切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (04) : 230 -236. doi: 10.3877/cma.j.issn.2095-1221.2022.04.006

综述

脂肪干细胞在心肌损伤修复中的研究进展
乔梁1, 杨向群1,()   
  1. 1. 200433 上海,海军军医大学人体解剖学教研室
  • 收稿日期:2021-12-01 出版日期:2022-08-01
  • 通信作者: 杨向群
  • 基金资助:
    国家自然科学基金(32071365)

Adipose derived stem cells for myocardial injury repair: a review

Liang Qiao1, Xiangqun Yang1,()   

  1. 1. Department of Anatomy, Naval Medical University, Shanghai 200433, China
  • Received:2021-12-01 Published:2022-08-01
  • Corresponding author: Xiangqun Yang
引用本文:

乔梁, 杨向群. 脂肪干细胞在心肌损伤修复中的研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 230-236.

Liang Qiao, Xiangqun Yang. Adipose derived stem cells for myocardial injury repair: a review[J/OL]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(04): 230-236.

干细胞疗法被广泛地应用于心脏相关疾病的研究。脂肪干细胞(ADSCs)作为一种成体干细胞,易于获得和扩增,具有多向分化潜能,已被证明具有分化为心肌样细胞、血管平滑肌细胞和内皮细胞的能力,成为治疗心血管疾病成体干细胞的重要来源。此外,ADSCs分泌一系列旁分泌因子促进血管新生,减少凋亡,抑制纤维化,在促进心肌损伤修复中具有巨大潜力,但是ADSCs仍然面临移植存活率低等问题。在此,重点对ADSCs的治疗机制和提高治疗效果的策略等前沿进行综述。

Stem cell therapy has been widely used in the research of heart-related diseases. Adipose-derived stem cells (ADSCs) , as a kind of adult stem cells, are easily obtained and expanded, and have multi-directional differentiation potential. It has been demonstrated that ADSCs have the ability to differentiate into myocyte-like cells, vascular smooth muscle cells and endothelial cells, and became an important source of adult stem cells for the treatment of cardiovascular diseases. Furthermore, ADSCs secrete a series of paracrine factors that can promote neovascularization, reduce apoptosis, and inhibit fibrosis, and have great potential in promoting the repair of myocardial injury. But ADSCs still face the problem of low survival rate. Here, we focus on reviewing the leading edge of the ADSCs therapeutic mechanisms and strategies for improving therapeutic effectiveness.

1
Yusuf S, Joseph P, Dans A, et al. Polypill with or without aspirin in persons without cardiovascular disease[J]. N Engl J Med, 2021, 384(3): 216-228.
2
Nigro P, Bassetti B, Cavallotti L, et al. Cell therapy for heart disease after 15 years: unmet expectations[J]. Pharmacol Res, 2018,127:77-91.
3
Marunouchi T, Sasaki K, Yano E, et al. Transplantation of cardiac Sca-1-positive cells rather than c-Kit-positive cells preserves mitochondrial oxygen consumption of the viable myocardium following myocardial infarction in rats[J]. J Pharmacol Sci, 2019, 140(3): 236-241.
4
Ning H, Chen H, Deng J, et al. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis[J]. Stem Cell Res Ther, 2021, 12(1): 519.
5
Zhao L, Cheng G, Choksi K, et al. Transplantation of human umbilical cord blood-derived cellular fraction improves left ventricular function and remodeling after myocardial ischemia/reperfusion[J]. Circ Res, 2019, 125(8): 759-772.
6
Funakoshi S, Fernandes I, Mastikhina O, et al. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells[J]. Nat Commun, 2021, 12(1): 3155.
7
Colzani M, Malcor JD, Hunter EJ, et al. Modulating hESC-derived cardiomyocyte and endothelial cell function with triple-helical peptides for heart tissue engineering[J]. Biomaterials, 2021, 269: 120612.
8
Gandia C, Armiñan A, García-Verdugo JM, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction[J]. Stem Cells, 2008, 26(3): 638-645.
9
Lee HW, Lee HC, Park JH, et al. Effects of intracoronary administration of autologous adipose tissue-derived stem cells on acute myocardial infarction in a porcine model[J]. Yonsei Med J, 2015, 56(6):1522-1529.
10
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2): 211-228.
11
Najafipour H, Bagheri-Hosseinabadi Z, Eslaminejad T, et al. The effect of sodium valproate on differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in two-dimensional culture and fibrin scaffold conditions[J]. Cell Tissue Res, 2019, 378(1): 127-141.
12
Houtgraaf JH, den Dekker WK, van Dalen BM, et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol, 2012, 59(5): 539-540.
13
Qiao L, Kong Y, Shi Y, et al. Synergistic effects of adipose-derived stem cells combined with decellularized myocardial matrix on the treatment of myocardial infarction in rats[J]. Life Sci, 2019, 239: 116891.
14
Hou F, Geng Q, Zhang F, et al. Protective effects of induced cardiosphere on myocardial ischemia-reperfusion injury through secreting interleukin 10[J]. Int Immunopharmacol, 2020, 80: 106207.
15
Perin EC, Sanz-Ruiz R, Sánchez PL, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial[J]. Am Heart J, 2014, 168(1): 88-95.e2.
16
Kashiyama N, Kormos RL, Matsumura Y, et al. Adipose-derived stem cell sheet under an elastic patch improves cardiac function in rats after myocardial infarction[J]. J Thorac Cardiovasc Surg, 2020,163(4):e261-e272.
17
Mori D, Miyagawa S, Yajima S, et al. Cell spray transplantation of adipose-derived mesenchymal stem cell recovers ischemic cardiomyopathy in a porcine model[J]. Transplantation, 2018, 102(12): 2012-2024.
18
Bobi J, Solanes N, Fernández-Jiménez R, et al. Intracoronary administration of allogeneic adipose tissue-derived mesenchymal stem cells improves myocardial perfusion but not left ventricle function, in a translational model of acute myocardial infarction[J]. J Am Heart Assoc, 2017, 6(5) :e005771.
19
Qayyum AA, Mathiasen AB, Helqvist S, et al. Autologous adipose-derived stromal cell treatment for patients with refractory angina (mystromalcell trial): 3-years follow-up results[J]. J Transl Med, 2019, 17(1): 360.
20
Bodi V, Sanchis J, Nunez J, et al. Uncontrolled immune response in acute myocardial infarction: unraveling the thread[J]. Am Heart J, 2008, 156(6): 1065-1073.
21
van Dijk A, Naaijkens BA, Jurgens WJ, et al. Reduction of infarct size by intravenous injection of uncultured adipose derived stromal cells in a rat model is dependent on the time point of application[J]. Stem Cell Res, 2011, 7(3): 219-229.
22
Naaijkens BA, van Dijk A, Kamp O, et al. Therapeutic application of adipose derived stem cells in acute myocardial infarction: lessons from animal models[J]. Stem Cell Rev Rep, 2014, 10(3): 389-398.
23
Yokoyama R, Ii M, Masuda M, et al. Cardiac Regeneration by statin-polymer nanoparticle-loaded adipose-derived stem cell therapy in myocardial infarction[J]. Stem Cells Transl Med, 2019, 8(10): 1055-1067.
24
Stevens KR, Murry CE. Human pluripotent stem cell-derived engineered tissues: clinical considerations[J]. Cell Stem Cell, 2018, 22(3): 294-297.
25
Khazaei S, Soleimani M, Tafti SHA, et al. Improvement of heart function after transplantation of encapsulated stem cells induced with mir-1/myocd in myocardial infarction model of rat[J]. Cell Transplant, 2021. 30: 9636897211048786.
26
Kakkar A, Nandy SB, Gupta S, et al. Adipose tissue derived mesenchymal stem cells are better respondents to TGFβ1 for in vitro generation of cardiomyocyte-like cells[J]. Mol Cell Biochem, 2019, 460(1-2): 53-66.
27
Bagheri-Hosseinabadi Z, Salehinejad P, Mesbah-Namin SA. Differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in fibrin scaffold by a histone deacetylase inhibitor[J]. Biomed Eng Online, 2017,16(1): 134.
28
Strem BM, Zhu M, Alfonso Z, et al. Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury[J]. Cytotherapy, 2005, 7(3): 282-291.
29
Wang H, Shi J, Wang Y, et al. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction[J]. Biomaterials, 2014, 35(13): 3986-3998.
30
Berry MF, Engler AJ, Woo YJ, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance[J]. Am J Physiol Heart Circ Physiol, 2006, 290(6): H2196-2203.
31
Yamada Y, Wang XD, Yokoyama S, et al. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium[J]. Biochem Biophys Res Commun, 2006, 342(2): 662-670.
32
Yang D, Wang W, Li L, et al. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair[J]. PLoS One, 2013, 8(3): e59020.
33
Mazo M, Planat-Bénard V, Abizanda G, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction[J]. Eur J Heart Fail, 2008, 10(5): 454-462.
34
Miranville A, Heeschen C, Sengenès C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells[J]. Circulation, 2004, 110(3): 349-355.
35
Togliatto G, Dentelli P, Gili M, et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications[J]. Int J Obes (Lond), 2016, 40(1): 102-111.
36
Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs[J]. Circulation, 1994, 89(5): 2183-2189.
37
Lin J, Zhu Q, Huang J, et al. Hypoxia promotes vascular smooth muscle cell (vsmc) differentiation of adipose-derived stem cell (adsc) by regulating mettl3 and paracrine factors[J]. Stem Cells Int, 2020, 2020: 2830565.
38
Sun CK, Zhen YY, Leu S, et al. Direct implantation versus platelet-rich fibrin-embedded adipose-derived mesenchymal stem cells in treating rat acute myocardial infarction[J]. Int J Cardiol, 2014, 173(3): 410-423.
39
Gao L, Mei S, Zhang S, et al. Cardio-renal exosomes in myocardial infarction serum regulate proangiogenic paracrine signaling in adipose mesenchymal stem cells[J]. Theranostics, 2020, 10(3): 1060-1073.
40
Lee TL, Lai TC, Lin SR, et al. Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway[J]. Theranostics, 2021, 11(7): 3131-3149.
41
Lee CY, Shin S, Lee J, et al. MicroRNA-mediated down-regulation of apoptosis signal-regulating kinase 1 (ASK1) attenuates the apoptosis of human mesenchymal stem cells (MSCs) transplanted into infarcted heart[J]. Int J Mol Sci, 2016, 17(10):1752.
42
Lee TM, Lee CC, Harn HJ, et al. Intramyocardial injection of human adipose-derived stem cells ameliorates cognitive deficit by regulating oxidative stress-mediated hippocampal damage after myocardial infarction[J]. J Mol Med (Berl), 2021, 99(12): 1815-1827.
43
Yan W, Guo Y, Tao L, et al. C1q/tumor necrosis factor-related protein-9 regulates the fate of implanted mesenchymal stem cells and mobilizes their protective effects against ischemic heart injury via multiple novel signaling pathways[J]. Circulation, 2017, 136(22): 2162-2177.
44
Kondo K, Shintani S, Shibata R, et al. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(1): 61-66.
45
Huang H, Xu Z, Qi Y, et al. Exosomes from SIRT1-overexpressing ADSCs restore cardiac function by improving angiogenic function of EPCs[J]. Mol Ther Nucleic Acids, 2020, 21: 737-750.
46
Horie H, Hisatome I, Kurata Y, et al. α1-Adrenergic receptor mediates adipose-derived stem cell sheet-induced protection against chronic heart failure after myocardial infarction in rats[J]. Hypertens Res, 2022, 45(2):283-291.
47
Lee TM, Harn HJ, Chiou TW, et al. Preconditioned adipose-derived stem cells ameliorate cardiac fibrosis by regulating macrophage polarization in infarcted rat hearts through the PI3K/STAT3 pathway[J]. Lab Invest, 2019, 99(5): 634-647.
48
Acquistapace A, Bru T, Lesault PF, et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer[J]. Stem Cells, 2011, 29(5):812-824.
49
Lee TM, Harn HJ, Chiou TW, et al. Remote transplantation of human adipose-derived stem cells induces regression of cardiac hypertrophy by regulating the macrophage polarization in spontaneously hypertensive rats[J]. Redox Biol, 2019, 27: 101170.
50
Lee TM, Harn HJ, Chiou TW, et al. Targeting the pathway of GSK-3β/nerve growth factor to attenuate post-infarction arrhythmias by preconditioned adipose-derived stem cells[J]. J Mol Cell Cardiol, 2017, 104:17-30.
51
Yue Y, Zhang P, Liu D, et al. Hypoxia preconditioning enhances the viability of ADSCs to increase the survival rate of ischemic skin flaps in rats[J]. Aesthetic Plast Surg, 2013, 37(1):159-170.
52
Dzhoyashvili NA, Efimenko AY, Kochegura TN, et al. Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2[J]. J Transl Med, 2014, 12: 337.
53
Wang B, Ma X, Zhao L, et al. Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction[J]. Clin Exp Med, 2016, 16(4): 539-550.
54
Yan W, Lin C, Guo Y, et al. N-cadherin overexpression mobilizes the protective effects of mesenchymal stromal cells against ischemic heart injury through a β-catenin-dependent manner[J]. Circ Res, 2020, 126(7): 857-874.
55
Shi CZ, Zhang XP, Lv ZW, et al. Adipose tissue-derived stem cells embedded with eNOS restore cardiac function in acute myocardial infarction model[J]. Int J Cardiol, 2012, 154(1):2-8.
56
Luo Q, Guo D, Liu G, et al. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J]. Cell Physiol Biochem, 2017, 44(6):2105-2116.
57
Zhang N, Song Y, Huang Z, et al. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model[J]. Biomaterials, 2020, 255: 120168.
58
Díaz-Herráez P, Saludas L, Pascual-Gil S, et al. Transplantation of adipose-derived stem cells combined with neuregulin-microparticles promotes efficient cardiac repair in a rat myocardial infarction model[J]. J Control Release, 2017, 249:23-31.
59
Bao R, Tan B, Liang S, et al. A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction[J]. Biomaterials, 2017,122: 63-71.
60
Liang W, Chen J, Li L, et al. Conductive hydrogen sulfide-releasing hydrogel encapsulating adscs for myocardial infarction treatment[J]. ACS Appl Mater Interfaces, 2019, 11(16): 14619-14629.
61
Wang W, Tan B, Chen J, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction[J]. Biomaterials, 2018, 160: 69-81.
62
de Cerio A L, Perez-Estenaga I, Inoges S, et al. Preclinical evaluation of the safety and immunological action of allogeneic adsc-collagen scaffolds in the treatment of chronic ischemic cardiomyopathy[J]. Pharmaceutics, 2021, 13(8):1269.
63
Singelyn JM, DeQuach JA, Seif-Naraghi SB, et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering[J]. Biomaterials, 2009, 30(29): 5409-5416.
64
Souza VS, Antonio EL, de Melo BL, et al. Increased myocardial retention of mesenchymal stem cells post-MI by pre-conditioning exercise training[J]. Stem Cell Rev Rep, 2020, 16(4): 730-741.
65
de Souza Vieira S, Antonio EL, de Melo BL, et al. Exercise training potentiates the cardioprotective effects of stem cells post-infarction[J]. Heart Lung Circ, 2019, 28(2): 263-271.
66
Sharma AK, Kumar A, Sahu M, et al. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction[J]. Microvasc Res, 2018, 120: 59-66.
67
Henry TD, Pepine CJ, Lambert CR, et al. The athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction[J]. Catheter Cardiovasc Interv, 2017, 89(2): 169-177.
68
Qayyum AA, Mathiasen AB, Mygind ND, et al. Cardiac magnetic resonance imaging used for evaluation of adipose-derived stromal cell therapy in patients with chronic ischemic heart disease[J]. Cell Transplant, 2019, 28(12): 1700-1708.
69
De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications[J]. Curr Mol Med, 2012, 12(5): 574-591.
[1] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J/OL]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[2] 王友芳, 李兴超, 刘清敏, 刘德彬, 刘松伍, 郭冬冬, 车峰远. 应激性高血糖指数对经皮冠状动脉介入术后急性心肌梗死患者发生主要不良心脑血管事件的预测价值[J/OL]. 中华危重症医学杂志(电子版), 2024, 17(02): 124-129.
[3] 卢凯, 王香云. 急性心肌梗死后心力衰竭患者血清微小RNA-200a表达及临床意义[J/OL]. 中华危重症医学杂志(电子版), 2023, 16(06): 488-491.
[4] 刘昌玲, 张金丽, 张志, 李孝建, 汤文彬, 胡逸萍, 陈宾, 谢晓娜. 负载人脂肪干细胞外泌体的甲基丙烯酰化明胶水凝胶对人皮肤成纤维细胞增殖和迁移的影响[J/OL]. 中华损伤与修复杂志(电子版), 2024, 19(06): 517-525.
[5] 许媛媛, 赵悦岐, 李雪, 曲燕. 艾灸在病毒疣中的临床应用及其机制研究进展[J/OL]. 中华实验和临床感染病杂志(电子版), 2023, 17(06): 390-394.
[6] 王淑君, 张楚晗, 唐一阳, 赵雨桐, 李佳伦, 付佳乐. 自粘接树脂水门汀的临床应用及展望[J/OL]. 中华口腔医学研究杂志(电子版), 2024, 18(04): 276-286.
[7] 吴天秀, 徐瑜, 廖秀清, 姚伟, 王关嵩, 杨昱, 王斌, 郭亮, 张明周, 吴国明, 罗莉, 白莉, 王彦, 胡明冬, 徐智. 驱动基因阴性Ⅲ/Ⅳ期非小细胞肺癌BRCA1/2基因突变与含铂化疗疗效的关系[J/OL]. 中华肺部疾病杂志(电子版), 2023, 16(05): 615-623.
[8] 曹守青, 来东, 焦启龙, 安哲昆, 李修彬. 免疫细胞在肾脏缺血再灌注损伤修复中的作用研究进展[J/OL]. 中华细胞与干细胞杂志(电子版), 2024, 14(01): 45-50.
[9] 戚泽雪, 赵连晖, 王广川, 张春清. 从国内专家共识推荐意见更新探讨经颈静脉肝内门体分流术的临床应用进展[J/OL]. 中华消化病与影像杂志(电子版), 2024, 14(03): 193-196.
[10] 刘亮, 肖浩, 崔晓磊, 吕宝谱, 张睿, 郑拓康, 孟庆冰, 姚冬奇, 田英平, 高恒波. 急性心肌梗死合并心源性休克患者预后因素分析97例[J/OL]. 中华临床医师杂志(电子版), 2024, 18(02): 183-189.
[11] 林永俭, 谢雪花, 郝莉茹, 刘丽, 马英东. 优化急诊绿色通道对急性心肌梗死介入治疗患者救治时间的影响[J/OL]. 中华介入放射学电子杂志, 2024, 12(02): 185-189.
[12] 王睿浩, 姜云璐, 田艳君. Apelin/APJ系统生理病理作用的研究进展[J/OL]. 中华诊断学电子杂志, 2024, 12(02): 138-142.
[13] 田欢, 吴艳凯, 宋波, 魏榕辰, 张艳, 李月戈, 武柏林. 基于心脏磁共振多模态特征评估急性心肌梗死患者预后[J/OL]. 中华心脏与心律电子杂志, 2024, 12(01): 17-25.
[14] 罗媛元, 曾欣. 无针经皮穴位电刺激治疗胃食管反流病研究进展[J/OL]. 中华胃食管反流病电子杂志, 2024, 11(01): 40-43.
[15] 郑屹, 刘莹, 张煜坤, 李广平, 陈康寅, 刘彤. 既往及新发心房颤动对急性心肌梗死患者远期卒中风险的影响[J/OL]. 中华脑血管病杂志(电子版), 2024, 18(05): 406-417.
阅读次数
全文


摘要


AI


AI小编
你好!我是《中华医学电子期刊资源库》AI小编,有什么可以帮您的吗?