切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2021, Vol. 11 ›› Issue (01) : 51 -56. doi: 10.3877/cma.j.issn.2095-1221.2021.01.008

所属专题: 文献

综述

膝关节内干细胞/祖细胞在软骨再生中作用研究进展
杨振1, 李浩1, 付力伟1, 高仓健1, 赵天元1, 陈威1, 廖志垚1, 李品学1, 李旭2, 王福鑫2, 田广招1, 孙志强1, 查康康1, 曹福洋3, 周建2, 眭翔2, 刘舒云2, 郭全义1,()   
  1. 1. 100853 北京,中国人民解放军总医院第一医学中心骨科研究所 骨科再生医学北京市重点实验室 全军骨科战创伤重点实验室;300071 天津,南开大学医学院
    2. 100853 北京,中国人民解放军总医院第一医学中心骨科研究所 骨科再生医学北京市重点实验室 全军骨科战创伤重点实验室
    3. 100853 北京,中国人民解放军总医院第一医学中心骨科研究所 骨科再生医学北京市重点实验室 全军骨科战创伤重点实验室;450052 郑州大学第一附属医院骨科
  • 收稿日期:2020-06-23 出版日期:2021-02-01
  • 通信作者: 郭全义
  • 基金资助:
    国家重点研发计划课题(2019YFA0110600); 国家自然科学基金(81772319)

Progress of native joint-resident stem cells/progenitor cells in cartilage regeneration

Zhen Yang1, Hao Li1, Liwei Fu1, Cangjian Gao1, Tianyuan Zhao1, Wei Chen1, Zhiyao Liao1, Pinxue Li1, Xu Li2, Fuxin Wang2, Guangzhao Tian1, Zhiqiang Sun1, Kangkang Zha1, Fuyang Cao3, Jian Zhou2, Xiang Sui2, Shuyun Liu2, Quanyi Guo1,()   

  1. 1. Institute of Orthopedics, the First Medical Centre, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China; School of Medicine, Nankai University, Tianjin 300071, China
    2. Institute of Orthopedics, the First Medical Centre, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China
    3. Institute of Orthopedics, the First Medical Centre, Chinese PLA General Hospital; Beijing Key Lab of Regenerative Medicine in Orthopedics; Key Laboratory of Musculoskeletal Trauma & War Injuries PLA, Beijing 100853, China; Department of Orthopaedics, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
  • Received:2020-06-23 Published:2021-02-01
  • Corresponding author: Quanyi Guo
引用本文:

杨振, 李浩, 付力伟, 高仓健, 赵天元, 陈威, 廖志垚, 李品学, 李旭, 王福鑫, 田广招, 孙志强, 查康康, 曹福洋, 周建, 眭翔, 刘舒云, 郭全义. 膝关节内干细胞/祖细胞在软骨再生中作用研究进展[J]. 中华细胞与干细胞杂志(电子版), 2021, 11(01): 51-56.

Zhen Yang, Hao Li, Liwei Fu, Cangjian Gao, Tianyuan Zhao, Wei Chen, Zhiyao Liao, Pinxue Li, Xu Li, Fuxin Wang, Guangzhao Tian, Zhiqiang Sun, Kangkang Zha, Fuyang Cao, Jian Zhou, Xiang Sui, Shuyun Liu, Quanyi Guo. Progress of native joint-resident stem cells/progenitor cells in cartilage regeneration[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2021, 11(01): 51-56.

关节软骨(AC)由于缺乏血管、神经和淋巴,一旦损伤无法自我修复。虽然以外源性细胞为基础的治疗策略在一定程度上能够再生关节软骨,但仍然存在手术间隔长、供体有限、细胞体外培养易去分化和病原体传播等风险。成人膝关节存在许多类型干细胞/祖细胞(SCPCs),当软骨损伤时,就会被动员,迁移到损伤部位,参与再生修复。因此,基于趋化内源性SCPCs到损伤部位的AC原位再生修复策略,充分利用机体自我修复潜力,同时避免了外源性细胞策略的缺点,已经成为研究的热点。本综述主要介绍膝关节内SCPCs类型、迁移路径以及其在软骨损伤修复中的作用。重点介绍内源性AC再生修复策略的研究现状,以期吸引更多的研究人员参与这一有前景的研究领域。

Articular cartilage (AC) cannot repair itself due to the lack of blood vessels, nerves and lymph, To some extent, exogenous cell-based treatment strategies can regenerate articular cartilage, however, there were some risks such as long surgical interval, limited donor availability, easy cell dedifferentiation in vitro and pathogen transmission. When cartilage is damaged, many kinds of stem cells/progenitor cells (SCPCs) in adult knee joints will be mobilized and migrated to damaged area and participate in regeneration repair. Therefore, based on recruitment endogenous SCPCs, the in-situ AC regeneration strategy has become a research hotspot, which fully utilizes the body's self-repair potential and avoids the disadvantages of exogenous cell strategy. The characteristics and migration pathway of different SCPCs in the knee joint and its role in the repair of cartilage injury were introduced. At the same time, progress of endogenous AC regeneration and repair strategies were mainly focused, in order to attract more researchers to participate in this promising research field.

图1 干细胞/祖细胞潜在迁移路径
1
Sophia Fox AJ, Bedi A, Rodeo SA. The basic science of articular cartilage: structure, composition, and function[J]. Sports health, 2009, 1(6):461-468.
2
Buttgereit F, Burmester G-R, Bijlsma JW. Non-surgical management of knee osteoarthritis: where are we now and where do we need to go?[J]. RMD Open, 2015, 1(1):e000027.
3
Kwon H, Brown WE, Lee CA, et al. Surgical and tissue engineering strategies for articular cartilage and meniscus repair[J]. Nat Rev Rheumatol, 2019, 15(9):550-570.
4
辛龙,张春,徐卫星, 等. 膝关节软骨损伤的外科治疗进展[J]. 中国骨伤, 2018, 31(3):281-285.
5
Correa D, Lietman SA. Articular cartilage repair: current needs, methods and research directions[J]. Semin Cell Dev Biol, 2017, 62:67-77.
6
李祥全,宋科荣,王黎明, 等. 膝关节软骨缺损的治疗现状及研究进展[J]. 中国骨伤, 2015, 28(5):482-486.
7
Vanden Berg-Foels WS. In situ tissue regeneration: chemoattractants for endogenous stem cell recruitment[J]. Tissue Eng Part B Rev, 2014, 20(1):28-39.
8
Grande DA, Sgaglione NA. Self-directed articular resurfacing: a new paradigm?[J]. Nat Rev Rheumatol, 2010, 6(12):677-678.
9
Zhang S, Hu B, Liu W, et al. Articular cartilage regeneration: the role of endogenous mesenchymal stem/progenitor cell recruitment and migration[J]. Semin Arthritis Rheum, 2020, 50(2):198-208.
10
Im GI. Endogenous cartilage repair by recruitment of stem cells[J]. Tissue Eng Part B Rev, 2016, 22(2):160-171.
11
Franz CM, Jones GE, Ridley AJ. Cell migration in development and disease[J]. Dev Cell, 2002, 2(2):153-158.
12
Laird DJ, von Andrian UH, Wagers AJ. Stem cell trafficking in tissue development, growth, and disease[J]. Cell, 2008, 132(4):612-630.
13
McGonagle D, Baboolal TG, Jones E. Native joint-resident mesenchymal stem cells for cartilage repair in osteoarthritis[J]. Nat Rev Rheumatol, 2017, 13(12):719-730.
14
Shammaa R, El-Kadiry AE, Abusarah J, et al. Mesenchymal stem cells beyond regenerative medicine[J]. Front Cell Dev Biol, 2020, 8:72.
15
Woodell-May JE, Sommerfeld SD. Role of inflammation and theimmune system in the progression of osteoarthritis[J]. J Orthop Res, 2020, 38(2):253-257.
16
Jayasuriya CT, Chen Y, Liu W, et al. The influence of tissue microenvironment on stem cell-based cartilage repair[J]. Ann N Y Acad Sci, 2016, 1383(1):21-33.
17
Andreas K, Sittinger M, Ringe J. Toward in situ tissue engineering: chemokine-guided stem cell recruitment[J]. Trends Biotechnol, 2014, 32(9):483-492.
18
Lee CH, Cook JL, Mendelson A, et al. Regeneration of the articular surface of the rabbit synovial joint by cell homing: a proof of concept study[J]. Lancet, 2010, 376(9739):440-448.
19
Sun X, Yin H, Wang Y, et al. In situ articular cartilage regeneration through endogenous reparative cell homing using a functional bone marrow-specific scaffolding system[J]. ACS Appl Mater Interfaces, 2018, 10(45):38715-38728.
20
Chijimatsu R, Saito T. Mechanisms of synovial joint and articular cartilage development[J]. Cell Mol Life Sci, 2019, 76(20):3939-3952.
21
Yang Z, Li H, Yuan Z, et al. Endogenous cell recruitment strategy for articular cartilage regeneration[J]. Acta Biomater, 2020, 114:31-52.
22
Steadman JR, Rodkey WG, Rodrigo JJ. Microfracture: surgical technique and rehabilitation to treat chondral defects[J]. Clin Orthop Relat Res, 2001(391 Suppl):S362-S369.
23
李钦宗,信金党. 关节镜下微骨折术修复关节软骨缺损的研究进展[J]. 中国内镜杂志, 2015, 21(2):166-170.
24
Einhorn TA, Gerstenfeld LC. Fracture healing: mechanisms and interventions[J]. Nat Rev Rheumatol, 2015, 11(1):45-54.
25
Chen S, Fu P, Cong R, et al. Strategies to minimize hypertrophy in cartilage engineering and regeneration[J]. Genes Dis, 2015, 2(1):76-95.
26
Karlsson C, Thornemo M, Henriksson HB, et al. Identification of a stem cell niche in the zone of Ranvier within the knee joint[J]. J Anat, 2009, 215(3):355-363.
27
Seol D, McCabe DJ, Choe H, et al. Chondrogenic progenitor cells respond to cartilage injury[J]. Arthritis Rheum, 2012, 64(11):3626-3637.
28
Lu J, Shen X, Sun X, et al. Increased recruitment of endogenous stem cells and chondrogenic differentiation by a composite scaffold containing bone marrow homing peptide for cartilage regeneration[J]. Theranostics, 2018, 8(18):5039-5058.
29
Williams RJ 3rd, Harnly HW. Microfracture: indications, technique, and results[J]. Instr Course Lect, 2007, 56:419-428.
30
孙百川,王玉,张增增, 等. 关节软骨损伤大鼠关节腔内移植骨髓间充质干细胞的迁移[J]. 中国组织工程研究, 2018, 22(17):2699-2704.
31
Baboolal TG, Mastbergen SC, Jones E, et al. Synovial fluid hyaluronan mediates MSC attachment to cartilage, a potential novel mechanism contributing to cartilage repair in osteoarthritis using knee joint distraction[J]. Ann Rheum Dis, 2016, 75(5):908-915.
32
Sekiya I, Ojima M, Suzuki S, et al. Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis[J]. J Orthop Res, 2012, 30(6):943-949.
33
do Amaral R, Almeida HV, Kelly DJ, et al. Infrapatellar fat pad stem cells: from developmental biology to cell therapy[J]. Stem Cells Int, 2017:6843727.
34
Henriksson HB, Lindahl A, Skioldebrand E, et al. Similar cellular migration patterns from niches in intervertebral disc and in knee-joint regions detected by in situ labeling: an experimental study in the New Zealand white rabbit[J]. Stem Cell Res Ther, 2013, 4(5):104.
35
Shen W, Chen J, Zhu T, et al. Intra-articular injection of human meniscus stem/progenitor cells promotes meniscus regeneration and ameliorates osteoarthritis through stromal cell-derived factor-1/CXCR4-mediated homing[J]. Stem Cells Transl Med, 2014, 3(3):387-394.
36
Shen W, Chen J, Zhu T, et al. Osteoarthritis prevention through meniscal regeneration induced by intra-articular injection of meniscus stem cells[J]. Stem Cells Dev, 2013, 22(14):2071-2082.
37
Jiang Y, Tuan RS. Origin and function of cartilage stem/progenitor cells in osteoarthritis[J]. Nat Rev Rheumatol, 2015, 11(4):206-212.
38
Garcia-Arnandis I, Guillen MI, Castejon MA, et al. Haem oxygenase-1 down-regulates high mobility group box 1 and matrix metalloproteinases in osteoarthritic synoviocytes[J]. Rheumatology (Oxford), 2010, 49(5):854-861.
39
Mishima Y, Lotz M. Chemotaxis of human articular chondrocytes and mesenchymal stem cells[J]. J Orthop Res, 2008, 26(10):1407-1412.
40
赵会,周君琳,杨铁军, 等. 力生长因子在兔膝关节软骨细胞增殖和迁移中的作用[J]. 中国组织工程研究, 2019, 23(11):1674-1679.
41
Jang KW, Ding L, Seol D, et al. Low-intensity pulsed ultrasound promotes chondrogenic progenitor cell migration via focal adhesion kinase pathway[J]. Ultrasound Med Biol, 2014, 40(6):1177-1186.
42
Li H, Shen S, Fu H, et al. Immunomodulatory functions of mesenchymal stem cells in tissue engineering[J]. Stem Cells Int, 2019:9671206.
43
Regmi S, Pathak S, Kim JO, et al. Mesenchymal stem cell therapy for the treatment of inflammatory diseases: challenges, opportunities, and future perspectives[J]. Eur J Cell Biol, 2019, 98(5-8):151041.
44
Mancuso P, Raman S, Glynn A, et al. Mesenchymal stem cell therapy for osteoarthritis: the critical role of the cell secretome[J]. Front Bioeng Biotechnol, 2019, 7:9.
45
Martinet L, Fleury-Cappellesso S, Gadelorge M, et al. A regulatory cross-talk between Vγ9Vδ2 T lymphocytes and mesenchymal stem cells[J]. Eur J Immunol, 2009, 39(3):752-762.
46
Manferdini C, Paolella F, Gabusi E, et al. Adipose stromal cells mediated switching of the pro-inflammatory profile of M1-like macrophages is facilitated by PGE2: in vitro evaluation[J]. Osteoarthritis Cartilage, 2017, 25(7):1161-1171.
47
郑盛,杨涓,唐映梅. 间充质干细胞在炎症免疫调节中的作用及应用进展[J]. 中国组织工程研究, 2015, 19(45):7362-7368.
48
Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas[J]. J Clin Invest, 2012, 122(3):787-795.
49
Ge W, Jiang J, Arp J, et al. Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression[J]. Transplantation, 2010, 90(12):1312-1320.
50
Azevedo RI, Minskaia E, Fernandes-Platzgummer A, et al. Mesenchymal stromal cells induce regulatory T cells via epigenetic conversion of human conventional CD4 T cells in vitro[J]. Stem Cells, 2020, 38(8):1007-1019.
51
Benkhoucha M, Molnarfi N, Dunand-Sauthier I, et al. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells[J]. J Immunol, 2014, 193(6):2743-2752.
52
Gu YZ, Xue Q, Chen YJ, et al. Different roles of PD-L1 and FasL in immunomodulation mediated by human placenta-derived mesenchymal stem cells[J]. Hum Immunol, 2013, 74(3):267-276.
53
Quaedackers ME, Baan CC, Weimar W, et al. Cell contact interaction between adipose-derived stromal cells and allo-activated T lymphocytes [J]. Eur J Immunol, 2009, 39(12):3436-3446.
54
Akiyama K, Chen C, Wang D, et al. Mesenchymal-stem-cell-induced immunoregulation involves FAS-ligand-/FAS-mediated T cell apoptosis[J]. Cell stem cell, 2012, 10(5):544-555.
55
胡琼英,赵沙沙,艾承锦.转PD-L1人脐带间充质干细胞联合地塞米松治疗CIA小鼠模型的研究[J]. 免疫学杂志,2020,36(4):325-330.
56
Perruche S, Saas P, Chen W. Apoptotic cell-mediated suppression of streptococcal cell wall-induced arthritis is associated with alteration of macrophage function and local regulatory T-cell increase: a potential cell-based therapy?[J]. Arthritis Res Ther, 2009, 11(4):R104.
57
Chen W, Sun Y, Gu X, et al. Conditioned medium of mesenchymal stem cells delays osteoarthritis progression in a rat model by protecting subchondral bone, maintaining matrix homeostasis, and enhancing autophagy[J]. J Tissue Eng Regen Med, 2019, 13(9):1618-1628.
58
Liu Y, Lin L, Zou R, et al. MSC-derived exosomes promote proliferation and inhibit apoptosis of chondrocytes via lncRNA-KLF3-AS1/miR-206/GIT1 axis in osteoarthritis[J]. Cell cycle, 2018, 17(21-22):2411-2422.
59
Waller KA, Zhang LX, Elsaid KA, et al. Role of lubricin and boundary lubrication in the prevention of chondrocyte apoptosis[J]. Proc Natl Acad Sci U S A, 2013, 110(15):5852-5857.
60
雷蕾,周月珠,倪国新. 润滑素与骨性关节炎[J]. 中国康复医学杂志, 2013, 28(1):93-96.
61
Suga H, Eto H, Shigeura T, et al. IFATS collection: fibroblast growth factor-2-induced hepatocyte growth factor secretion by adipose-derived stromal cells inhibits postinjury fibrogenesis through ac-Jun N-terminal kinase-dependent mechanism[J]. Stem cells, 2009, 27(1):238-249.
62
Anderson DD, Chubinskaya S, Guilak F, et al. Post-traumatic osteoarthritis: improved understanding and opportunities for early intervention[J]. J Orthop Res, 2011, 29(6):802-809.
63
McKinley TO, Borrelli J Jr, D'Lima DD, et al. Basic science of intra-articular fractures and posttraumatic osteoarthritis[J]. J Orthop Trauma, 2010, 24(9):567-570.
64
Riordan EA, Little C, Hunter D. Pathogenesis of post-traumatic OA with a view to intervention[J]. Best Pract Res Clin Rheumatol, 2014, 28(1):17-30.
65
Olson SA, Horne P, Furman B, et al. The role of cytokines in posttraumatic arthritis[J]. J Am Acad Orthop Surg, 2014, 22(1):29-37.
66
Goldring MB, Marcu KB. Cartilage homeostasis in health and rheumatic diseases[J]. Arthritis Res Ther, 2009, 11(3):224.
67
宁宇,刘想忠,许海甲, 等. 基质细胞衍生因子-1对骨髓间充质干细胞迁移能力及其信号轴的影响[J]. 军事医学, 2018, 42(7):522-527.
68
Pattappa G, Peroglio M, Sakai D, et al. Ccl5/Rantes is a Key chemoattractant released by degenerative intervertebral discs in organ culture[J]. Eur Cells Mater, 2014, 27(1):124-136.
69
Im GI. Application of kartogenin for musculoskeletal regeneration[J]. J Biomed Mater Res A, 2018, 106(4):1141-1148.
70
Ringe J, Strassburg S, Neumann K, et al. Towards in situ tissue repair: human mesenchymal stem cells express chemokine receptors CXCR1, CXCR2 and CCR2, and migrate upon stimulation with CXCL8 but not CCL2[J]. J Cell Biochem, 2007, 101(1):135-146.
71
Liu X, Yang Y, Niu X, et al. An in situ photocrosslinkable platelet rich plasma-complexed hydrogel glue with growth factor controlled release ability to promote cartilage defect repair[J]. Acta Biomater, 2017, 62:179-187.
72
Liu X, Yang Y, Li Y, et al. Integration of stem cell-derived exosomes with in situ hydrogel glue as a promising tissue patch for articular cartilage regeneration[J]. Nanoscale, 2017, 9(13):4430-4438.
73
Hou Z, Meyer S, Propson NE, et al. Characterization and target identification of a DNA aptamer that labels pluripotent stem cells[J]. Cell Res, 2015, 25(3):390-393.
74
綦惠,刘丹平,田大川, 等. 骨髓间充质干细胞源性外泌体对体外培养的软骨细胞增殖和迁移的调节作用[J]. 中国运动医学杂志, 2019, 38(1):40-45.
75
Chen FM, Wu LA, Zhang M, et al. Homing of endogenous stem/progenitor cells for in situ tissue regeneration: Promises, strategies, and translational perspectives[J]. Biomaterials, 2011, 32(12):3189-3209.
76
Guo T, Noshin M, Baker HB, et al. 3D printed biofunctionalized scaffolds for microfracture repair of cartilage defects[J]. Biomaterials, 2018, 185:219-231.
77
Chen Y, Wu T, Huang S, et al. Sustained release SDF-1α/TGF-β1-loaded silk fibroin-porous gelatin scaffold promotes cartilage repair[J]. ACS Appl Mater Interfaces, 2019, 11(16):14608-14618.
78
Luo Z, Jiang L, Xu Y, et al. Mechano growth factor (MGF) and transforming growth factor (TGF)-beta3 functionalized silk scaffolds enhance articular hyaline cartilage regeneration in rabbit model[J]. Biomaterials, 2015, 52:463-475.
79
Qu FN, Holloway JL, Esterhai JL, et al. Programmed biomolecule delivery to enable and direct cell migration for connective tissue repair[J]. NatCommun, 2017, 8(1):1780.
[1] 樊绪国, 赵永刚, 杨砚伟. 腓骨在膝骨关节炎作用的研究观点[J]. 中华关节外科杂志(电子版), 2023, 17(06): 855-859.
[2] 夏传龙, 迟健, 丛强, 连杰, 崔峻, 陈彦玲. 富血小板血浆联合关节镜治疗半月板损伤的临床疗效[J]. 中华关节外科杂志(电子版), 2023, 17(06): 877-881.
[3] 梁家敏, 黄子荣, 崔家鸣, 钟名金, 冯文哲, 陈康, 胡艳, 欧阳侃, 杨雷, 王大平, 王满宜, 朱伟民. 前交叉韧带保留残端重建促进膝关节功能的研究进展[J]. 中华关节外科杂志(电子版), 2023, 17(05): 708-714.
[4] 吴香敏, 吴鹏. 超声引导下收肌管阻滞联合腘动脉与膝关节后囊间隙阻滞在老年患者全膝关节置换术中的应用效果[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 516-522.
[5] 韩李念, 王君. 放射性皮肤损伤治疗的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 533-537.
[6] 李硕, 尹希, 祁连港, 王丽, 刘宗宝. 浓缩生长因子在促进失神经皮瓣术后神经再生的应用前景[J]. 中华损伤与修复杂志(电子版), 2023, 18(06): 547-551.
[7] 宫镇江, 王守一, 姚超, 庞永志, 崔婧. sticky bone混合浓缩生长因子应用于水平骨增量患者的临床效果研究[J]. 中华口腔医学研究杂志(电子版), 2023, 17(06): 430-435.
[8] 叶晓琳, 刘云飞, 庞明泉, 王海久, 任利, 侯立朝, 于文昊, 王志鑫, 樊海宁. 肝再生细胞来源及调控机制的研究进展[J]. 中华普外科手术学杂志(电子版), 2024, 18(01): 96-99.
[9] 钟文文, 李科, 刘碧好, 蔡炳, 脱颖, 叶雷, 马波, 瞿虎, 汪中扬, 王德娟, 邱剑光. 不同比例聚乳酸/丝素蛋白复合支架在兔尿道缺损修复中的疗效[J]. 中华腔镜泌尿外科杂志(电子版), 2023, 17(05): 516-522.
[10] 郭晓磊, 李晓云, 孙嘉怿, 金乐, 郭亚娟, 史新立. 含生长因子骨移植材料的研究进展和监管现状[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 373-378.
[11] 中华医学会骨科分会关节学组. 中国髋、膝关节置换日间手术围手术期管理专家共识[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 321-332.
[12] 邱红生, 林树体, 梁朝莹, 劳世高, 何荷. 模拟现实步态训练对膝关节前交叉韧带损伤的功能恢复及对跌倒恐惧的影响[J]. 中华老年骨科与康复电子杂志, 2023, 09(06): 343-350.
[13] 付庆鹏, 邓晓强, 高伟, 姜福民, 范永峰, 吴海贺, 齐岩松, 包呼日查, 徐永胜. 新型股骨测量定位器在全膝关节置换术中的临床应用[J]. 中华临床医师杂志(电子版), 2023, 17(9): 980-987.
[14] 梁宇同, 丁旭, 马国慧, 黄艳红. 间充质干细胞在宫腔粘连治疗中的研究进展[J]. 中华临床医师杂志(电子版), 2023, 17(05): 596-599.
[15] 刘新光, 杨滨, 刘晨, 王晓华, 张克. 股骨前皮质切割在前、后参考系统全膝关节置换术中发生的对比研究及锯片摆动偏差分析[J]. 中华临床医师杂志(电子版), 2023, 17(05): 507-512.
阅读次数
全文


摘要