1 |
Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function[J]. Sports health, 2009, 1(6):461-468.
|
2 |
Buttgereit F, Burmester G-R, Bijlsma JW. Non-surgical management of knee osteoarthritis: where are we now and where do we need to go?[J]. RMD Open, 2015, 1(1):e000027.
|
3 |
Kwon H, Brown WE, Lee CA, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair[J]. Nat Rev Rheumatol, 2019, 15(9):550-570.
|
4 |
辛龙,张春,徐卫星, 等. 膝关节软骨损伤的外科治疗进展[J]. 中国骨伤, 2018, 31(3):281-285.
|
5 |
Correa D, Lietman SA. Articular cartilage repair: current needs, methods and research directions[J]. Semin Cell Dev Biol, 2017, 62:67-77.
|
6 |
李祥全,宋科荣,王黎明, 等. 膝关节软骨缺损的治疗现状及研究进展[J]. 中国骨伤, 2015, 28(5):482-486.
|
7 |
Vanden Berg-Foels WS. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment[J]. Tissue Eng Part B Rev, 2014, 20(1):28-39.
|
8 |
Grande DA, Sgaglione NA. Self-directed articular resurfacing: a new paradigm?[J]. Nat Rev Rheumatol, 2010, 6(12):677-678.
|
9 |
Zhang S, Hu B, Liu W, et al. Articular cartilage regeneration: the role of endogenous mesenchymal stem/progenitor cell recruitment and migration[J]. Semin Arthritis Rheum, 2020, 50(2):198-208.
|
10 |
Im GI. Endogenous cartilage repair by recruitment of stem cells[J]. Tissue Eng Part B Rev, 2016, 22(2):160-171.
|
11 |
Franz CM, Jones GE, Ridley AJ. Cell migration in development and disease[J]. Dev Cell, 2002, 2(2):153-158.
|
12 |
Laird DJ, von Andrian UH, Wagers AJ. Stem cell trafficking in tissue development, growth, and disease[J]. Cell, 2008, 132(4):612-630.
|
13 |
McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis[J]. Nat Rev Rheumatol, 2017, 13(12):719-730.
|
14 |
Shammaa R, El-Kadiry AE, Abusarah J, et al. Mesenchymal stem cells beyond regenerative medicine[J]. Front Cell Dev Biol, 2020, 8:72.
|
15 |
Woodell-May JE, Sommerfeld SD. Role of inflammation and theimmune system in the progression of osteoarthritis[J]. J Orthop Res, 2020, 38(2):253-257.
|
16 |
Jayasuriya CT, Chen Y, Liu W, et al. The influence of tissue microenvironment on stem cell-based cartilage repair[J]. Ann N Y Acad Sci, 2016, 1383(1):21-33.
|
17 |
Andreas K, Sittinger M, Ringe J. Toward in situ tissue engineering: chemokine-guided stem cell recruitment[J]. Trends Biotechnol, 2014, 32(9):483-492.
|
18 |
Lee CH, Cook JL, Mendelson A, et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study[J]. Lancet, 2010, 376(9739):440-448.
|
19 |
Sun X, Yin H, Wang Y, et al. In situ articular cartilage regeneration through endogenous reparative cell homing using a functional bone marrow-specific scaffolding system[J]. ACS Appl Mater Interfaces, 2018, 10(45):38715-38728.
|
20 |
Chijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development[J]. Cell Mol Life Sci, 2019, 76(20):3939-3952.
|
21 |
Yang Z, Li H, Yuan Z, et al. Endogenous cell recruitment strategy for articular cartilage regeneration[J]. Acta Biomater, 2020, 114:31-52.
|
22 |
Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects[J]. Clin Orthop Relat Res, 2001(391 Suppl):S362-S369.
|
23 |
李钦宗,信金党. 关节镜下微骨折术修复关节软骨缺损的研究进展[J]. 中国内镜杂志, 2015, 21(2):166-170.
|
24 |
Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions[J]. Nat Rev Rheumatol, 2015, 11(1):45-54.
|
25 |
Chen S, Fu P, Cong R, et al. Strategies to minimize hypertrophy in cartilage engineering and regeneration[J]. Genes Dis, 2015, 2(1):76-95.
|
26 |
Karlsson C, Thornemo M, Henriksson HB, et al. Identification of a stem cell niche in the zone of Ranvier within the knee joint[J]. J Anat, 2009, 215(3):355-363.
|
27 |
Seol D, McCabe DJ, Choe H, et al. Chondrogenic progenitor cells respond to cartilage injury[J]. Arthritis Rheum, 2012, 64(11):3626-3637.
|
28 |
Lu J, Shen X, Sun X, et al. Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration[J]. Theranostics, 2018, 8(18):5039-5058.
|
29 |
Williams RJ 3rd, Harnly HW. Microfracture: indications, technique, and results[J]. Instr Course Lect, 2007, 56:419-428.
|
30 |
孙百川,王玉,张增增, 等. 关节软骨损伤大鼠关节腔内移植骨髓间充质干细胞的迁移[J]. 中国组织工程研究, 2018, 22(17):2699-2704.
|
31 |
Baboolal TG, Mastbergen SC, Jones E, et al. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction[J]. Ann Rheum Dis, 2016, 75(5):908-915.
|
32 |
Sekiya I, Ojima M, Suzuki S, et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis[J]. J Orthop Res, 2012, 30(6):943-949.
|
33 |
do Amaral R, Almeida HV, Kelly DJ, et al. Infrapatellar fat pad stem cells: from developmental biology to cell therapy[J]. Stem Cells Int, 2017:6843727.
|
34 |
Henriksson HB, Lindahl A, Skioldebrand E, et al. Similar cellular migration patterns from niches in intervertebral disc and in knee-joint regions detected by in situ labeling: an experimental study in the New Zealand white rabbit[J]. Stem Cell Res Ther, 2013, 4(5):104.
|
35 |
Shen W, Chen J, Zhu T, et al. Intra-articular injection of human meniscus stem/progenitor cells promotes meniscus regeneration and ameliorates osteoarthritis through stromal cell-derived factor-1/CXCR4-mediated homing[J]. Stem Cells Transl Med, 2014, 3(3):387-394.
|
36 |
Shen W, Chen J, Zhu T, et al. Osteoarthritis prevention through meniscal regeneration induced by intra-articular injection of meniscus stem cells[J]. Stem Cells Dev, 2013, 22(14):2071-2082.
|
37 |
Jiang Y, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis[J]. Nat Rev Rheumatol, 2015, 11(4):206-212.
|
38 |
Garcia-Arnandis I, Guillen MI, Castejon MA, et al. Haem oxygenase-1 down-regulates high mobility group box 1 and matrix metalloproteinases in osteoarthritic synoviocytes[J]. Rheumatology (Oxford), 2010, 49(5):854-861.
|
39 |
Mishima Y, Lotz M. Chemotaxis of human articular chondrocytes and mesenchymal stem cells[J]. J Orthop Res, 2008, 26(10):1407-1412.
|
40 |
赵会,周君琳,杨铁军, 等. 力生长因子在兔膝关节软骨细胞增殖和迁移中的作用[J]. 中国组织工程研究, 2019, 23(11):1674-1679.
|
41 |
Jang KW, Ding L, Seol D, et al. Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway[J]. Ultrasound Med Biol, 2014, 40(6):1177-1186.
|
42 |
Li H, Shen S, Fu H, et al. Immunomodulatory functions of mesenchymal stem cells in tissue engineering[J]. Stem Cells Int, 2019:9671206.
|
43 |
Regmi S, Pathak S, Kim JO, et al. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives[J]. Eur J Cell Biol, 2019, 98(5-8):151041.
|
44 |
Mancuso P, Raman S, Glynn A, et al. Mesenchymal stem cell therapy for osteoarthritis: the critical role of the cell secretome[J]. Front Bioeng Biotechnol, 2019, 7:9.
|
45 |
Martinet L, Fleury-Cappellesso S, Gadelorge M, et al. A regulatory cross-talk between Vγ9Vδ2 T lymphocytes and mesenchymal stem cells[J]. Eur J Immunol, 2009, 39(3):752-762.
|
46 |
Manferdini C, Paolella F, Gabusi E, et al. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation[J]. Osteoarthritis Cartilage, 2017, 25(7):1161-1171.
|
47 |
郑盛,杨涓,唐映梅. 间充质干细胞在炎症免疫调节中的作用及应用进展[J]. 中国组织工程研究, 2015, 19(45):7362-7368.
|
48 |
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122(3):787-795.
|
49 |
Ge W, Jiang J, Arp J, et al. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression[J]. Transplantation, 2010, 90(12):1312-1320.
|
50 |
Azevedo RI, Minskaia E, Fernandes-Platzgummer A, et al. Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro[J]. Stem Cells, 2020, 38(8):1007-1019.
|
51 |
Benkhoucha M, Molnarfi N, Dunand-Sauthier I, et al. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells[J]. J Immunol, 2014, 193(6):2743-2752.
|
52 |
Gu YZ, Xue Q, Chen YJ, et al. Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells[J]. Hum Immunol, 2013, 74(3):267-276.
|
53 |
Quaedackers ME, Baan CC, Weimar W, et al. Cell contact interaction between adipose-derived stromal cells and allo-activated T lymphocytes [J]. Eur J Immunol, 2009, 39(12):3436-3446.
|
54 |
Akiyama K, Chen C, Wang D, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis[J]. Cell stem cell, 2012, 10(5):544-555.
|
55 |
胡琼英,赵沙沙,艾承锦.转PD-L1人脐带间充质干细胞联合地塞米松治疗CIA小鼠模型的研究[J]. 免疫学杂志,2020,36(4):325-330.
|
56 |
Perruche S, Saas P, Chen W. Apoptotic cell-mediated suppression of streptococcal cell wall-induced arthritis is associated with alteration of macrophage function and local regulatory T-cell increase: a potential cell-based therapy?[J]. Arthritis Res Ther, 2009, 11(4):R104.
|
57 |
Chen W, Sun Y, Gu X, et al. Conditioned medium of mesenchymal stem cells delays osteoarthritis progression in a rat model by protecting subchondral bone, maintaining matrix homeostasis, and enhancing autophagy[J]. J Tissue Eng Regen Med, 2019, 13(9):1618-1628.
|
58 |
Liu Y, Lin L, Zou R, et al. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis[J]. Cell cycle, 2018, 17(21-22):2411-2422.
|
59 |
Waller KA, Zhang LX, Elsaid KA, et al. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis[J]. Proc Natl Acad Sci U S A, 2013, 110(15):5852-5857.
|
60 |
雷蕾,周月珠,倪国新. 润滑素与骨性关节炎[J]. 中国康复医学杂志, 2013, 28(1):93-96.
|
61 |
Suga H, Eto H, Shigeura T, et al. IFATS collection: fibroblast growth factor-2-induced hepatocyte growth factor secretion by adipose-derived stromal cells inhibits postinjury fibrogenesis through ac-Jun N-terminal kinase-dependent mechanism[J]. Stem cells, 2009, 27(1):238-249.
|
62 |
Anderson DD, Chubinskaya S, Guilak F, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention[J]. J Orthop Res, 2011, 29(6):802-809.
|
63 |
McKinley TO, Borrelli J Jr, D'Lima DD, et al. Basic science of intra-articular fractures and posttraumatic osteoarthritis[J]. J Orthop Trauma, 2010, 24(9):567-570.
|
64 |
Riordan EA, Little C, Hunter D. Pathogenesis of post-traumatic OA with a view to intervention[J]. Best Pract Res Clin Rheumatol, 2014, 28(1):17-30.
|
65 |
Olson SA, Horne P, Furman B, et al. The role of cytokines in posttraumatic arthritis[J]. J Am Acad Orthop Surg, 2014, 22(1):29-37.
|
66 |
Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases[J]. Arthritis Res Ther, 2009, 11(3):224.
|
67 |
宁宇,刘想忠,许海甲, 等. 基质细胞衍生因子-1对骨髓间充质干细胞迁移能力及其信号轴的影响[J]. 军事医学, 2018, 42(7):522-527.
|
68 |
Pattappa G, Peroglio M, Sakai D, et al. Ccl5/Rantes is a Key chemoattractant released by degenerative intervertebral discs in organ culture[J]. Eur Cells Mater, 2014, 27(1):124-136.
|
69 |
Im GI. Application of kartogenin for musculoskeletal regeneration[J]. J Biomed Mater Res A, 2018, 106(4):1141-1148.
|
70 |
Ringe J, Strassburg S, Neumann K, et al. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2[J]. J Cell Biochem, 2007, 101(1):135-146.
|
71 |
Liu X, Yang Y, Niu X, et al. An in situ photocrosslinkable platelet rich plasma-complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair[J]. Acta Biomater, 2017, 62:179-187.
|
72 |
Liu X, Yang Y, Li Y, et al. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration[J]. Nanoscale, 2017, 9(13):4430-4438.
|
73 |
Hou Z, Meyer S, Propson NE, et al. Characterization and target identification of a DNA aptamer that labels pluripotent stem cells[J]. Cell Res, 2015, 25(3):390-393.
|
74 |
綦惠,刘丹平,田大川, 等. 骨髓间充质干细胞源性外泌体对体外培养的软骨细胞增殖和迁移的调节作用[J]. 中国运动医学杂志, 2019, 38(1):40-45.
|
75 |
Chen FM, Wu LA, Zhang M, et al. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives[J]. Biomaterials, 2011, 32(12):3189-3209.
|
76 |
Guo T, Noshin M, Baker HB, et al. 3D printed biofunctionalized scaffolds for microfracture repair of cartilage defects[J]. Biomaterials, 2018, 185:219-231.
|
77 |
Chen Y, Wu T, Huang S, et al. Sustained release SDF-1α/TGF-β1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair[J]. ACS Appl Mater Interfaces, 2019, 11(16):14608-14618.
|
78 |
Luo Z, Jiang L, Xu Y, et al. Mechano growth factor (MGF) and transforming growth factor (TGF)-beta3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model[J]. Biomaterials, 2015, 52:463-475.
|
79 |
Qu FN, Holloway JL, Esterhai JL, et al. Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair[J]. NatCommun, 2017, 8(1):1780.
|