切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (05) : 300 -308. doi: 10.3877/cma.j.issn.2095-1221.2022.05.007

综述

干细胞心肌分化调控过程中的非编码RNA
姜垠昊1, 杨秭莹1, 沈晗1, 沈振亚1,()   
  1. 1. 215006 苏州,苏州大学附属第一医院心脏大血管外科
  • 收稿日期:2022-03-16 出版日期:2022-10-01
  • 通信作者: 沈振亚
  • 基金资助:
    国家自然科学基金重大研究计划项目(92168203); 苏州市临床医学专家团队引进项目(SZYJTD201704); 苏州市科技计划民生项目(SYS2020113); 苏州大学附属第一医院博习培育计划自然科学基金项目(BXQN202131)

Non-coding RNAs in the regulation of myocardial differentiation in stem cells

Yinhao Jiang1, Ziying Yang1, Han Shen1, Zhenya Shen1,()   

  1. 1. Department of Cardiovascular Surgery of the First Affiliated Hospital of Soochow University, Suzhou 215006, China
  • Received:2022-03-16 Published:2022-10-01
  • Corresponding author: Zhenya Shen
引用本文:

姜垠昊, 杨秭莹, 沈晗, 沈振亚. 干细胞心肌分化调控过程中的非编码RNA[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(05): 300-308.

Yinhao Jiang, Ziying Yang, Han Shen, Zhenya Shen. Non-coding RNAs in the regulation of myocardial differentiation in stem cells[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(05): 300-308.

心血管疾病(CVDs)是目前我国城乡居民死亡的首要原因。尽管目前的医疗手段可以改善症状并减缓不良心脏重构,但未能解决心脏组织不可逆损失的根本问题。干细胞在适当的条件诱导下可以定向分化为心肌细胞,应用多能干细胞来源的心肌细胞(PSC-CMs)修复受损心脏以恢复正常心功能是一种理想的治疗手段。在干细胞向心肌细胞分化的过程中,多种转录因子和信号通路遵循一定规律在不同时间节点的表达,对此进行调控可提高PSC-CMs的获取效率。在过去十余年中,对非编码RNA (ncRNA)特别是微小RNA (miRNA)、长链非编码RNA (lncRNA)和环状RNA (circRNA)作为基因表达调控的关键分子已经得到了大量研究,其生物学调控的作用主要体现在表观遗传学、转录和转录后水平。心脏的发育过程同样受到ncRNA的调节,本文综述了在心肌细胞分化和成熟过程中ncRNA的调控机制,为更有效地获取高质量的PSC-CMs,将其用于CVDs的临床治疗提供理论指导。

Cardiovascular diseases (CVDs) are currently the leading cause of death in China. Although current medical interventions can alleviate symptoms and reduce adverse cardiac remodeling, they fail to address the underlying problem of irreversible loss of cardiac tissue. Under certain conditions, stem cells can directionally differentiate into cardiomyocytes. And it is an ideal way to restore normal heart function by treating impaired hearts with pluripotent stem cell-derived cardiomyocytes (PSC-CMs) . During the differentiation of stem cells into cardiomyocytes, multiple transcription factors and signaling pathways follow a certain pattern of expression at different periods, which can be regulated to improve the efficiency of harvesting PSC-CMs. In the last decade or so, the role of non-coding RNA (ncRNA) , especially microRNA (miRNA) , long non-coding RNA (lncRNA) and circular RNA (circRNA) , as critical molecules in the regulation of gene expression, has been extensively investigated. The biological regulatory functions of ncRNAs occur at the epigenetic level and during transcriptional and post-transcriptional levels. The development of the heart is also regulated by ncRNAs. In this review, we outlined the regulatory mechanisms of ncRNAs during cardiomyocyte differentiation and maturation to provide theoretical guidance for more effective acquisition of high-quality PSC-CMs to be used in the clinical treatment of CVDs.

表1 诱导干细胞心肌分化的miRNA
名称 作用靶点 生物学作用 对心肌分化的调节 参考文献
miR-148a DMNT1 抑制心脏特异性蛋白GATA-4甲基化 促进分化 [3940]
miR-19b Wnt1 协同5-aza促进BMSCs向心肌样细胞分化
促进细胞增殖、分化、抑制凋亡
抑制Wnt/β-catenin信号通路
促进分化 [4145]
miR-149 Dab2 负调节Dab2,解除Dab2对Wnt/β-catenin信号通路的抑制作用 促进分化 [13]
miR-1-2 Wnt11 增强非经典Wnt通路
增加心脏特异性基因表达
促进分化 [14]
miR-499   增加心脏特异性基因的表达
激活Wnt/β-catenin信号通路
促进分化 [15]
miR-26b Gsk3β和Wnt5a 促进细胞增殖、分化、抑制凋亡
抑制Wnt5a和Gsk3β的表达,激活经典Wnt信号通路,抑制非经典Wnt信号通路
促进分化 [46]
miR-335-3p,miR-335-5p DKK1
SMAD7
激活Wnt信号通路
激活TGF-β信号通路
促进分化 [47]
miR-184 Wnt3 抑制经典Wnt信号通路 早期抑制分化,后期促进分化 [48]
miR-1 FZD7,FRS2
Hes-1
抑制Wnt信号通路和FGF信号通路
抑制ESCs衍生的多能心血管祖细胞向血管内皮细胞系定型
负调控Hes-1促进心脏特异性基因表达
促进分化 [4957]
miR-375 Notch2 抑制Notch2影响Notch通路
促进细胞凋亡,抑制增殖
抑制分化 [53]
miR-148a,miR-1a Dll1 抑制Dll1介导的Notch信号通路 促进分化 [5556]
miR-199b-5p HSF1
HSP70
HSF1/HSP70信号通路 抑制分化 [58]
miR-124 STAT3 下调STAT3,减少心脏特异性标志物的表达 抑制分化 [59]
miR-98-5p,miR-10-5p TBX5 下调TBX5,减少心肌相关的基因mRNA表达 抑制分化 [6061]
表2 诱导干细胞心肌分化的lncRNA
表3 诱导干细胞心肌分化的circRNA
1
中国心血管健康与疾病报告2020编写组.《中国心血管健康与疾病报告2020》概述[J]. 中国心血管病研究, 2021, 19(7):582-590.
2
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, et al. Pathophysiology of atherosclerosis[J]. Int J Mol Sci, 2022, 23(6):3346. doi:10.3390/ijms23063346.
3
Nair N, Gongora E. Stem cell therapy in heart failure: where do we stand today?[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(4): 165489.doi:10.1016/j.bbadis.2019.06.003.
4
Müller P, Lemcke H, David R. Stem cell therapy in heart diseases-cell types, mechanisms and improvement strategies[J]. Cell Physiol Biochem, 2018, 48(6):2607-2655.
5
Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1):68.doi: 10.1186/s13287-019-1165-5.
6
Zhang Z, Duan Y, Bei Y. Cardiac progenitor cell-derived extracellular vesicles:a rising star for cardiac repair and regeneration[J]. J Cardiovasc Transl Res, 2019, 12(1):3-4.
7
Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes[J]. J Transl Med, 2020, 18(1):336.doi: 10.1186/s12967-020-02504-8.
8
Rowton M, Guzzetta A, Rydeen AB, et al. Control of cardiomyocyte differentiation timing by intercellular signaling pathways[J]. Semin Cell Dev Biol, 2021, 118:94-106.
9
Parikh A, Wu J, Blanton RM, et al. Signaling pathways and gene regulatory networks in cardiomyocyte differentiation[J]. Tissue Eng Part B Rev, 2015, 21(4):377-392.
10
Hunkler HJ, Groß S, Thum T, et al. Non-coding RNAs-key regulators of reprogramming, pluripotency and cardiac cell specification with therapeutic perspective for heart regeneration[J]. Cardiovasc Res, 2021, 30:cvab335. doi: 10.1093/cvr/cvab335.
11
Ramesh S, Govarthanan K, Ostrovidov S, et al. Cardiac differentiation of mesenchymal stem cells: impact of biological and chemical inducers[J]. Stem Cell Rev Rep, 2021, 17(4):1343-1361.
12
Krause K, Schneider C, Kuck KH, et al. Stem cell therapy in cardiovascular disorders[J]. Cardiovasc Ther, 2010, 28(5):e101-10.
13
Lu M, Xu L, Wang M, et al. miR149 promotes the myocardial differentiation of mouse bone marrow stem cells by targeting Dab2[J]. Mol Med Rep, 2018, 17(6):8502-8509.
14
Shen X, Pan B, Zhou H, et al. Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway[J]. J Biomed Sci, 2017, 24(1):29.doi: 10.1186/s12929-017-0337-9.
15
Zhang LL, Liu JJ, Liu F, et al. MiR-499 induces cardiac differentiation of rat mesenchymal stem cells through wnt/beta-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2012, 420(4):875-881.
16
Markmee R, Aungsuchawan S, Tancharoen W, et al. Differentiation of cardiomyocyte-like cells from human amniotic fluid mesenchymal stem cells by combined induction with human platelet lysate and 5-azacytidine[J]. Heliyon, 2020, 6(9):e04844. doi:10.1016/j.heliyon.2020.e04844.
17
White SJ, Chong JJH. Mesenchymal stem cells in cardiac repair: effects on myocytes, vasculature, and fibroblasts[J]. Clin Ther, 2020, 42(10):1880-1891.
18
Doğan A. Embryonic stem cells in development and regenerative medicine[J]. Adv Exp Med Biol, 2018, 1079:1-15.
19
Vidarsson H, Hyllner J, Sartipy P. Differentiation of human embryonic vstem cells to cardiomyocytes for in vitro and in vivo applications[J]. Stem Cell Rev Rep, 2010, 6(1):108-120.
20
Mummery CL, Zhang J, Ng ES, et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview[J]. Circ Res, 2012, 111(3):344-358.
21
Menasché P. Embryonic stem cells for severe heart failure: why and how?[J]. J Cardiovasc Transl Res, 2012, 5(5):555-565.
22
Yoshida Y, Yamanaka S. iPS cells: a source of cardiac regeneration[J]. J Mol Cell Cardiol, 2011, 50(2):327-332.
23
Tohyama S, Fukuda K. Safe and effective cardiac regenerative therapy with human-induced pluripotent stem cells: how should we prepare pure cardiac myocytes?[J]. Circ Res, 2017, 120(10):1558-1560.
24
Yoshida Y, Yamanaka S. Induced pluripotent stem cells 10 years later: for cardiac applications[J]. Circ Res, 2017, 120(12):1958-1968.
25
Wu P, Deng G, Sai X, et al. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes[J]. Biosci Rep, 2021, 41(6):BSR20200833. doi:10.1042/BSR20200833.
26
Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk?[J]. Front Genet, 2015, 6:2.doi: 10.3389/fgene.2015.00002.
27
Zhang P, Wu W, Chen Q, et al. Non-Coding RNAs and their integrated networks[J]. J Integr Bioinform, 2019, 16(3):20190027. doi:10.1515/jib-2019-0027.
28
Schweiger V, Hasimbegovic E, Kastner N, et al. Non-Coding RNAs in stem cell regulation and cardiac regeneration: current problems and future perspectives[J]. Int J Mol Sci, 2021, 22(17):9160. doi: 10.3390/ijms22179160.
29
Kalayinia S, Arjmand F, Maleki M, et al. MicroRNAs:roles in cardiovascular development and disease[J].Cardiovasc Pathol, 2021, 50:107296.doi:10.1016/j.carpath.2020.107296.
30
Yang Q, Wu F, Wang F, et al. Impact of DNA methyltransferase inhibitor 5-azacytidine on cardiac development of zebrafish in vivo and cardiomyocyte proliferation, apoptosis, and the homeostasis of gene expression in vitro[J]. J Cell Biochem, 2019, 120(10):17459-17471.
31
Naeem N, Haneef K, Kabir N, et al. DNA methylation inhibitors, 5-azacytidine and zebularine potentiate the transdifferentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes[J]. Cardiovasc Ther, 2013, 31(4):201-209.
32
Makino S, Fukuda K, Miyoshi S,et al. Cardiomyocytes can be generated from marrow stromal cells in vitro[J]. J Clin Invest, 1999, 103(5):697-705.
33
Qian Q, Qian H, Zhang X, et al. 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase[J]. Stem Cells Dev, 2012, 21(1):67-75.
34
Cheng F, Zou P, Yang H, et al. Induced differentiation of human cord blood mesenchymal stem/progenitor cells into cardiomyocyte-like cells in vitro[J]. J Huazhong Univ Sci Technolog Med Sci, 2003, 23(2):154-157.
35
Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, et al. In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine[J]. Interact Cardiovasc Thorac Surg, 2007, 6(5):593-597.
36
Supokawej A, Kheolamai P, Nartprayut K, et al. Cardiogenic and myogenic gene expression in mesenchymal stem cells after 5-azacytidine treatment[J]. Turk J Haematol, 2013, 30(2):115-121.
37
Martin-Rendon E, Sweeney D, Lu F, et al. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies[J]. Vox Sang, 2008, 95(2):137-148.
38
Abou-ElNaga A, El-Chennawi F, Ibrahim Kamel S, et al. The potentiality of human umbilical cord isolated mesenchymal stem/stromal cells for cardiomyocyte generation[J]. Stem Cells Cloning, 2020, 13:91-101.
39
Jiang C, Gong F. MiR-148a promotes myocardial differentiation of human bone mesenchymal stromal cells via DNA methyltransferase 1 (DNMT1)[J]. Cell Biol Int, 2018, 42(8):913-922.
40
蒋昌科, 龚放. miR-148a在5-aza诱导间充质干细胞心肌样分化中的调控作用及机制[J]. 中国应用生理学杂志, 2017, 33(6):514-8+543.
41
周琦, 明强, 刘敏, 等. 微小RNA-19b协同5-氮胞苷对骨髓间充质干细胞向心肌样细胞分化的影响[J]. 岭南心血管病杂志, 2021, 27(5):587-592.
42
Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6):985-999.
43
Lian X, Hsiao C, Wilson G, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling[J]. Proc Natl Acad Sci U S A, 2012, 109(27): E1848-57.
44
Gessert S, Kühl M. The multiple phases and faces of wnt signaling during cardiac differentiation and development[J]. Circ Res, 2010, 107(2):186-199.
45
Qin DN, Qian L, Hu DL, et al. Effects of miR-19b overexpression on proliferation, differentiation, apoptosis and Wnt/beta-catenin signaling pathway in P19 cell model of cardiac differentiation in vitro[J]. Cell Biochem Biophys, 2013, 66(3):709-722.
46
Wang D, Liu C, Wang Y, et al. Impact of miR-26b on cardiomyocyte differentiation in P19 cells through regulating canonical/non-canonical Wnt signalling[J]. Cell Prolif, 2017, 50(6):e12371. doi: 10.1111/cpr.12371.
47
Kay M, Soltani BM, Aghdaei FH, et al. Hsa-miR-335 regulates cardiac mesoderm and progenitor cell differentiation[J]. Stem Cell Res Ther, 2019, 10(1):191.doi: 10.1186/s13287-019-1249-2.
48
Liu X, Yang Y, Wang X, et al. MiR-184 directly targets Wnt3 in cardiac mesoderm differentiation of embryonic stem cells[J]. Stem Cells, 2020, doi: 10.1002/stem.3282.
49
Lu TY, Lin B, Li Y, Arora A, et al. Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways[J]. J Mol Cell Cardiol, 2013, 63:146-154.
50
MacGrogan D, Münch J, de la Pompa JL. Notch and interacting signalling pathways in cardiac development, disease, and regeneration[J]. Nat Rev Cardiol, 2018, 15(11):685-704.
51
de la Pompa JL, Epstein JA. Coordinating tissue interactions: Notch signaling in cardiac development and disease[J]. Dev Cell, 2012, 22(2):244-254.
52
Gomez AH, Joshi S, Yang Y, et al. Bioengineering systems for modulating notch signaling in cardiovascular development, disease, and regeneration[J]. J Cardiovasc Dev Dis, 2021, 8(10):125. doi: 10.3390/jcdd8100125.
53
Zhuang S, Fu Y, Li J, et al. MicroRNA-375 overexpression disrupts cardiac development of Zebrafish (Danio rerio) by targeting notch2[J]. Protoplasma, 2020, 257(5):1309-1318.
54
Yu Z, Zou Y, Fan J, et al. Notch1 is associated with the differentiation of human bone marrowderived mesenchymal stem cells to cardiomyocytes[J]. Mol Med Rep, 2016, 14(6):5065-5071.
55
Fang X, Miao S, Yu Y, et al. MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1-mediated NOTCH signaling pathway[J]. J Mol Cell Cardiol, 2019, 134:1-12.
56
Huang F, Tang L, Fang ZF, et al. miR-1-mediated induction of cardiogenesis in mesenchymal stem cells via downregulation of Hes-1[J]. Biomed Res Int, 2013, 2013:216286.doi: 10.1155/2013/216286.
57
Zhao XL, Yang B, Ma LN, et al. MicroRNA-1 effectively induces differentiation of myocardial cells from mouse bone marrow mesenchymal stem cells[J]. Artif Cells Nanomed Biotechnol, 2016, 44(7):1665-1670.
58
Dai F, Du P, Chang Y, et al. Downregulation of MiR-199b-5p inducing differentiation of bone-marrow mesenchymal stem cells (BMSCs) toward cardiomyocyte-like cells via HSF1/HSP70 pathway[J]. Med Sci Monit, 2018, 24:2700-2710.
59
Cai B, Li J, Wang J, et al. microRNA-124 regulates cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells via targeting STAT3 signaling[J]. Stem Cells, 2012, 30(8):1746-1755.
60
Sun HH, Sun PF, Liu WY. MiR-98-5p regulates myocardial differentiation of mesenchymal stem cells by targeting TBX5[J]. Eur Rev Med Pharmacol Sci, 2018, 22(22):7841-7848.
61
Li M, Zhang YL, Huang H, et al. MicroRNA-10-5p regulates differentiation of bone marrow mesenchymal stem cells into cardiomyocytes by targeting TBX5[J]. Eur Rev Med Pharmacol Sci, 2019, 23(2):479-485.
62
Morillon A. Long Non-coding RNA [M].London: ISTE Press- Elsevier, 2018:55-67.
63
Klattenhoff CA, Scheuermann JC, Surface LE, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment[J]. Cell, 2013, 152(3):570-583.
64
Hou J, Long H, Zhou C, et al. Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro[J]. Stem Cell Res Ther, 2017, 8(1):4.doi: 10.1186/s13287-016-0454-5.
65
Lyu Y, Jia W, Wu Y, et al. Cpmer: A new conserved eEF1A2-binding partner that regulates Eomes translation and cardiomyocyte differentiation[J]. Stem Cell Reports, 2022, 17(5):1154-1169.
66
Guo X, Xu Y, Wang Z, et al. A Linc1405/Eomes complex promotes cardiac mesoderm specification and cardiogenesis[J]. Cell Stem Cell, 2018, 22(6):893-908.e6.
67
Ounzain S, Micheletti R, Arnan C, et al. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis[J]. J Mol Cell Cardiol, 2015, 89(Pt A):98-112.
68
Kim N J, Lee K H, Son Y, et al. Spatiotemporal expression of long noncoding RNA Moshe modulates heart cell lineage commitment[J]. RNA Biol, 2021, 18(sup2):640-654.
69
Jiang Y, Zhuang J, Lin Y, et al. Long noncoding RNA SNHG6 contributes to ventricular septal defect formation via negative regulation of miR-101 and activation of Wnt/beta-catenin pathway[J]. Pharmazie, 2019, 74(1):23-28.
70
Jha R, Li D, Wu Q, et al. A long non-coding RNA GATA6-AS1 adjacent to GATA6 is required for cardiomyocyte differentiation from human pluripotent stem cells[J]. FASEB J, 2020, 34(11):14336-14352.
71
Kay M, Soltani BM, Nemir M, et al. The conserved long noncoding RNA CARMA regulates cardiomyocyte differentiation[J]. Cardiovasc Res, 2022, 118(10):2339-2353.
72
Liu J, Li Y, Lin B, et al. HBL1 Is a human long noncoding RNA that modulates cardiomyocyte development from pluripotent stem cells by counteracting MIR1[J]. Dev Cell, 2017, 42(4):333-48.e5.
73
Zhu Y, Shan X, Zhou J, et al. Downregulated lncRNA RCPCD promotes differentiation of embryonic stem cells into cardiac pacemaker-like cells by suppressing HCN4 promoter methylation[J]. Cell Death Dis, 2021, 12(7):667.doi: 10.1038/s41419-021-03949-5.
74
Kang X, Zhao Y, Van Arsdell G, et al. Ppp1r1b-lncRNA inhibits PRC2 at myogenic regulatory genes to promote cardiac and skeletal muscle development in mouse and human[J]. RNA, 2020, 26(4):481-491.
75
Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15(7):409.doi:10.1186/s13059-014-0409-z.
76
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5):453-461.
77
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11):675-691.
78
Ruan ZB, Chen GC, Zhang R, et al. Circular RNA expression profiles during the differentiation of human umbilical cord-derived mesenchymal stem cells into cardiomyocyte-like cells[J]. J Cell Physiol, 2019.doi: 10.1002/jcp.28310.
79
Li M, Pei Z, Zhang H, et al. Expression profile of long noncoding rnas and circular rnas in mouse c3h10t1/2 mesenchymal stem cells undergoing myogenic and cardiomyogenic differentiation[J]. Stem Cells Int, 2021, 2021:8882264.doi: 10.1155/2021/8882264.
80
Cherubini A, Barilani M, Rossi RL, et al. FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition[J]. Nucleic Acids Res, 2019, 47(10):5325-5340.
81
Tan WL, Lim BT, Anene-Nzelu CG, et al. A landscape of circular RNA expression in the human heart[J]. Cardiovasc Res, 2017, 113(3):298-309.
82
Liu Y, Gao J, Xu M, et al. Circular RNA circ-RCCD promotes cardiomyocyte differentiation in mouse embryo development via recruiting YY1 to the promoter of MyD88[J]. J Cell Mol Med, 2022, 26(13):3616-3627.
83
Lei W, Feng T, Fang X, et al. Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes[J]. Stem Cell Res Ther, 2018, 9(1):56.
84
Yu B, Li M, Han SP, et al. Circular RNA hsa_circ_105039 promotes cardiomyocyte differentiation by sponging miR17 to regulate cyclinD2 expression[J]. Mol Med Rep, 2021, 24(6):861. doi: 10.3892/mmr.2021.12501.
85
Morena F, Argentati C, Bazzucchi M, et al. Above the epitranscriptome: RNA modifications and stem cell identity[J]. Genes (Basel), 2018, 9(7):329. doi: 10.3390/genes9070329.
86
Batista PJ, Molinie B, Wang J, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells[J]. Cell Stem Cell, 2014, 15(6):707-719.
87
Chen X, Zhao Q, Zhao YL, et al. Targeted RNA N(6)-Methyladenosine demethylation controls cell fate transition in human pluripotent stem cells[J]. Adv Sci (Weinh), 2021, 8(11):e2003902.doi: 10.1002/advs.202003902.
88
Yang D, Qiao J, Wang G, et al. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential[J]. Nucleic Acids Res, 2018, 46(8):3906-3920.
89
Wang S, Zhang J, Ding Y, et al. Dynamic transcriptome profiling reveals lncrna-centred regulatory networks in the modulation of pluripotency[J]. Front Cell Dev Biol, 2022, 10: 880674.doi: 10.3389/fcell.2022.880674.
90
Guo Y, Pu WT. Cardiomyocyte maturation: New phase in development[J]. Circ Res, 2020, 126(8):1086-1106.
[1] 卫杨文祥, 黄浩然, 刘予豪, 陈镇秋, 王海彬, 周驰. 股骨头坏死细胞治疗的前景和挑战[J]. 中华关节外科杂志(电子版), 2023, 17(05): 694-700.
[2] 刘星辰, 刘娟, 魏宝宝, 刘洁, 刘辉. XIAP与XAF1异常表达与卵巢癌的相关性分析[J]. 中华妇幼临床医学杂志(电子版), 2023, 19(04): 419-427.
[3] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[4] 全勇, 冉新泽, 胡梦佳, 陈芳, 陈乃成, 廖伟年, 陈默, 申明强, 陈石磊, 王崧, 王军平. 低氧习服在小鼠造血干细胞急性放射损伤修复中的作用观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 293-298.
[5] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[6] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[7] 黄汇, 朱信强. 131I治疗45岁以下分化型甲状腺癌的疗效及影响因素[J]. 中华普外科手术学杂志(电子版), 2023, 17(06): 627-630.
[8] 郑泽坤, 刘卓恒, 邹浩, 胡会元, 李妲, 吴巍. 扩大根治性手术切除复发性巨大腹膜后去分化脂肪肉瘤1例[J]. 中华普外科手术学杂志(电子版), 2023, 17(05): 588-590.
[9] 张蓉, 秦洪真, 杨晓冬, 刘爽, 刘明锋, 曹秀堂. 分化型甲状腺癌术后康复锻炼的临床应用研究[J]. 中华普外科手术学杂志(电子版), 2023, 17(04): 439-442.
[10] 王楚风, 蒋安. 原发性肝癌的分子诊断[J]. 中华肝脏外科手术学电子杂志, 2023, 12(05): 499-503.
[11] 杨蕴钊, 周诚, 石美涵, 赵静, 白雪源. 人羊水间充质干细胞对膜性肾病大鼠的治疗作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 181-186.
[12] 宋艳琪, 任雪景, 王文娟, 韩秋霞, 续玥, 庄凯婷, 肖拓, 蔡广研. 间充质干细胞对顺铂诱导的小鼠急性肾损伤中细胞铁死亡的作用[J]. 中华肾病研究电子杂志, 2023, 12(04): 187-193.
[13] 吴凤芸, 滕鑫, 刘连娟. 高帧频超声造影与增强磁共振对不同直径原发性高分化肝细胞癌的诊断价值[J]. 中华消化病与影像杂志(电子版), 2023, 13(06): 404-408.
[14] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[15] 邱甜, 杨苗娟, 胡波, 郭毅, 何奕涛. 亚低温治疗脑梗死机制的研究进展[J]. 中华脑血管病杂志(电子版), 2023, 17(05): 518-521.
阅读次数
全文


摘要