1 |
Clevers H. Modeling development and disease with organoids[J]. Cell, 2016, 165(7):1586-1597.
|
2 |
Zhang L, Zhao MH, Zuo L, et al. China Kidney Disease Network (CK-NET) 2015 annual data report[J]. Kidney Int Suppl (2011), 2019, 9(1):e1-e81.
|
3 |
Romagnani P. Toward the identification of a "renopoietic system"?[J]. Stem Cells, 2009, 27(9):2247-2253.
|
4 |
Park JS, Valerius MT, McMahon AP. Wnt/beta-catenin signaling regulates nephron induction during mouse kidney development[J]. Development, 2007, 134(13):2533-2539.
|
5 |
Taguchi A, Kaku Y, Ohmori T, et al. Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells[J]. Cell Stem Cell, 2014, 14(1):53-67.
|
6 |
Lengerke C, Schmitt S, Bowman TV, et al. BMP and Wnt specify hematopoietic fate by activation of the Cdx-Hox pathway[J]. Cell Stem Cell, 2008, 2(1):72-82.
|
7 |
Liu P, Wakamiya M, Shea MJ, et al. Requirement for Wnt3 in vertebrate axis formation[J]. Nat Genet, 1999, 22(4):361-365.
|
8 |
Yamaguchi TP, Takada S, Yoshikawa Y, et al. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification[J]. Genes Dev, 1999, 13(24):3185-3190.
|
9 |
Mugford JW, Sipilä P, McMahon JA, et al. Osr1 expression demarcates a multi-potent population of intermediate mesoderm that undergoes progressive restriction to an Osr1-dependent nephron progenitor compartment within the mammalian kidney[J]. Dev Biol, 2008, 324(1):88-98.
|
10 |
Saxén L, Sariola H. Early organogenesis of the kidney[J]. Pediatr Nephrol, 1987, 1(3):385-392.
|
11 |
Mugford JW, Sipilä P, Kobayashi A, et al. Hoxd11 specifies a program of metanephric kidney development within the intermediate mesoderm of the mouse embryo[J]. Dev Biol, 2008, 319(2):396-405.
|
12 |
Boyle S, Misfeldt A, Chandler KJ, et al. Fate mapping using Cited1-CreERT2 mice demonstrates that the cap mesenchyme contains self-renewing progenitor cells and gives rise exclusively to nephronic epithelia[J]. Dev Biol, 2008, 313(1):234-245.
|
13 |
Kobayashi A, Valerius MT, Mugford JW, et al. Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development[J]. Cell Stem Cell, 2008, 3(2):169-181.
|
14 |
Carroll TJ, Park JS, Hayashi S, et al. Wnt9b plays a central role in the regulation of mesenchymal to epithelial transitions underlying organogenesis of the mammalian urogenital system[J]. Dev Cell, 2005, 9(2):283-292.
|
15 |
Kispert A, Vainio S, McMahon AP. Wnt-4 is a mesenchymal signal for epithelial transformation of metanephric mesenchyme in the developing kidney[J]. Development, 1998, 125(21):4225-4234.
|
16 |
Little MH. Improving our resolution of kidney morphogenesis across time and space[J]. Curr Opin Genet Dev, 2015, 32:135-143.
|
17 |
Barak H, Huh SH, Chen S, et al. FGF9 and FGF20 maintain the stemness of nephron progenitors in mice and man[J]. Dev Cell, 2012, 22(6):1191-1207.
|
18 |
Georgas K, Rumballe B, Valerius MT, et al. Analysis of early nephron patterning reveals a role for distal RV proliferation in fusion to the ureteric tip via a cap mesenchyme-derived connecting segment[J]. Dev Biol, 2009, 332(2):273-286.
|
19 |
Kuure S, Popsueva A, Jakobson M, et al. Glycogen synthase kinase-3 inactivation and stabilization of beta-catenin induce nephron differentiation in isolated mouse and rat kidney mesenchymes[J]. J Am Soc Nephrol, 2007, 18(4):1130-1139.
|
20 |
Chung E, Deacon P, Marable S, et al. Notch signaling promotes nephrogenesis by downregulating Six2[J]. Development, 2016, 143(21):3907-3913.
|
21 |
Deacon P, Concodora CW, Chung E, et al. β-catenin regulates the formation of multiple nephron segments in the mouse kidney[J]. Sci Rep, 2019, 9(1):15915.
|
22 |
Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147.
|
23 |
Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4):663-676.
|
24 |
Morizane R, Monkawa T, Itoh H. Differentiation of murine embryonic stem and induced pluripotent stem cells to renal lineage in vitro[J]. Biochem Biophys Res Commun, 2009, 390(4):1334-1339.
|
25 |
Song B, Smink AM, Jones CV, et al. The directed differentiation of human iPS cells into kidney podocytes[J]. PLoS One, 2012, 7(9):e46453.
|
26 |
Takasato M, Er PX, Becroft M, et al. Directing human embryonic stem cell differentiation towards a renal lineage generates a self-organizing kidney[J]. Nat Cell Biol, 2014, 16(1):118-126.
|
27 |
Takasato M, Er PX, Chiu HS, et al. Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis[J]. Nature, 2015, 526(7574):564-568.
|
28 |
肖枫林,李清刚,傅博, 等. 骨髓间充质干细胞构建类肾器官实验[J]. 解放军医学院学报, 2017, 38(10):964-967.
|
29 |
肖枫林,王圣元,李明旭. FGF9和CHIR99021诱导胚胎干细胞形成肾脏样结构[J]. 基础医学与临床, 2018, 38(6):759-763.
|
30 |
张建烨,管勇,孔峰, 等. 间介中胚层样细胞在肾脏再生中的应用[J]. 中国医学科学院学报, 2019, 41(3):291-299.
|
31 |
Freedman BS, Brooks CR, Lam AQ, et al. Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids[J]. Nat Commun, 2015, 6:8715.
|
32 |
Czerniecki SM, Cruz NM, Harder JL, et al. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping[J]. Cell Stem Cell, 2018, 22(6):929-940.e4.
|
33 |
Cruz NM, Freedman BS. Differentiation of human kidney organoids from pluripotent stem cells[J]. Methods Cell Biol, 2019, 153:133-150.
|
34 |
Morizane R, Bonventre JV. Kidney Organoids: a translational journey[J]. Trends Mol Med. 2017, 23(3):246-263.
|
35 |
Morizane R, Lam AQ, Freedman BS, et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury[J]. Nat Biotechnol, 2015, 33(11):1193-1200.
|
36 |
Taguchi A, Nishinakamura R. Higher-order kidney organogenesis from pluripotent stem cells[J]. Cell Stem Cell, 2017, 21(6):730-746.e6.
|
37 |
Low JH, Li P, Chew EGY, et al. Generation of human PSC-derived kidney organoids with patterned nephron segments and a De Novo vascular network[J]. Cell Stem Cell, 2019, 25(3):373-387.e9.
|
38 |
Dayem AA, Lee SB, Kim K, et al. Recent advances in organoid culture for insulin production and diabetes therapy: methods and challenges[J]. BMB Rep, 2019, 52(5):295-303.
|
39 |
Prior N, Inacio P, Huch M. Liver organoids: from basic research to therapeutic applications[J]. Gut, 2019, 68(12):2228-2237.
|
40 |
Miyoshi T, Hiratsuka K, Saiz EG, et al. Kidney organoids in translational medicine: disease modeling and regenerative medicine[J]. Dev Dyn, 2020, 249(1):34-45.
|
41 |
Freedman BS, Lam AQ, Sundsbak JL, et al. Reduced ciliary polycystin-2 in induced pluripotent stem cells from polycystic kidney disease patients with PKD1 mutations[J]. J Am Soc Nephrol, 2013, 24(10):1571-1586.
|
42 |
Morizane R, Lam AQ, Freedman BS, et al. Nephron organoids derived from human pluripotent stem cells model kidney development and injury[J]. Nat Biotechnol, 2015, 33(11):1193-1200.
|
43 |
Hale LJ, Howden SE, Phipson B, et al. 3D organoid-derived human glomeruli for personalised podocyte disease modelling and drug screening[J]. Nat Commun, 2018, 9(1):5167.
|
44 |
Bantounas I, Ranjzad P, Tengku F, et al. Generation of functioning nephrons by implanting human pluripotent stem cell-derived kidney progenitors[J]. Stem Cell Reports, 2018, 10(3):766-779.
|
45 |
Yamanaka S, Tajiri S, Fujimoto T, et al. Generation of interspecies limited chimeric nephrons using a conditional nephron progenitor cell replacement system[J]. Nat Commun, 2017, 8(1):1719.
|
46 |
Little MH, Combes AN. Kidney organoids: accurate models or fortunate accidents[J]. Genes Dev, 2019, 33(19-20):1319-1345.
|
47 |
Combes AN, Zappia L, Er PX, et al. Single-cell analysis reveals congruence between kidney organoids and human fetal kidney[J]. Genome Med, 2019, 11(1):3.
|