切换至 "中华医学电子期刊资源库"

中华细胞与干细胞杂志(电子版) ›› 2022, Vol. 12 ›› Issue (04) : 230 -236. doi: 10.3877/cma.j.issn.2095-1221.2022.04.006

综述

脂肪干细胞在心肌损伤修复中的研究进展
乔梁1, 杨向群1,()   
  1. 1. 200433 上海,海军军医大学人体解剖学教研室
  • 收稿日期:2021-12-01 出版日期:2022-08-01
  • 通信作者: 杨向群
  • 基金资助:
    国家自然科学基金(32071365)

Adipose derived stem cells for myocardial injury repair: a review

Liang Qiao1, Xiangqun Yang1,()   

  1. 1. Department of Anatomy, Naval Medical University, Shanghai 200433, China
  • Received:2021-12-01 Published:2022-08-01
  • Corresponding author: Xiangqun Yang
引用本文:

乔梁, 杨向群. 脂肪干细胞在心肌损伤修复中的研究进展[J]. 中华细胞与干细胞杂志(电子版), 2022, 12(04): 230-236.

Liang Qiao, Xiangqun Yang. Adipose derived stem cells for myocardial injury repair: a review[J]. Chinese Journal of Cell and Stem Cell(Electronic Edition), 2022, 12(04): 230-236.

干细胞疗法被广泛地应用于心脏相关疾病的研究。脂肪干细胞(ADSCs)作为一种成体干细胞,易于获得和扩增,具有多向分化潜能,已被证明具有分化为心肌样细胞、血管平滑肌细胞和内皮细胞的能力,成为治疗心血管疾病成体干细胞的重要来源。此外,ADSCs分泌一系列旁分泌因子促进血管新生,减少凋亡,抑制纤维化,在促进心肌损伤修复中具有巨大潜力,但是ADSCs仍然面临移植存活率低等问题。在此,重点对ADSCs的治疗机制和提高治疗效果的策略等前沿进行综述。

Stem cell therapy has been widely used in the research of heart-related diseases. Adipose-derived stem cells (ADSCs) , as a kind of adult stem cells, are easily obtained and expanded, and have multi-directional differentiation potential. It has been demonstrated that ADSCs have the ability to differentiate into myocyte-like cells, vascular smooth muscle cells and endothelial cells, and became an important source of adult stem cells for the treatment of cardiovascular diseases. Furthermore, ADSCs secrete a series of paracrine factors that can promote neovascularization, reduce apoptosis, and inhibit fibrosis, and have great potential in promoting the repair of myocardial injury. But ADSCs still face the problem of low survival rate. Here, we focus on reviewing the leading edge of the ADSCs therapeutic mechanisms and strategies for improving therapeutic effectiveness.

1
Yusuf S, Joseph P, Dans A, et al. Polypill with or without aspirin in persons without cardiovascular disease[J]. N Engl J Med, 2021, 384(3): 216-228.
2
Nigro P, Bassetti B, Cavallotti L, et al. Cell therapy for heart disease after 15 years: unmet expectations[J]. Pharmacol Res, 2018,127:77-91.
3
Marunouchi T, Sasaki K, Yano E, et al. Transplantation of cardiac Sca-1-positive cells rather than c-Kit-positive cells preserves mitochondrial oxygen consumption of the viable myocardium following myocardial infarction in rats[J]. J Pharmacol Sci, 2019, 140(3): 236-241.
4
Ning H, Chen H, Deng J, et al. Exosomes secreted by FNDC5-BMMSCs protect myocardial infarction by anti-inflammation and macrophage polarization via NF-κB signaling pathway and Nrf2/HO-1 axis[J]. Stem Cell Res Ther, 2021, 12(1): 519.
5
Zhao L, Cheng G, Choksi K, et al. Transplantation of human umbilical cord blood-derived cellular fraction improves left ventricular function and remodeling after myocardial ischemia/reperfusion[J]. Circ Res, 2019, 125(8): 759-772.
6
Funakoshi S, Fernandes I, Mastikhina O, et al. Generation of mature compact ventricular cardiomyocytes from human pluripotent stem cells[J]. Nat Commun, 2021, 12(1): 3155.
7
Colzani M, Malcor JD, Hunter EJ, et al. Modulating hESC-derived cardiomyocyte and endothelial cell function with triple-helical peptides for heart tissue engineering[J]. Biomaterials, 2021, 269: 120612.
8
Gandia C, Armiñan A, García-Verdugo JM, et al. Human dental pulp stem cells improve left ventricular function, induce angiogenesis, and reduce infarct size in rats with acute myocardial infarction[J]. Stem Cells, 2008, 26(3): 638-645.
9
Lee HW, Lee HC, Park JH, et al. Effects of intracoronary administration of autologous adipose tissue-derived stem cells on acute myocardial infarction in a porcine model[J]. Yonsei Med J, 2015, 56(6):1522-1529.
10
Zuk PA, Zhu M, Mizuno H, et al. Multilineage cells from human adipose tissue: implications for cell-based therapies[J]. Tissue Eng, 2001, 7(2): 211-228.
11
Najafipour H, Bagheri-Hosseinabadi Z, Eslaminejad T, et al. The effect of sodium valproate on differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in two-dimensional culture and fibrin scaffold conditions[J]. Cell Tissue Res, 2019, 378(1): 127-141.
12
Houtgraaf JH, den Dekker WK, van Dalen BM, et al. First experience in humans using adipose tissue-derived regenerative cells in the treatment of patients with ST-segment elevation myocardial infarction[J]. J Am Coll Cardiol, 2012, 59(5): 539-540.
13
Qiao L, Kong Y, Shi Y, et al. Synergistic effects of adipose-derived stem cells combined with decellularized myocardial matrix on the treatment of myocardial infarction in rats[J]. Life Sci, 2019, 239: 116891.
14
Hou F, Geng Q, Zhang F, et al. Protective effects of induced cardiosphere on myocardial ischemia-reperfusion injury through secreting interleukin 10[J]. Int Immunopharmacol, 2020, 80: 106207.
15
Perin EC, Sanz-Ruiz R, Sánchez PL, et al. Adipose-derived regenerative cells in patients with ischemic cardiomyopathy: the PRECISE trial[J]. Am Heart J, 2014, 168(1): 88-95.e2.
16
Kashiyama N, Kormos RL, Matsumura Y, et al. Adipose-derived stem cell sheet under an elastic patch improves cardiac function in rats after myocardial infarction[J]. J Thorac Cardiovasc Surg, 2020,163(4):e261-e272.
17
Mori D, Miyagawa S, Yajima S, et al. Cell spray transplantation of adipose-derived mesenchymal stem cell recovers ischemic cardiomyopathy in a porcine model[J]. Transplantation, 2018, 102(12): 2012-2024.
18
Bobi J, Solanes N, Fernández-Jiménez R, et al. Intracoronary administration of allogeneic adipose tissue-derived mesenchymal stem cells improves myocardial perfusion but not left ventricle function, in a translational model of acute myocardial infarction[J]. J Am Heart Assoc, 2017, 6(5) :e005771.
19
Qayyum AA, Mathiasen AB, Helqvist S, et al. Autologous adipose-derived stromal cell treatment for patients with refractory angina (mystromalcell trial): 3-years follow-up results[J]. J Transl Med, 2019, 17(1): 360.
20
Bodi V, Sanchis J, Nunez J, et al. Uncontrolled immune response in acute myocardial infarction: unraveling the thread[J]. Am Heart J, 2008, 156(6): 1065-1073.
21
van Dijk A, Naaijkens BA, Jurgens WJ, et al. Reduction of infarct size by intravenous injection of uncultured adipose derived stromal cells in a rat model is dependent on the time point of application[J]. Stem Cell Res, 2011, 7(3): 219-229.
22
Naaijkens BA, van Dijk A, Kamp O, et al. Therapeutic application of adipose derived stem cells in acute myocardial infarction: lessons from animal models[J]. Stem Cell Rev Rep, 2014, 10(3): 389-398.
23
Yokoyama R, Ii M, Masuda M, et al. Cardiac Regeneration by statin-polymer nanoparticle-loaded adipose-derived stem cell therapy in myocardial infarction[J]. Stem Cells Transl Med, 2019, 8(10): 1055-1067.
24
Stevens KR, Murry CE. Human pluripotent stem cell-derived engineered tissues: clinical considerations[J]. Cell Stem Cell, 2018, 22(3): 294-297.
25
Khazaei S, Soleimani M, Tafti SHA, et al. Improvement of heart function after transplantation of encapsulated stem cells induced with mir-1/myocd in myocardial infarction model of rat[J]. Cell Transplant, 2021. 30: 9636897211048786.
26
Kakkar A, Nandy SB, Gupta S, et al. Adipose tissue derived mesenchymal stem cells are better respondents to TGFβ1 for in vitro generation of cardiomyocyte-like cells[J]. Mol Cell Biochem, 2019, 460(1-2): 53-66.
27
Bagheri-Hosseinabadi Z, Salehinejad P, Mesbah-Namin SA. Differentiation of human adipose-derived stem cells into cardiomyocyte-like cells in fibrin scaffold by a histone deacetylase inhibitor[J]. Biomed Eng Online, 2017,16(1): 134.
28
Strem BM, Zhu M, Alfonso Z, et al. Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury[J]. Cytotherapy, 2005, 7(3): 282-291.
29
Wang H, Shi J, Wang Y, et al. Promotion of cardiac differentiation of brown adipose derived stem cells by chitosan hydrogel for repair after myocardial infarction[J]. Biomaterials, 2014, 35(13): 3986-3998.
30
Berry MF, Engler AJ, Woo YJ, et al. Mesenchymal stem cell injection after myocardial infarction improves myocardial compliance[J]. Am J Physiol Heart Circ Physiol, 2006, 290(6): H2196-2203.
31
Yamada Y, Wang XD, Yokoyama S, et al. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium[J]. Biochem Biophys Res Commun, 2006, 342(2): 662-670.
32
Yang D, Wang W, Li L, et al. The relative contribution of paracine effect versus direct differentiation on adipose-derived stem cell transplantation mediated cardiac repair[J]. PLoS One, 2013, 8(3): e59020.
33
Mazo M, Planat-Bénard V, Abizanda G, et al. Transplantation of adipose derived stromal cells is associated with functional improvement in a rat model of chronic myocardial infarction[J]. Eur J Heart Fail, 2008, 10(5): 454-462.
34
Miranville A, Heeschen C, Sengenès C, et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells[J]. Circulation, 2004, 110(3): 349-355.
35
Togliatto G, Dentelli P, Gili M, et al. Obesity reduces the pro-angiogenic potential of adipose tissue stem cell-derived extracellular vesicles (EVs) by impairing miR-126 content: impact on clinical applications[J]. Int J Obes (Lond), 2016, 40(1): 102-111.
36
Banai S, Jaklitsch MT, Shou M, et al. Angiogenic-induced enhancement of collateral blood flow to ischemic myocardium by vascular endothelial growth factor in dogs[J]. Circulation, 1994, 89(5): 2183-2189.
37
Lin J, Zhu Q, Huang J, et al. Hypoxia promotes vascular smooth muscle cell (vsmc) differentiation of adipose-derived stem cell (adsc) by regulating mettl3 and paracrine factors[J]. Stem Cells Int, 2020, 2020: 2830565.
38
Sun CK, Zhen YY, Leu S, et al. Direct implantation versus platelet-rich fibrin-embedded adipose-derived mesenchymal stem cells in treating rat acute myocardial infarction[J]. Int J Cardiol, 2014, 173(3): 410-423.
39
Gao L, Mei S, Zhang S, et al. Cardio-renal exosomes in myocardial infarction serum regulate proangiogenic paracrine signaling in adipose mesenchymal stem cells[J]. Theranostics, 2020, 10(3): 1060-1073.
40
Lee TL, Lai TC, Lin SR, et al. Conditioned medium from adipose-derived stem cells attenuates ischemia/reperfusion-induced cardiac injury through the microRNA-221/222/PUMA/ETS-1 pathway[J]. Theranostics, 2021, 11(7): 3131-3149.
41
Lee CY, Shin S, Lee J, et al. MicroRNA-mediated down-regulation of apoptosis signal-regulating kinase 1 (ASK1) attenuates the apoptosis of human mesenchymal stem cells (MSCs) transplanted into infarcted heart[J]. Int J Mol Sci, 2016, 17(10):1752.
42
Lee TM, Lee CC, Harn HJ, et al. Intramyocardial injection of human adipose-derived stem cells ameliorates cognitive deficit by regulating oxidative stress-mediated hippocampal damage after myocardial infarction[J]. J Mol Med (Berl), 2021, 99(12): 1815-1827.
43
Yan W, Guo Y, Tao L, et al. C1q/tumor necrosis factor-related protein-9 regulates the fate of implanted mesenchymal stem cells and mobilizes their protective effects against ischemic heart injury via multiple novel signaling pathways[J]. Circulation, 2017, 136(22): 2162-2177.
44
Kondo K, Shintani S, Shibata R, et al. Implantation of adipose-derived regenerative cells enhances ischemia-induced angiogenesis[J]. Arterioscler Thromb Vasc Biol, 2009, 29(1): 61-66.
45
Huang H, Xu Z, Qi Y, et al. Exosomes from SIRT1-overexpressing ADSCs restore cardiac function by improving angiogenic function of EPCs[J]. Mol Ther Nucleic Acids, 2020, 21: 737-750.
46
Horie H, Hisatome I, Kurata Y, et al. α1-Adrenergic receptor mediates adipose-derived stem cell sheet-induced protection against chronic heart failure after myocardial infarction in rats[J]. Hypertens Res, 2022, 45(2):283-291.
47
Lee TM, Harn HJ, Chiou TW, et al. Preconditioned adipose-derived stem cells ameliorate cardiac fibrosis by regulating macrophage polarization in infarcted rat hearts through the PI3K/STAT3 pathway[J]. Lab Invest, 2019, 99(5): 634-647.
48
Acquistapace A, Bru T, Lesault PF, et al. Human mesenchymal stem cells reprogram adult cardiomyocytes toward a progenitor-like state through partial cell fusion and mitochondria transfer[J]. Stem Cells, 2011, 29(5):812-824.
49
Lee TM, Harn HJ, Chiou TW, et al. Remote transplantation of human adipose-derived stem cells induces regression of cardiac hypertrophy by regulating the macrophage polarization in spontaneously hypertensive rats[J]. Redox Biol, 2019, 27: 101170.
50
Lee TM, Harn HJ, Chiou TW, et al. Targeting the pathway of GSK-3β/nerve growth factor to attenuate post-infarction arrhythmias by preconditioned adipose-derived stem cells[J]. J Mol Cell Cardiol, 2017, 104:17-30.
51
Yue Y, Zhang P, Liu D, et al. Hypoxia preconditioning enhances the viability of ADSCs to increase the survival rate of ischemic skin flaps in rats[J]. Aesthetic Plast Surg, 2013, 37(1):159-170.
52
Dzhoyashvili NA, Efimenko AY, Kochegura TN, et al. Disturbed angiogenic activity of adipose-derived stromal cells obtained from patients with coronary artery disease and diabetes mellitus type 2[J]. J Transl Med, 2014, 12: 337.
53
Wang B, Ma X, Zhao L, et al. Injection of basic fibroblast growth factor together with adipose-derived stem cell transplantation: improved cardiac remodeling and function in myocardial infarction[J]. Clin Exp Med, 2016, 16(4): 539-550.
54
Yan W, Lin C, Guo Y, et al. N-cadherin overexpression mobilizes the protective effects of mesenchymal stromal cells against ischemic heart injury through a β-catenin-dependent manner[J]. Circ Res, 2020, 126(7): 857-874.
55
Shi CZ, Zhang XP, Lv ZW, et al. Adipose tissue-derived stem cells embedded with eNOS restore cardiac function in acute myocardial infarction model[J]. Int J Cardiol, 2012, 154(1):2-8.
56
Luo Q, Guo D, Liu G, et al. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury[J]. Cell Physiol Biochem, 2017, 44(6):2105-2116.
57
Zhang N, Song Y, Huang Z, et al. Monocyte mimics improve mesenchymal stem cell-derived extracellular vesicle homing in a mouse MI/RI model[J]. Biomaterials, 2020, 255: 120168.
58
Díaz-Herráez P, Saludas L, Pascual-Gil S, et al. Transplantation of adipose-derived stem cells combined with neuregulin-microparticles promotes efficient cardiac repair in a rat myocardial infarction model[J]. J Control Release, 2017, 249:23-31.
59
Bao R, Tan B, Liang S, et al. A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after myocardial infarction[J]. Biomaterials, 2017,122: 63-71.
60
Liang W, Chen J, Li L, et al. Conductive hydrogen sulfide-releasing hydrogel encapsulating adscs for myocardial infarction treatment[J]. ACS Appl Mater Interfaces, 2019, 11(16): 14619-14629.
61
Wang W, Tan B, Chen J, et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating myocardial infarction[J]. Biomaterials, 2018, 160: 69-81.
62
de Cerio A L, Perez-Estenaga I, Inoges S, et al. Preclinical evaluation of the safety and immunological action of allogeneic adsc-collagen scaffolds in the treatment of chronic ischemic cardiomyopathy[J]. Pharmaceutics, 2021, 13(8):1269.
63
Singelyn JM, DeQuach JA, Seif-Naraghi SB, et al. Naturally derived myocardial matrix as an injectable scaffold for cardiac tissue engineering[J]. Biomaterials, 2009, 30(29): 5409-5416.
64
Souza VS, Antonio EL, de Melo BL, et al. Increased myocardial retention of mesenchymal stem cells post-MI by pre-conditioning exercise training[J]. Stem Cell Rev Rep, 2020, 16(4): 730-741.
65
de Souza Vieira S, Antonio EL, de Melo BL, et al. Exercise training potentiates the cardioprotective effects of stem cells post-infarction[J]. Heart Lung Circ, 2019, 28(2): 263-271.
66
Sharma AK, Kumar A, Sahu M, et al. Exercise preconditioning and low dose copper nanoparticles exhibits cardioprotection through targeting GSK-3β phosphorylation in ischemia/reperfusion induced myocardial infarction[J]. Microvasc Res, 2018, 120: 59-66.
67
Henry TD, Pepine CJ, Lambert CR, et al. The athena trials: autologous adipose-derived regenerative cells for refractory chronic myocardial ischemia with left ventricular dysfunction[J]. Catheter Cardiovasc Interv, 2017, 89(2): 169-177.
68
Qayyum AA, Mathiasen AB, Mygind ND, et al. Cardiac magnetic resonance imaging used for evaluation of adipose-derived stromal cell therapy in patients with chronic ischemic heart disease[J]. Cell Transplant, 2019, 28(12): 1700-1708.
69
De Miguel MP, Fuentes-Julián S, Blázquez-Martínez A, et al. Immunosuppressive properties of mesenchymal stem cells: advances and applications[J]. Curr Mol Med, 2012, 12(5): 574-591.
[1] 薛艳玲, 马小静, 谢姝瑞, 何俊, 夏娟, 何亚峰. 左心声学造影在急性心肌梗死合并室间隔穿孔中的应用价值[J]. 中华医学超声杂志(电子版), 2023, 20(10): 1036-1039.
[2] 黄泽, 张梓榆, 杨青宇, 赖声清, 李海燕. 乳腺腔镜手术临床应用现状及训练路径[J]. 中华乳腺病杂志(电子版), 2023, 17(02): 122-125.
[3] 缪黄泰, 李潇颖, 张明, 聂绍平. 急性心肌梗死后心脏破裂患者院内死亡的危险因素分析[J]. 中华危重症医学杂志(电子版), 2023, 16(03): 187-192.
[4] 刘锐, 郭思佳, 井维斌, 马明明, 曹卫红. 人源性脂肪干细胞对30%体表总面积Ⅲ度烫伤大鼠肺组织炎症反应的影响及其机制初步探讨[J]. 中华危重症医学杂志(电子版), 2022, 15(06): 441-447.
[5] 贺林凤, 曹雨, 张宁, 冉新泽, 王锋超. 肠干细胞调控与肠道放射损伤修复的研究进展[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 358-363.
[6] 贾蔓箐, 卞婧, 周业平. 对小剂量胰岛素局部注射促进脂肪干细胞移植成活及改善糖尿病创面愈合临床观察[J]. 中华损伤与修复杂志(电子版), 2023, 18(04): 312-316.
[7] 叶啟发. 生物人工肝血液净化材料研究现状[J]. 中华移植杂志(电子版), 2023, 17(02): 0-.
[8] 袁久莉, 刘丹, 李林藜, 刘晋宇. 毛囊间充质干细胞的基础研究及临床应用[J]. 中华细胞与干细胞杂志(电子版), 2023, 13(03): 189-192.
[9] 佘重阳, 卢弘. Janus激酶抑制剂在幼年特发性关节炎相关葡萄膜炎治疗中的研究进展[J]. 中华眼科医学杂志(电子版), 2023, 13(02): 104-108.
[10] 马嘉蹊, 米倩倩, 周义仁, 王丹. 阿达木单抗在眼科临床应用的新进展[J]. 中华眼科医学杂志(电子版), 2022, 12(06): 377-381.
[11] 刘卓, 段虎斌. 生物电相关疗法在神经损伤修复中的应用进展[J]. 中华神经创伤外科电子杂志, 2023, 09(05): 257-260.
[12] 吴绍伟. 迷走神经电刺激术治疗神经系统疾病的应用进展[J]. 中华脑科疾病与康复杂志(电子版), 2023, 13(03): 180-184.
[13] 谢靖芸, 李准. 院前急救对AMI患者治疗及预后影响的Meta分析[J]. 中华临床医师杂志(电子版), 2022, 16(09): 869-875.
[14] 赵宁, 陈娟媚, 杨其霖, 莫沛. 急性心肌梗死患者住院病死率和纤维蛋白原水平的非线性关系[J]. 中华临床实验室管理电子杂志, 2023, 11(01): 32-37.
[15] 杨沭, 郦明芳, 陈明龙. 左心室血栓的研究进展[J]. 中华心脏与心律电子杂志, 2023, 11(03): 188-192.
阅读次数
全文


摘要