1 |
中国心血管健康与疾病报告2020编写组.《中国心血管健康与疾病报告2020》概述[J]. 中国心血管病研究, 2021, 19(7):582-590.
|
2 |
Jebari-Benslaiman S, Galicia-García U, Larrea-Sebal A, et al. Pathophysiology of atherosclerosis[J]. Int J Mol Sci, 2022, 23(6):3346. doi: 10.3390/ijms23063346.
|
3 |
Nair N, Gongora E. Stem cell therapy in heart failure: where do we stand today?[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866(4): 165489.doi: 10.1016/j.bbadis.2019.06.003.
|
4 |
Müller P, Lemcke H, David R. Stem cell therapy in heart diseases-cell types, mechanisms and improvement strategies[J]. Cell Physiol Biochem, 2018, 48(6):2607-2655.
|
5 |
Zakrzewski W, Dobrzyński M, Szymonowicz M, et al. Stem cells: past, present, and future[J]. Stem Cell Res Ther, 2019, 10(1):68.doi: 10.1186/s13287-019-1165-5.
|
6 |
Zhang Z, Duan Y, Bei Y. Cardiac progenitor cell-derived extracellular vesicles:a rising star for cardiac repair and regeneration[J]. J Cardiovasc Transl Res, 2019, 12(1):3-4.
|
7 |
Sid-Otmane C, Perrault LP, Ly HQ. Mesenchymal stem cell mediates cardiac repair through autocrine, paracrine and endocrine axes[J]. J Transl Med, 2020, 18(1):336.doi: 10.1186/s12967-020-02504-8.
|
8 |
Rowton M, Guzzetta A, Rydeen AB, et al. Control of cardiomyocyte differentiation timing by intercellular signaling pathways[J]. Semin Cell Dev Biol, 2021, 118:94-106.
|
9 |
Parikh A, Wu J, Blanton RM, et al. Signaling pathways and gene regulatory networks in cardiomyocyte differentiation[J]. Tissue Eng Part B Rev, 2015, 21(4):377-392.
|
10 |
Hunkler HJ, Groß S, Thum T, et al. Non-coding RNAs-key regulators of reprogramming, pluripotency and cardiac cell specification with therapeutic perspective for heart regeneration[J]. Cardiovasc Res, 2021, 30:cvab335. doi: 10.1093/cvr/cvab335.
|
11 |
Ramesh S, Govarthanan K, Ostrovidov S, et al. Cardiac differentiation of mesenchymal stem cells: impact of biological and chemical inducers[J]. Stem Cell Rev Rep, 2021, 17(4):1343-1361.
|
12 |
Krause K, Schneider C, Kuck KH, et al. Stem cell therapy in cardiovascular disorders[J]. Cardiovasc Ther, 2010, 28(5):e101-10.
|
13 |
Lu M, Xu L, Wang M, et al. miR149 promotes the myocardial differentiation of mouse bone marrow stem cells by targeting Dab2[J]. Mol Med Rep, 2018, 17(6):8502-8509.
|
14 |
Shen X, Pan B, Zhou H, et al. Differentiation of mesenchymal stem cells into cardiomyocytes is regulated by miRNA-1-2 via WNT signaling pathway[J]. J Biomed Sci, 2017, 24(1):29.doi: 10.1186/s12929-017-0337-9.
|
15 |
Zhang LL, Liu JJ, Liu F, et al. MiR-499 induces cardiac differentiation of rat mesenchymal stem cells through wnt/beta-catenin signaling pathway[J]. Biochem Biophys Res Commun, 2012, 420(4):875-881.
|
16 |
Markmee R, Aungsuchawan S, Tancharoen W, et al. Differentiation of cardiomyocyte-like cells from human amniotic fluid mesenchymal stem cells by combined induction with human platelet lysate and 5-azacytidine[J]. Heliyon, 2020, 6(9):e04844. doi: 10.1016/j.heliyon.2020.e04844.
|
17 |
White SJ, Chong JJH. Mesenchymal stem cells in cardiac repair: effects on myocytes, vasculature, and fibroblasts[J]. Clin Ther, 2020, 42(10):1880-1891.
|
18 |
Doğan A. Embryonic stem cells in development and regenerative medicine[J]. Adv Exp Med Biol, 2018, 1079:1-15.
|
19 |
Vidarsson H, Hyllner J, Sartipy P. Differentiation of human embryonic vstem cells to cardiomyocytes for in vitro and in vivo applications[J]. Stem Cell Rev Rep, 2010, 6(1):108-120.
|
20 |
Mummery CL, Zhang J, Ng ES, et al. Differentiation of human embryonic stem cells and induced pluripotent stem cells to cardiomyocytes: a methods overview[J]. Circ Res, 2012, 111(3):344-358.
|
21 |
Menasché P. Embryonic stem cells for severe heart failure: why and how?[J]. J Cardiovasc Transl Res, 2012, 5(5):555-565.
|
22 |
Yoshida Y, Yamanaka S. iPS cells: a source of cardiac regeneration[J]. J Mol Cell Cardiol, 2011, 50(2):327-332.
|
23 |
Tohyama S, Fukuda K. Safe and effective cardiac regenerative therapy with human-induced pluripotent stem cells: how should we prepare pure cardiac myocytes?[J]. Circ Res, 2017, 120(10):1558-1560.
|
24 |
Yoshida Y, Yamanaka S. Induced pluripotent stem cells 10 years later: for cardiac applications[J]. Circ Res, 2017, 120(12):1958-1968.
|
25 |
Wu P, Deng G, Sai X, et al. Maturation strategies and limitations of induced pluripotent stem cell-derived cardiomyocytes[J]. Biosci Rep, 2021, 41(6):BSR20200833. doi: 10.1042/BSR20200833.
|
26 |
Palazzo AF, Lee ES. Non-coding RNA: what is functional and what is junk?[J]. Front Genet, 2015, 6:2.doi: 10.3389/fgene.2015.00002.
|
27 |
Zhang P, Wu W, Chen Q, et al. Non-Coding RNAs and their integrated networks[J]. J Integr Bioinform, 2019, 16(3):20190027. doi: 10.1515/jib-2019-0027.
|
28 |
Schweiger V, Hasimbegovic E, Kastner N, et al. Non-Coding RNAs in stem cell regulation and cardiac regeneration: current problems and future perspectives[J]. Int J Mol Sci, 2021, 22(17):9160. doi: 10.3390/ijms22179160.
|
29 |
Kalayinia S, Arjmand F, Maleki M, et al. MicroRNAs:roles in cardiovascular development and disease[J]. Cardiovasc Pathol, 2021, 50:107296.doi: 10.1016/j.carpath.2020.107296.
|
30 |
Yang Q, Wu F, Wang F, et al. Impact of DNA methyltransferase inhibitor 5-azacytidine on cardiac development of zebrafish in vivo and cardiomyocyte proliferation, apoptosis, and the homeostasis of gene expression in vitro[J]. J Cell Biochem, 2019, 120(10):17459-17471.
|
31 |
Naeem N, Haneef K, Kabir N, et al. DNA methylation inhibitors, 5-azacytidine and zebularine potentiate the transdifferentiation of rat bone marrow mesenchymal stem cells into cardiomyocytes[J]. Cardiovasc Ther, 2013, 31(4):201-209.
|
32 |
Makino S, Fukuda K, Miyoshi S,et al. Cardiomyocytes can be generated from marrow stromal cells in vitro[J]. J Clin Invest, 1999, 103(5):697-705.
|
33 |
Qian Q, Qian H, Zhang X, et al. 5-Azacytidine induces cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase[J]. Stem Cells Dev, 2012, 21(1):67-75.
|
34 |
Cheng F, Zou P, Yang H, et al. Induced differentiation of human cord blood mesenchymal stem/progenitor cells into cardiomyocyte-like cells in vitro[J]. J Huazhong Univ Sci Technolog Med Sci, 2003, 23(2):154-157.
|
35 |
Antonitsis P, Ioannidou-Papagiannaki E, Kaidoglou A, et al. In vitro cardiomyogenic differentiation of adult human bone marrow mesenchymal stem cells. The role of 5-azacytidine[J]. Interact Cardiovasc Thorac Surg, 2007, 6(5):593-597.
|
36 |
Supokawej A, Kheolamai P, Nartprayut K, et al. Cardiogenic and myogenic gene expression in mesenchymal stem cells after 5-azacytidine treatment[J]. Turk J Haematol, 2013, 30(2):115-121.
|
37 |
Martin-Rendon E, Sweeney D, Lu F, et al. 5-Azacytidine-treated human mesenchymal stem/progenitor cells derived from umbilical cord, cord blood and bone marrow do not generate cardiomyocytes in vitro at high frequencies[J]. Vox Sang, 2008, 95(2):137-148.
|
38 |
Abou-ElNaga A, El-Chennawi F, Ibrahim Kamel S, et al. The potentiality of human umbilical cord isolated mesenchymal stem/stromal cells for cardiomyocyte generation[J]. Stem Cells Cloning, 2020, 13:91-101.
|
39 |
Jiang C, Gong F. MiR-148a promotes myocardial differentiation of human bone mesenchymal stromal cells via DNA methyltransferase 1 (DNMT1)[J]. Cell Biol Int, 2018, 42(8):913-922.
|
40 |
蒋昌科, 龚放. miR-148a在5-aza诱导间充质干细胞心肌样分化中的调控作用及机制[J]. 中国应用生理学杂志, 2017, 33(6):514-8+543.
|
41 |
周琦, 明强, 刘敏, 等. 微小RNA-19b协同5-氮胞苷对骨髓间充质干细胞向心肌样细胞分化的影响[J]. 岭南心血管病杂志, 2021, 27(5):587-592.
|
42 |
Nusse R, Clevers H. Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities[J]. Cell, 2017, 169(6):985-999.
|
43 |
Lian X, Hsiao C, Wilson G, et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling[J]. Proc Natl Acad Sci U S A, 2012, 109(27): E1848-57.
|
44 |
Gessert S, Kühl M. The multiple phases and faces of wnt signaling during cardiac differentiation and development[J]. Circ Res, 2010, 107(2):186-199.
|
45 |
Qin DN, Qian L, Hu DL, et al. Effects of miR-19b overexpression on proliferation, differentiation, apoptosis and Wnt/beta-catenin signaling pathway in P19 cell model of cardiac differentiation in vitro[J]. Cell Biochem Biophys, 2013, 66(3):709-722.
|
46 |
Wang D, Liu C, Wang Y, et al. Impact of miR-26b on cardiomyocyte differentiation in P19 cells through regulating canonical/non-canonical Wnt signalling[J]. Cell Prolif, 2017, 50(6):e12371. doi: 10.1111/cpr.12371.
|
47 |
Kay M, Soltani BM, Aghdaei FH, et al. Hsa-miR-335 regulates cardiac mesoderm and progenitor cell differentiation[J]. Stem Cell Res Ther, 2019, 10(1):191.doi: 10.1186/s13287-019-1249-2.
|
48 |
Liu X, Yang Y, Wang X, et al. MiR-184 directly targets Wnt3 in cardiac mesoderm differentiation of embryonic stem cells[J]. Stem Cells, 2020, doi: 10.1002/stem.3282.
|
49 |
Lu TY, Lin B, Li Y, Arora A, et al. Overexpression of microRNA-1 promotes cardiomyocyte commitment from human cardiovascular progenitors via suppressing WNT and FGF signaling pathways[J]. J Mol Cell Cardiol, 2013, 63:146-154.
|
50 |
MacGrogan D, Münch J, de la Pompa JL. Notch and interacting signalling pathways in cardiac development, disease, and regeneration[J]. Nat Rev Cardiol, 2018, 15(11):685-704.
|
51 |
de la Pompa JL, Epstein JA. Coordinating tissue interactions: Notch signaling in cardiac development and disease[J]. Dev Cell, 2012, 22(2):244-254.
|
52 |
Gomez AH, Joshi S, Yang Y, et al. Bioengineering systems for modulating notch signaling in cardiovascular development, disease, and regeneration[J]. J Cardiovasc Dev Dis, 2021, 8(10):125. doi: 10.3390/jcdd8100125.
|
53 |
Zhuang S, Fu Y, Li J, et al. MicroRNA-375 overexpression disrupts cardiac development of Zebrafish (Danio rerio) by targeting notch2[J]. Protoplasma, 2020, 257(5):1309-1318.
|
54 |
Yu Z, Zou Y, Fan J, et al. Notch1 is associated with the differentiation of human bone marrowderived mesenchymal stem cells to cardiomyocytes[J]. Mol Med Rep, 2016, 14(6):5065-5071.
|
55 |
Fang X, Miao S, Yu Y, et al. MIR148A family regulates cardiomyocyte differentiation of human embryonic stem cells by inhibiting the DLL1-mediated NOTCH signaling pathway[J]. J Mol Cell Cardiol, 2019, 134:1-12.
|
56 |
Huang F, Tang L, Fang ZF, et al. miR-1-mediated induction of cardiogenesis in mesenchymal stem cells via downregulation of Hes-1[J]. Biomed Res Int, 2013, 2013:216286.doi: 10.1155/2013/216286.
|
57 |
Zhao XL, Yang B, Ma LN, et al. MicroRNA-1 effectively induces differentiation of myocardial cells from mouse bone marrow mesenchymal stem cells[J]. Artif Cells Nanomed Biotechnol, 2016, 44(7):1665-1670.
|
58 |
Dai F, Du P, Chang Y, et al. Downregulation of MiR-199b-5p inducing differentiation of bone-marrow mesenchymal stem cells (BMSCs) toward cardiomyocyte-like cells via HSF1/HSP70 pathway[J]. Med Sci Monit, 2018, 24:2700-2710.
|
59 |
Cai B, Li J, Wang J, et al. microRNA-124 regulates cardiomyocyte differentiation of bone marrow-derived mesenchymal stem cells via targeting STAT3 signaling[J]. Stem Cells, 2012, 30(8):1746-1755.
|
60 |
Sun HH, Sun PF, Liu WY. MiR-98-5p regulates myocardial differentiation of mesenchymal stem cells by targeting TBX5[J]. Eur Rev Med Pharmacol Sci, 2018, 22(22):7841-7848.
|
61 |
Li M, Zhang YL, Huang H, et al. MicroRNA-10-5p regulates differentiation of bone marrow mesenchymal stem cells into cardiomyocytes by targeting TBX5[J]. Eur Rev Med Pharmacol Sci, 2019, 23(2):479-485.
|
62 |
Morillon A. Long Non-coding RNA [M].London: ISTE Press- Elsevier, 2018:55-67.
|
63 |
Klattenhoff CA, Scheuermann JC, Surface LE, et al. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment[J]. Cell, 2013, 152(3):570-583.
|
64 |
Hou J, Long H, Zhou C, et al. Long noncoding RNA Braveheart promotes cardiogenic differentiation of mesenchymal stem cells in vitro[J]. Stem Cell Res Ther, 2017, 8(1):4.doi: 10.1186/s13287-016-0454-5.
|
65 |
Lyu Y, Jia W, Wu Y, et al. Cpmer: A new conserved eEF1A2-binding partner that regulates Eomes translation and cardiomyocyte differentiation[J]. Stem Cell Reports, 2022, 17(5):1154-1169.
|
66 |
Guo X, Xu Y, Wang Z, et al. A Linc1405/Eomes complex promotes cardiac mesoderm specification and cardiogenesis[J]. Cell Stem Cell, 2018, 22(6):893-908.e6.
|
67 |
Ounzain S, Micheletti R, Arnan C, et al. CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis[J]. J Mol Cell Cardiol, 2015, 89(Pt A):98-112.
|
68 |
Kim N J, Lee K H, Son Y, et al. Spatiotemporal expression of long noncoding RNA Moshe modulates heart cell lineage commitment[J]. RNA Biol, 2021, 18(sup2):640-654.
|
69 |
Jiang Y, Zhuang J, Lin Y, et al. Long noncoding RNA SNHG6 contributes to ventricular septal defect formation via negative regulation of miR-101 and activation of Wnt/beta-catenin pathway[J]. Pharmazie, 2019, 74(1):23-28.
|
70 |
Jha R, Li D, Wu Q, et al. A long non-coding RNA GATA6-AS1 adjacent to GATA6 is required for cardiomyocyte differentiation from human pluripotent stem cells[J]. FASEB J, 2020, 34(11):14336-14352.
|
71 |
Kay M, Soltani BM, Nemir M, et al. The conserved long noncoding RNA CARMA regulates cardiomyocyte differentiation[J]. Cardiovasc Res, 2022, 118(10):2339-2353.
|
72 |
Liu J, Li Y, Lin B, et al. HBL1 Is a human long noncoding RNA that modulates cardiomyocyte development from pluripotent stem cells by counteracting MIR1[J]. Dev Cell, 2017, 42(4):333-48.e5.
|
73 |
Zhu Y, Shan X, Zhou J, et al. Downregulated lncRNA RCPCD promotes differentiation of embryonic stem cells into cardiac pacemaker-like cells by suppressing HCN4 promoter methylation[J]. Cell Death Dis, 2021, 12(7):667.doi: 10.1038/s41419-021-03949-5.
|
74 |
Kang X, Zhao Y, Van Arsdell G, et al. Ppp1r1b-lncRNA inhibits PRC2 at myogenic regulatory genes to promote cardiac and skeletal muscle development in mouse and human[J]. RNA, 2020, 26(4):481-491.
|
75 |
Guo JU, Agarwal V, Guo H, et al. Expanded identification and characterization of mammalian circular RNAs[J]. Genome Biol, 2014, 15(7):409.doi: 10.1186/s13059-014-0409-z.
|
76 |
Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs[J]. Nat Biotechnol, 2014, 32(5):453-461.
|
77 |
Kristensen LS, Andersen MS, Stagsted LVW, et al. The biogenesis, biology and characterization of circular RNAs[J]. Nat Rev Genet, 2019, 20(11):675-691.
|
78 |
Ruan ZB, Chen GC, Zhang R, et al. Circular RNA expression profiles during the differentiation of human umbilical cord-derived mesenchymal stem cells into cardiomyocyte-like cells[J]. J Cell Physiol, 2019.doi: 10.1002/jcp.28310.
|
79 |
Li M, Pei Z, Zhang H, et al. Expression profile of long noncoding rnas and circular rnas in mouse c3h10t1/2 mesenchymal stem cells undergoing myogenic and cardiomyogenic differentiation[J]. Stem Cells Int, 2021, 2021:8882264.doi: 10.1155/2021/8882264.
|
80 |
Cherubini A, Barilani M, Rossi RL, et al. FOXP1 circular RNA sustains mesenchymal stem cell identity via microRNA inhibition[J]. Nucleic Acids Res, 2019, 47(10):5325-5340.
|
81 |
Tan WL, Lim BT, Anene-Nzelu CG, et al. A landscape of circular RNA expression in the human heart[J]. Cardiovasc Res, 2017, 113(3):298-309.
|
82 |
Liu Y, Gao J, Xu M, et al. Circular RNA circ-RCCD promotes cardiomyocyte differentiation in mouse embryo development via recruiting YY1 to the promoter of MyD88[J]. J Cell Mol Med, 2022, 26(13):3616-3627.
|
83 |
Lei W, Feng T, Fang X, et al. Signature of circular RNAs in human induced pluripotent stem cells and derived cardiomyocytes[J]. Stem Cell Res Ther, 2018, 9(1):56.
|
84 |
Yu B, Li M, Han SP, et al. Circular RNA hsa_circ_105039 promotes cardiomyocyte differentiation by sponging miR17 to regulate cyclinD2 expression[J]. Mol Med Rep, 2021, 24(6):861. doi: 10.3892/mmr.2021.12501.
|
85 |
Morena F, Argentati C, Bazzucchi M, et al. Above the epitranscriptome: RNA modifications and stem cell identity[J]. Genes (Basel), 2018, 9(7):329. doi: 10.3390/genes9070329.
|
86 |
Batista PJ, Molinie B, Wang J, et al. m(6)A RNA modification controls cell fate transition in mammalian embryonic stem cells[J]. Cell Stem Cell, 2014, 15(6):707-719.
|
87 |
Chen X, Zhao Q, Zhao YL, et al. Targeted RNA N(6)-Methyladenosine demethylation controls cell fate transition in human pluripotent stem cells[J]. Adv Sci (Weinh), 2021, 8(11):e2003902.doi: 10.1002/advs.202003902.
|
88 |
Yang D, Qiao J, Wang G, et al. N6-Methyladenosine modification of lincRNA 1281 is critically required for mESC differentiation potential[J]. Nucleic Acids Res, 2018, 46(8):3906-3920.
|
89 |
Wang S, Zhang J, Ding Y, et al. Dynamic transcriptome profiling reveals lncrna-centred regulatory networks in the modulation of pluripotency[J]. Front Cell Dev Biol, 2022, 10: 880674.doi: 10.3389/fcell.2022.880674.
|
90 |
Guo Y, Pu WT. Cardiomyocyte maturation: New phase in development[J]. Circ Res, 2020, 126(8):1086-1106.
|