切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2020, Vol. 10 ›› Issue (04) : 195 -203. doi: 10.3877/cma.j.issn.2095-1221.2020.04.001

所属专题: 文献

论著

人间充质干细胞对乳腺癌细胞生长的影响研究
杨园园1, 朱新贤1, 靳霞1, 童晓文1,()   
  1. 1. 200065 上海,同济大学附属同济医院妇产科
  • 收稿日期:2019-09-07 出版日期:2020-08-01
  • 通信作者: 童晓文
  • 基金资助:
    国家自然科学基金(81702745)

Effects of human mesenchymalstem cells on the growth of breast cancer cells

Yuanyuan Yang1, Xinxian Zhu1, Xia Jin1, Xiaowen Tong1,()   

  1. 1. Department of Obstetrics and Gynecology, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, China
  • Received:2019-09-07 Published:2020-08-01
  • Corresponding author: Xiaowen Tong
  • About author:
    Corresponding author: Tong Xiaowen, Email:
引用本文:

杨园园, 朱新贤, 靳霞, 童晓文. 人间充质干细胞对乳腺癌细胞生长的影响研究[J]. 中华细胞与干细胞杂志(电子版), 2020, 10(04): 195-203.

Yuanyuan Yang, Xinxian Zhu, Xia Jin, Xiaowen Tong. Effects of human mesenchymalstem cells on the growth of breast cancer cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2020, 10(04): 195-203.

目的

通过构建间充质干细胞(MSC)与乳腺癌细胞间相互作用的共培养模型,探讨MSC对乳腺癌细胞生长的影响。

方法

用含荧光基因第三代自身失活慢病毒载体感染人类脐带分离提取的MSC和乳腺癌细胞MDA-MB-231、MCF-7,以单独培养的乳腺癌细胞MDA-MB-231和MCF-7分别设立对照,2种乳腺癌细胞分别与MSC共培养,检测乳腺癌细胞在MSC作用下增生能力的改变,流式细胞术检测共培养后细胞表面标记物表达。两组间比较采用独立样本t检验,多组间比较采用单因素方差分析,多重比较采用Dunnet-t检验。

结果

MSC在与乳腺癌细胞共培养过程中促进肿瘤细胞生长,第3天共培养组乳腺癌MDA-MB-231细胞数高于单独MDA-MB-231培养组[(5.50±0.71)×103个比(1.63±0.41)×103个],培养至第7天,两组间MDA-MB-231细胞数差异进一步增大[(81.25±7.40)×103个比(26.25±4.15)× 103个],差异具有统计学意义(P均< 0.001);共培养后MSC促进乳腺癌细胞表达干细胞特有标记物CD90,MCF-7从共培养第2天CD90表达率(1.38±0.30)﹪升高至第9天(92.45±2.04)﹪。在共培养中MSC围绕肿瘤细胞集落方式生长,在形态上变长,并发现一种新型混合细胞(hybrid融合细胞)同时表达绿色和红色荧光,且对化疗药物更敏感。

结论

MSC促进乳腺癌细胞的生长,伴随MSC形态学改变和hybrid融合细胞出现,乳腺癌细胞获得MSC特有CD90表达。

Objective

To investigate the effect of MSCs on the growth of breast cancer cells by constructing a co-culture model of the interaction between MSCs and breast cancer cells.

Methods

Human umbilical cord was infected with the third generation of sin lentivirus vector containing fluorescent gene, and then MSCs and breast cancer cells MDA-MB-231, MCF-7 were extracted. Breast cancer cells MDA-MB-231 and MCF-7 were cultured respectively, and then control groups were established. Two breast cancer cells were co-cultured with MSCs respectively, to detect the change of proliferation ability of breast cancer cells under the effect of MSCs. Flow cytometry (FACS) was used to detect the expression of cell surface markers. Independent sample t-test was used for comparison between two groups, one-way ANOVA was used for comparison between multiple groups, and Dunnet-t test was used for multiple comparisons.

Results

MSCs promote tumor cell growth during co-culture with breast cancer cells. After 3 days co-cultre, the number of MDA-MB-231 cells in the co-culture group was significantly higher than that in the single MDA-MB-231 culture group (5.50 ± 0.71) × 103 vs (1.63 ± 0.41) × 103. The difference became more significantly at 7 days co-culture (81.25 ± 7.40) × 103 vs (26.25 ± 4.15) × 103 (P < 0.001) .After co-culture, the expression of stem cell specific marker CD90 could be promoted by MSCs. The expression rate of MCF-7 was only (1.38±0.30) ﹪ at 2 days co-culture and (92.45±2.04) ﹪ at 9 days co-culture. The stem cells grew around the tumor cells and became longer. Meanwhile, a new hybrid cell (hybrid fusion cell) was found, which can simultaneously express green and red fluorescence and was more sensitive to chemotherapeutic drugs.

Conclusion

Human MSCs could promote the growth of breast cancer cells, accompanied by the morphological changes of MSCs and the appearance of hybrid fusion cells. Breast cancer cells could express CD90 and only in MSCs.

图1 荧光显微镜下观察转染前后MSC、乳腺癌细胞MDA-MB-231及MCF-7细胞形态(荧光蛋白染色,×100)
图2 流式细胞仪检测转染前后MSC、乳腺癌细胞MDA-MB-231及MCF-7细胞周期(DAPI染色)
图3 荧光显微镜下观察乳腺癌细胞MCF-7+MSC形态(荧光蛋白染色,×100)
图4 荧光显微镜下观察乳腺癌细胞MDA-MB-231+MSC形态(荧光蛋白染色,×100)
图5 荧光显微镜下观察MCF-7Cherry和MSCGFP,MDA-MB-231Cherry和MSCGFP共培养模型细胞形态(荧光蛋白染色,×200)
图6 荧光显微镜下观察MDA-MB-231Cherry+MSCGFP共培养状态下MSC内外泌体分泌情况(荧光蛋白染色,×400)
表1 MDA-MB-231与MSC共培养与单独培养组间细胞增殖能力变化(×103个,±sn = 4)
表2 MCF-7与MSC共培养与单独培养组间增殖能力变化(×103个,±sn = 4)
图7 FACS分析细胞周期比例变化
图8 MDA-MB-231与MSC共培养后生成的hybrids融合细胞对不同化疗药物不同浓度作用24、48、72 h的反应效果
1
Melzer C, Rehn V, Yang Y, et al. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells[J]. Cancers (Basel), 2019, 9:11(6):798.
2
Hass R, von der Ohe J, Ungefroren H. Potential role of MSC/cancer cell fusion and EMT for breast cancer stem cell formation[J]. Cancers (Basel), 2019, 25:11(10):1432.
3
Melzer C, von der Ohe J, Otterbein H, et al. Changes in uPA, PAI-1, and TGF-βproduction during breast cancer cell interaction with human mesenchymal stroma/stem-like cells (MSC)[J].Int J Mol Sci, 2019, 20(11):2630.
4
Mohr A, Zwacka R. The future of mesenchymal stem cell-based therapeutic approaches for cancer From cells to ghosts[J].Cancer Lett, 2018, 414:239-249.
5
Patel S, Alam A, Pant R, et al.Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights[J]. Front Immunol, 2019, 10:2872.
6
De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications[J]. Curr Mol Med, 2012, 12(5):574-591.
7
曲泽澎,贾兆锋,黄曦, 等. 间充质干细胞在器官移植中的应用研究进展[J]. 器官移植, 2018, 9(5):348-353.
8
Kachgal S, Putnam AJ. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms[J]. Angiogenesis, 2011, 14(1):47-59.
9
Guido M, James AA, Julian K M, et al. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines[J]. Trends Mol Med, 2019, 25(2):149-163.
10
Melzer C, von der Ohe J, Hass R. Involvement of actin cytoskeletal components in breast cancer cell fusion with human mesenchymal stroma/stem-like cells[J]. Int J Mol Sci, 2019, 20(4):876.
11
Rust S, Guillard S, Sachsenmeier K, et al. Combining phenotypic and proteomic approaches to identify membrane targets in a 'triple negative' breast cancer cell type[J]. Mol Cancer, 2013, 12:11.
12
Mandel K, Seidl D, Rades D, et al. Characterization of spontaneous and TGF-β-induced cell motility of primary human normal and neoplastic mammary cells in vitro using novel real-time technology[J]. PLoS One, 2013, 8(2):e56591.
13
Yang Y, Otte A, Hass R. Human mesenchymalstroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines[J]. Stem Cells Dev, 2015, 24(10):1205-1222.
14
Sasser AK, Mundy BL, Smith KM, et al. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments[J]. Cancer Lett, 2007, 254(2):255-264.
15
Sosnoski DM, Krishnan V, Kraemer WJ, et al. Changes in cytokines of the bone microenvironment during breast cancer metastasis[J]. Int J Breast Cancer, 2012, 2012:160265.
16
Hass R, Jennek S, Yang Y, et al. c-Met expression and activity in urogenital cancers-novel aspects of signal transduction and medical implications[J]. Cell Commun Signal, 2017, 15(1):10.
17
Otte A, Yang Y, von der OheJ,et al.SCCOHT tumors acquire chemoresistance and protection by interacting mesenchymalstroma/stem cells within the tumor microenvironment[J]. Int J Oncol, 2016, 49(6):2453-2463.
[1] 邵华, 那子悦, 荆慧, 李博, 王秋程, 程文. 术前经皮超声造影对乳腺癌腋窝前哨淋巴结转移及负荷的诊断价值[J]. 中华医学超声杂志(电子版), 2023, 20(08): 849-853.
[2] 张旭, 徐建平, 苏冬明, 王彩芬, 王大力, 张文智. 男性乳腺肿块的超声造影特征[J]. 中华医学超声杂志(电子版), 2023, 20(08): 854-859.
[3] 康一坤, 袁芃. 三阴性乳腺癌分子遗传学及临床特征研究进展[J]. 中华乳腺病杂志(电子版), 2023, 17(05): 290-293.
[4] 冯冰, 邹秋果, 梁振波, 卢艳明, 曾奕, 吴淑苗. 老年非特殊型浸润性乳腺癌超声征象与分子生物学指标的临床研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 48-51.
[5] 栗艳松, 冯会敏, 刘明超, 刘泽鹏, 姜秋霞. STIP1在三阴性乳腺癌组织中的表达及临床意义研究[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 52-56.
[6] 马伟强, 马斌林, 吴中语, 张莹. microRNA在三阴性乳腺癌进展中发挥的作用[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 111-114.
[7] 唐英俊, 李华娟, 王赛妮, 徐旺, 刘峰, 李羲, 郝新宝, 黄华萍. 人脐带间充质干细胞治疗COPD小鼠及机制分析[J]. 中华肺部疾病杂志(电子版), 2023, 16(04): 476-480.
[8] 李晔, 何洁, 胡锦秀, 王金祥, 田川, 潘杭, 陈梦蝶, 赵晓娟, 叶丽, 张敏, 潘兴华. 高活性间充质干细胞干预猕猴卵巢衰老的研究[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 210-219.
[9] 龙慧玲, 林蜜, 邵婷. 三维球体间充质干细胞培养技术的研究进展及其应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 229-234.
[10] 刘文慧, 吴涛, 张曦. 间充质干细胞联合血小板生成素受体激动剂在异基因造血干细胞移植后血小板恢复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 242-246.
[11] 王红敏, 谢云波, 王彦虎, 王福生. 间充质干细胞治疗新冠病毒感染的临床研究进展[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(04): 247-256.
[12] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[13] 刘飞, 王影新, 马骍, 辛灵, 程元甲, 刘倩, 王悦, 张军军. 不同介质腔内心电图定位技术在乳腺癌上臂输液港植入术中应用的随机对照研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 760-764.
[14] 岳瑞雪, 孔令欣, 郝鑫, 杨进强, 韩猛, 崔国忠, 王建军, 张志生, 孔凡庭, 张维, 何文博, 李现桥, 周新平, 徐东宏, 胡崇珠. 乳腺癌HER2蛋白表达水平预测新辅助治疗疗效的真实世界研究[J]. 中华临床医师杂志(电子版), 2023, 17(07): 765-770.
[15] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
阅读次数
全文


摘要