1 |
Melzer C, Rehn V, Yang Y, et al. Taxol-loaded MSC-derived exosomes provide a therapeutic vehicle to target metastatic breast cancer and other carcinoma cells[J]. Cancers (Basel), 2019, 9:11(6):798.
|
2 |
Hass R, von der Ohe J, Ungefroren H. Potential role of MSC/cancer cell fusion and EMT for breast cancer stem cell formation[J]. Cancers (Basel), 2019, 25:11(10):1432.
|
3 |
Melzer C, von der Ohe J, Otterbein H, et al. Changes in uPA, PAI-1, and TGF-βproduction during breast cancer cell interaction with human mesenchymal stroma/stem-like cells (MSC)[J].Int J Mol Sci, 2019, 20(11):2630.
|
4 |
Mohr A, Zwacka R. The future of mesenchymal stem cell-based therapeutic approaches for cancer From cells to ghosts[J].Cancer Lett, 2018, 414:239-249.
|
5 |
Patel S, Alam A, Pant R, et al.Wnt signaling and its significance within the tumor microenvironment: novel therapeutic insights[J]. Front Immunol, 2019, 10:2872.
|
6 |
De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications[J]. Curr Mol Med, 2012, 12(5):574-591.
|
7 |
曲泽澎,贾兆锋,黄曦, 等. 间充质干细胞在器官移植中的应用研究进展[J]. 器官移植, 2018, 9(5):348-353.
|
8 |
Kachgal S, Putnam AJ. Mesenchymal stem cells from adipose and bone marrow promote angiogenesis via distinct cytokine and protease expression mechanisms[J]. Angiogenesis, 2011, 14(1):47-59.
|
9 |
Guido M, James AA, Julian K M, et al. Intravascular mesenchymal stromal/stem cell therapy product diversification: time for new clinical guidelines[J]. Trends Mol Med, 2019, 25(2):149-163.
|
10 |
Melzer C, von der Ohe J, Hass R. Involvement of actin cytoskeletal components in breast cancer cell fusion with human mesenchymal stroma/stem-like cells[J]. Int J Mol Sci, 2019, 20(4):876.
|
11 |
Rust S, Guillard S, Sachsenmeier K, et al. Combining phenotypic and proteomic approaches to identify membrane targets in a 'triple negative' breast cancer cell type[J]. Mol Cancer, 2013, 12:11.
|
12 |
Mandel K, Seidl D, Rades D, et al. Characterization of spontaneous and TGF-β-induced cell motility of primary human normal and neoplastic mammary cells in vitro using novel real-time technology[J]. PLoS One, 2013, 8(2):e56591.
|
13 |
Yang Y, Otte A, Hass R. Human mesenchymalstroma/stem cells exchange membrane proteins and alter functionality during interaction with different tumor cell lines[J]. Stem Cells Dev, 2015, 24(10):1205-1222.
|
14 |
Sasser AK, Mundy BL, Smith KM, et al. Human bone marrow stromal cells enhance breast cancer cell growth rates in a cell line-dependent manner when evaluated in 3D tumor environments[J]. Cancer Lett, 2007, 254(2):255-264.
|
15 |
Sosnoski DM, Krishnan V, Kraemer WJ, et al. Changes in cytokines of the bone microenvironment during breast cancer metastasis[J]. Int J Breast Cancer, 2012, 2012:160265.
|
16 |
Hass R, Jennek S, Yang Y, et al. c-Met expression and activity in urogenital cancers-novel aspects of signal transduction and medical implications[J]. Cell Commun Signal, 2017, 15(1):10.
|
17 |
Otte A, Yang Y, von der OheJ,et al.SCCOHT tumors acquire chemoresistance and protection by interacting mesenchymalstroma/stem cells within the tumor microenvironment[J]. Int J Oncol, 2016, 49(6):2453-2463.
|