麦提艾力·阿不力克木,王腾飞,陶颖,等.体外构建新型骨组织工程三维复合体[J].中国生物医学工程学报, 2018, 37(1):124-128.
64
Bruno R, Gerhard S, Arash M, et al. Insulin-like growth factor-1 as a possible alternative to bone morphogenetic protein-7 to induce osteogenic differentiation of human mesenchymal stem cells in vitro[J]. Int J Mol Sci, 2018, 19(6):1674.doi: 10.3390/ijms19061674.
65
Song F, Jiang D, Wang T, et al. Mechanical stress regulates osteogenesis and adipogenesis of rat mesenchymal stem cells through PI3K/Akt/GSK-3β/β-Catenin signaling pathway[J]. Biomed Res Int, 2017, 2017:6027402.doi: 10.1155/2017/6027402.
66
Tian Y, Chen J, Yan X, et al. Overloaded orthopedic force induces condylar subchondral bone absorption by stimulating rat mesenchymal stem cells differentiating into osteoclasts via mTOR-regulated RANKL/OPG secretion in osteoblasts[J]. Stem Cells Dev, 2021, 30(1):29-38.
67
罗翰,舒伟良,蔡川,等.以微流控芯片为载体的神经血管单元三细胞共培养模型的构建与鉴定[J].中风与神经疾病杂志, 2021, 38(10):1070-1074.
[1] 张宁, 刘萍, 郝翠芳, 王昕荣. 白细胞介素-1β,-1Rα对胚胎-内膜共培养体系分泌基质金属蛋白酶-9/细胞间黏附分子-1的影响[J]. 中华妇幼临床医学杂志(电子版), 2012, 08(02): 159-162.
[2] 杨园园, 朱新贤, 靳霞, 童晓文. 人间充质干细胞对乳腺癌细胞生长的影响研究[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 195-203.
[3] 张新媛, 王麒雲, 陈晓思. 糖尿病视网膜病变血管内皮细胞与神经细胞藕联二维体外共培养模型的实验研究[J]. 中华眼科医学杂志(电子版), 2023, 13(01): 6-11.
阅读次数
全文


摘要