1 |
Zhang ZK, Guo X, Lao J, et al. Effect of capsaicin-sensitive sensory neurons on bone architecture and mechanical properties in the rat hindlimb suspension model[J]. J Orthop Translat, 2017, 27:10:12-17.
|
2 |
Nikolaos KP, Wendy EB, Rajalakshmanan E, et al. Advances in tissue engineering through stem cell-based co-culture[J]. Tissue Eng Regen Med, 2015, 5:9(5):488-503.
|
3 |
覃俊君,尹东,裴国献, 等.植入单纯血管束、感觉神经束的组织工程骨修复大段骨缺损[J].中国组织工程研究, 2017, 21(8):1161-1166.
|
4 |
李钟鹏,庞芳河.乳鼠雪旺细胞与自体颅骨组织块体外联合培养对颅骨组织生长的影响[J].中国老年学杂志, 2018, 38(20):5054-5057.
|
5 |
谭可可,王秀秀,张君,等.壳聚糖多孔支架复合BMSCs移植修复大鼠创伤性脑损伤的实验研究[J]. 中国修复重建外科杂志, 2018, 32(6):745-752.
|
6 |
Rhee YH, Puspita L, Sulistio YA, et al. Efficient neural differentiation of hPSCs by extrinsic signals derived from co-cultured neural stem or precursor cells[J]. Mol Ther, 2019, 27(7):1299-1312.
|
7 |
Zhang S, Shi B. Erythropoietin modification enhances the protection of mesenchymal stem cells on diabetic rat-derived schwann cells: implications for diabetic neuropathy[J]. Biomed Res Int, 2017, 2017:6352858.doi: 10.1155/2017/6352858.
|
8 |
Majeed S, Aziz A, Simjee SU. Neuronal transcription program induced in hippocampal cells cocultured with bone marrow derived mesenchymalcells[J]. Heliyon, 2020, 6(10):e05083. doi: 10.1016/j.heliyon.2020.e05083.
|
9 |
Schreurs RRCE, Baumdick ME, Drewniak A, et al. In vitro co-culture of human intestinal organoids and lamina propria-derived CD4 + T cells[J]. STAR Protoc, 2021, 2(2):100519.doi: 10.1016/j.xpro.2021.100519.
|
10 |
赵豆豆,林开利.多细胞构建血管化组织工程骨在骨修复中的应用[J].中国组织工程研究, 2022, 26(27):4386-4392.
|
11 |
Lerner UH, Persson E. Osteotropic effects by the neuropeptides calcitonin gene-related peptide, substance P and vasoactive intestinal peptide[J]. J Musculoskelet Neuronal Interact, 2008, 8(2):154-165.
|
12 |
江汕, 刘勇, 王秋实, 等. 组织工程骨神经化构建及其修复兔大段骨缺损的实验研究[J]. 中国修复重建外科杂志, 2010, 24(5):599-605.
|
13 |
Silva DI, Santos BPD, Leng J, et al. Dorsal root ganglionneurons regulate the transcriptional and translational programs of osteoblast differentiation in a microfluidic platform[J]. Cell Death Dis, 2017, 8(12):3209.doi: 10.1038/s41419-017-0034-3.
|
14 |
Wu Y, Jing D, Ouyang H, et al. Pre-implanted sensory nerve could enhance the neurotization in tissue-engineered bone graft[J]. Tissue Eng Part A, 2015, 21(15-16):2241-2249.
|
15 |
Friedenstein AJ, Chailakhjan RK, Lalykina KS. The development of fibroblast colonies in monolayer cultures of Guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet, 1970, 3(4):393-403.
|
16 |
Minteer DM, Marra KG, Rubin JP. Adipose stem cells: biology, safety, regulation, and regenerative potential[J]. Clin Plast Surg, 2015, 42(2):169-179.
|
17 |
Blashki D, Murphy MB, Ferrari M, et al. Mesenchymal stem cells from cortical bone demonstrate increased clonal incidence, potency, and developmental capacity compared to their bone marrow-derived counterparts[J]. J Tissue Eng, 2016, 7:2041731416661196. doi: 10.1177/2041731416661196.
|
18 |
Zhu C, Sha M, Jiang H, et al. Co-culture of the bone and bone marrow: a novel way to obtain mesenchymal stem cells with enhanced osteogenic ability for fracture healing in SD rats[J]. J OrthopSurg Res, 2019, 14(1):293. doi: 10.1186/s13018-019-1346-z.
|
19 |
张振辉,李东,孙凯,等.与雪旺细胞共培养诱导脂肪来源干细胞向神经元样细胞分化的实验研究[J].中国修复重建外科杂志, 2015, 29(1):97-102.
|
20 |
周翔,段春光,贾帅军,等.雪旺氏细胞与同种异体骨支架的体外共培养研究[J]. 现代生物医学进展, 2014, 14(13):2412-2416.
|
21 |
Yu H, Pei T, Ren J, et al. Semaphorin 3A enhances osteogenesis of MG63 cells through interaction with Schwann cells in vitro[J].Mol Med Rep, 2018, 17(4):6084-6092.
|
22 |
Hopf A, Schaefer DJ, Kalbermatten DF, et al. Schwann cell-like cells: origin and usability for repair and regeneration of the peripheral and central nervous system[J]. Cells, 2020, 9(9):1990.doi: 10.3390/cells9091990.
|
23 |
Tie K, Cai J, Qin J, et al. Nanog/NFATc1/Osterix signaling pathway-mediated promotion of bone formation at the tendon-bone interface after ACL reconstruction with De-BMSCs transplantation[J]. Stem Cell Res Ther, 2021, 12(1):576.doi: 10.1186/s13287-021-02643-9.
|
24 |
Tuzmen C, Campbell P G. Crosstalk between neuropeptides SP and CGRP in regulation of BMP2induced bone differentiation[J]. Connect Tissue Res, 2018, 59(sup1):81-90.
|
25 |
Zhou R, Yuan Z, Liu J, et al. Calcitonin gene-related peptide promotes the expression of osteoblastic genes and activates the WNT signaltransduction pathway in bone marrow stromal stem cells[J]. Mol med rep, 2016, 13(6):4689-4696.
|
26 |
Takahashi N, Matsuda Y, Sato K, et al. Neuronal TRPV1 activation regulates alveolar bone resorption by suppressing osteoclastogenesis via CGRP[J]. Sci Rep, 2016, 6:29294.doi: 10.1038/srep29294.
|
27 |
Yu X, Liu S, Chen H, et al. CGRP gene-modified rBMSCs show better osteogenic differentiation capacity in vitro[J]. J Mol Histol, 2018, 49(4):357-367.
|
28 |
Zhou Y, Zhang H, Zhang G, et al. Calcitonin generelated peptide reduces Porphyromonas gingivalis LPS induced TNFα release and apoptosis in osteoblasts[J]. Mol Med Rep, 2018,17(2):3246-3254.
|
29 |
André E, Sheykhzade M, Edvinsson L. Differential inhibitory response to telcagepant on αCGRP induced vasorelaxation and intracellular Ca 2+ levels in the perfused and non-perfused isolated rat middle cerebral artery[J]. J Headache Pain, 2017, 18(1):61.doi: 10.1186/s10194-017-0768-4.
|
30 |
Kepler C K, Markova D Z, Koerner J D, et al. Substance P receptor antagonist suppresses inflammatory cytokine expression in human disc cells[J]. Spine, 2015, 40(16):1261-1269.
|
31 |
刘娜, 张晓东, 李永涛, 等. 高糖环境下P物质活化Akt通路促进间充质干细胞增殖和成血管内皮细胞分化的研究[J]. 天津医药, 2022, 50(5):461-465.
|
32 |
惠婷, 张广灿, 冯丹丹, 等. 神经肽P物质及骨形态发生蛋白信号通路在ST2细胞成骨分化过程中的作用[J]. 华西口腔医学杂志, 2018, 36(4):378-383.
|
33 |
Wang XD, Li SY, Zhang SJ, et al. The neural system regulates bone homeostasis via mesenchymal stem cells: A translational approach[J]. Theranostics, 2020, 10(11):4839-4850.
|
34 |
Kim KJ, Lee Y, Jeong MH, et al. Extracts of flavoparmelia sp. inhibit receptor activator of nuclear factor-κb ligand-mediated osteoclast differentiation[J]. J Bone Metab, 2019, 26(2):113-121.
|
35 |
Lee NJ, Clarke IM, Zengin A, et al. RANK deletion in neuropeptide Y neurones attenuates oestrogen deficiency-related bone loss[J]. J Neuroendocrinol, 2019, 31(2):e12687.doi: 10.1111/jne.12687.
|
36 |
才忠民, 赵晓勇. NPY-Y1受体调控Wnt/β-catenin通路对OP成骨细胞作用及影响[J]. 内蒙古民族大学学报:自然科学版, 2021, 36(6):501-511.
|
37 |
Motoki, Yahara, Kanchu, et al. Inhibition of neuropeptide Y Y1 receptor induces osteoblast differentiation in MC3T3-E1 cells[J]. Mol Med Rep, 2017, 16(3):2779-2784.
|
38 |
张弛,梁笃,许子宜,等.神经肽Y对小鼠成骨细胞系细胞成骨分化的影响及其与Wnt通路相关机制的初步研究[J]. 中华创伤骨科杂志, 2017, 19(7):617-623.
|
39 |
Idelevich A, Sato K, Avihai B, et al. Both NPY-expressing and CART-expressing neurons increase energy expenditure and trabecular bone mass in response to AP1 antagonism, but have opposite effects on bone resorption[J]. J Bone Miner Res, 2020, 35(6):1107-1118.
|
40 |
Huang H, Ma L, Kyrkanides S. Effects of vascular endothelial growth factor on osteoblasts and osteoclasts[J]. Am J Orthod Dentofacial Orthop, 2016,149(3):366-373.
|
41 |
Qu H, Zhuang Y, Zhu L, et al. The effects of vasoactive intestinal peptide on RANKL-induced osteoclast formation[J]. Ann Transl Med, 2021, 9(2):127. doi: 10.21037/atm-20-7607.
|
42 |
Castro-Vazquez D, Lamana A, Arribas-Castaño P, et al. The neuropeptide VIP limits human osteoclastogenesis: clinical associations with bone metabolism markers in patients with early arthritis[J]. Biomedicines, 2021, 9(12):1880. doi: 10.3390/biomedicines9121880.
|
43 |
Guo Z, Li Y, Chen M, et al. Semaphorin3A regulates mitochondrial apoptosis in RAW264.7 cells in vitro[J]. Tissue Cell, 2022, 75:101711.doi: 10.1016/j.tice.2021.101711.
|
44 |
Xu C, Wang J, Zhu T, et al. Cross-talking between PPAR and WNT signaling and its regulation in mesenchymal stem cell differentiation[J]. Curr Stem Cell Res Ther, 2016, 11(3):247-254.
|
45 |
Takegahara N, Takamatsu H, Toyofuku T, et al. Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis[J]. Nat Cell Biol, 2006, 8(6):615-622.
|
46 |
Li Z, Hao J, Duan X, et al. The role of semaphorin 3A in bone remodeling[J]. Front Cell Neurosci, 2017, 11:40.doi: 10.3389/fncel.2017.00040.
|
47 |
Rivera KO, Russo F, Boileau RM, et al. Local injections of β-NGF accelerates endochondral fracture repair by promoting cartilage to bone conversion[J]. Sci Rep, 2020, 10(1):22241. doi: 10.1038/s41598-020-78983-y.
|
48 |
贝朝涌,林卓锋,杨志,等. NGF对骨折愈合影响的研究[J]. 中国修复重建外科杂志, 2009, 23(5):570-576.
|
49 |
皮昌军,邹翔,张然熙,等.神经生长因子增强骨形态蛋白-9诱导鼠胚胎成纤维细胞成骨分化的作用[J].中华创伤杂志, 2016, 32(2):171-175.
|
50 |
陆海涛,袁峰,张峻玮,等.低氧环境下共培养的骨膜细胞和髓核细胞骨向分化能力的研究[J]. 中国矫形外科杂志, 2016, 24(9):839-844.
|
51 |
Wang D, Zhu H, Cheng W, et al. Effects of hypoxia and ASIC3 on nucleus pulposus cells: From cell behavior to molecular mechanism[J]. Biomed Pharmacother, 2019, 117:109061.doi: 10.1016/j.biopha.2019.109061.
|
52 |
Yu HH, Chen PC, Yang YH, et al. Statin reduces mortality and morbidity in systemic lupus erythematosus patients with hyperlipidemia: A nationwide population-based cohort study-ScienceDirect[J]. Atherosclerosis, 2015, 243(1):11-18.
|
53 |
Radtke CL, Nino-Fong R, Esparza Gonzalez BP, et al. Characterization and osteogenic potential of equine muscle tissue and periosteal tissue derived mesenchymal stem cells in comparison with bone marrow and adipose tissue derived mesenchymal stem cells[J]. Am J Vet Res, 2013,74(5):790-800.
|
54 |
孙骏,张磊,赵威,等.高糖环境下成骨细胞通过MCP-1/c-fos/NFATC1通路促进破骨细胞分化[J]. 中国医科大学学报, 2019, 48(8):683-687.
|
55 |
廖锋,刘瑶,刘航航,等.当归多糖对高糖状态下大鼠骨髓间充质干细胞成骨向分化的影响[J].华西口腔医学杂志, 2019, 37(2):193-199.
|
56 |
Wang L, Han X, Qu G, et al. A pH probe inhibits senescence in mesenchymal stem cells[J]. Stem Cell Res Ther, 2018, 9(1):343.doi: 10.1186/s13287-018-1081-0.
|
57 |
王汉邦,陶晖,申才良,等.酸环境对人髓核间充质干细胞生物学活性的影响[J].中国脊柱脊髓杂志, 2015, 25(10):912-919.
|
58 |
李佩仪,张新春.微环境酸碱度在组织工程骨再生中作用的研究进展[J].国际口腔医学杂志, 2021, 48(1):64-70.
|
59 |
刘猛,樊凤娇,石璞洁,等.不同浓度牛乳铁蛋白对成骨细胞与破骨细胞共培养的影响[J]. 食品研究与开发, 2017, 38(24):1-6.
|
60 |
张鹏,刘强,董伟,等.唑来膦酸对成骨细胞单核巨噬细胞共培养体系中Atp6v0d2基因表达及破骨细胞生成的抑制作用[J]. 实用口腔医学杂志, 2013, 29(6):766-769.
|
61 |
Hanwright PJ, Qiu C, Rath J, et al. Sustained IGF-1 delivery ameliorates effects of chronic denervation and improves functional recovery after peripheral nerve injury and repair[J]. Biomaterials, 2022, 280:121244. doi: 10.1016/j.biomaterials.2021.121244.
|
62 |
Tang Y, Xu Y, Xiao Z, et al. The combination of three-dimensional and rotary cell culture system promotes the proliferation and maintains the differentiation potential of rat BMSCs[J]. Sci Rep, 2017, 7(1):192.doi: 10.1038/s41598-017-00087-x.
|
63 |
麦麦提艾力·阿不力克木,王腾飞,陶颖,等.体外构建新型骨组织工程三维复合体[J].中国生物医学工程学报, 2018, 37(1):124-128.
|
64 |
Bruno R, Gerhard S, Arash M, et al. Insulin-like growth factor-1 as a possible alternative to bone morphogenetic protein-7 to induce osteogenic differentiation of human mesenchymal stem cells in vitro[J]. Int J Mol Sci, 2018, 19(6):1674.doi: 10.3390/ijms19061674.
|
65 |
Song F, Jiang D, Wang T, et al. Mechanical stress regulates osteogenesis and adipogenesis of rat mesenchymal stem cells through PI3K/Akt/GSK-3β/β-Catenin signaling pathway[J]. Biomed Res Int, 2017, 2017:6027402.doi: 10.1155/2017/6027402.
|
66 |
Tian Y, Chen J, Yan X, et al. Overloaded orthopedic force induces condylar subchondral bone absorption by stimulating rat mesenchymal stem cells differentiating into osteoclasts via mTOR-regulated RANKL/OPG secretion in osteoblasts[J]. Stem Cells Dev, 2021, 30(1):29-38.
|
67 |
罗翰,舒伟良,蔡川,等.以微流控芯片为载体的神经血管单元三细胞共培养模型的构建与鉴定[J].中风与神经疾病杂志, 2021, 38(10):1070-1074.
|